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Recently, Nissen et al. argued in this journal for the use of Cohen’s d, in place of the more commonly
used normalized gain, in the analysis of preinstruction and postinstruction scores on concept inventories
used to measure the effectiveness of instruction. Their reason for advocating such a change is that they say
normalized gains are “prescore biased.” We provide five examples, including one cited by Nissen, that
show no prescore bias when data are carefully analyzed, demonstrating that the problem with their analysis
is omitted variable bias. We show that Cohen’s d is less informative than normalized gain when used as a
single parameter measure of teaching effectiveness, even though, as Nissen points out, d is more widely
used in other fields. We believe that physics education researchers should continue to use normalized gain
to assess educational effectiveness of pedagogy. However, because different student populations can have
significantly different responses to the same pedagogy, in any interpretation of normalized gain, it is
important to consider a measure of the abilities of the students. In analyzing normalized gains for the Force
Concept Inventory (FCI), average scores on either Lawson’s Test of Scientific Reasoning Ability or the
SAT should be considered, because these scores are strongly correlated with normalized gain, indicating
student abilities may have a greater impact on the gains achieved in a class than the specific pedagogy used.
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I. INTRODUCTION

Concept inventories are widely used in physics education
research (PER) to test the efficacy of alternative pedagogi-
cal methods. These include Force Concept Inventory
(FCI), Force and Motion Concept Evaluation (FMCE),
and Conceptual Survey of Electricity and Magnetism
(CSEM). In 1997 Hake introduced normalized gain as a
measure of change when the same concept test is used to
gauge student understanding at the beginning and again at
the end of a physics course [1]. Hake analyzed FCI data
from 62 courses with 6542 students and provided compel-
ling evidence of the superiority of interactive engagement
(IE) courses in physics to those taught using traditional
methods. Hake’s original use of normalized gain, which we
denote1 here by g, is a measure of change in average class
scores, preinstruction to postinstruction, defined as

g ¼ class av% post-class av% pre
100% − class av% pre

:

Normalized gain is the change in the class average score
divided by the maximum possible gain. This measure
can yield the same value for classes with quite different
averages. For example, prescores to postscores of 20% to
60%, 40% to 70%, and 60% to 80% all correspond to
g ¼ 0.5. Loosely speaking, normalized gain is the fraction
of concepts learned by a class that were not known at the
beginning of the course.
Nissen et al. claim that normalized gains are “prescore

biased,” and that Cohen’s d should be used in place of
normalized gain, though normalized gain has been widely
used in PER for over 20 years, since its introduction
by Hake.
In his study [1], Hake found no significant correlation

between g and prescores (r ¼ 0.02). In 2005 Hestenes
reported no significant correlation between normalized
gain and prescore for 12 000 high school students, again
showing no prescore bias [3]. One of the attractions of
using g as a measure of learning achieved in a class is that it
can be independent of the class prescore. However, this
lack of correlation is not found consistently. In Hake’s
study, it appears to have been a consequence of his

1Hake’s original notation for normalized gain was hgi rather
than g. We use the same notation used by Nissen et al. [2].
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including both traditionally taught and interactive engage-
ment classes in his analysis. In Hestenes’ study it was likely
the result of the population being high school students with
no prior knowledge of physics. In most IE college classes
there is a significant correlation between prescore and
normalized gain, but this apparent prescore bias is a
consequence of analysis that fails to take into account
other variables, a case of omitted variable bias.
We shall demonstrate in Sec. II that there is no real

prescore bias when data are carefully analyzed. In Sec. III
we point out problems with Nissen’s own data used to
support the argument of prescore bias. In Sec. IV we argue
against the use of normalized change, a modification of
normalized gain proposed byMarx and Cummings in 2007,
but not widely used. Nissen et al. describe the Marx and
Cummings paper and their argument that traditional nor-
malized gain is sometimes negatively prescore biased.
Nissen uses their argument as further evidence of prescore
bias. We address that argument. In Sec. V we point
out problems with the use of Cohen’s d in place of
normalized gain.

II. NORMALIZED GAIN IS NOT PRESCORE
BIASED; OMITTED VARIABLES BIAS

We shall provide examples showing correlation between
prescore and normalized gain, but we shall also show that
such correlation is not the result of prescore being a true
predictor of gain, but instead the result of other fundamental
predictors that are strongly correlated with both prescore and
gain. Failure to take account of these other predictors is an
error referred to as omitted variable bias [4]. We shall show
that one must be cautious in comparing g’s for classes with
very different student populations, and that valid predictors
of gain such as SAT scores should be considered.

A. Examples 1 and 2: Harvard and LMU

In 2005, Phillips and one of us reported on class average
FCI data [5] we collected from 38 classes at seven colleges
and universities that used interactive engagement methods
of instruction, and also on individual student data—
preinstruction and postinstruction scores for 2948 students
in 31 classes from four of the seven schools. We analyzed
our class average data as well as class average data from the
35 additional IE college and university classes from Hake’s
study. We did not include in our dataset high school classes
or any classes taught using traditional methods, as it was
our intent to look for possible correlations of normalized
gains with preinstruction FCI scores when IE methods are
used in college classes. We found a significant positive
correlation between normalized gain g and class average
preinstruction score for the 73 IE college and university
classes for which we had class average data (r ¼ 0.39,
p ¼ 0.0006). Average prescores ranged between 25%

and 70%. Average normalized gain for those classes with
average prescores around 25% was roughly 0.3, while
average prescores of 70% had average gains of 0.6. This
range of 0.3 to 0.6 is the approximate range of normalized
gains in all IE classes. These results are sometimes taken to
mean that normalized gains are “biased” in favor of higher
prescore. However, we shall describe below data that
contradict this claim, a result of omitted variable bias.
In 2002 Hake applied normalized gain to individual

student scores [6], defining individual normalized gain,2

which we denote here by gind, in terms of a student’s
individual prescores and postscores:

gind ¼
postscore% − prescore%

100% − prescore%
:

In our 2005 paper [5], Phillips and one of us analyzed
individual student FCI prescores and postscores from our
own school, Loyola Marymount University (LMU), and
three other schools: Southeastern Louisiana University
(SLU), University of Minnesota (UM), and Harvard
University (HU). We found a significant positive correlation
between gind and prescore at LMU, SLU, and UM. However,
for Harvard students there was no correlation between gind
and prescore, thus showing no prescore bias (Fig. 1).
In light of the Harvard data, we suspected that there were

other population dependent factors that were at work,
affecting the gains of students, and that the apparent
dependence of gain on prescore was an artifact, a result
of the prescore itself being dependent on a fundamental
predictor. So we began administering Lawson’s Classroom
Test of Scientific Reasoning Ability [7] to our students to

FIG. 1. At Harvard, individual students’ normalized gain is not
correlated with FCI prescore (r ¼ 0, N ¼ 670). For example, the
average of the individual normalized gains for the 20 Harvard
students with the lowest prescores was 0.6, the same as the
average normalized gain for students with higher prescores [5].
The largest dot represents 19 students.

2Hake reported that the average of gind for a class generally
differs from g by less than 5% [6].
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see whether their preinstruction scores on it were predictors
of their normalized gains. In our initial study of 65 LMU
students, we indeed found a much stronger correlation
between Lawson prescore and normalized gain gind
(r ¼ 0.51, p < 0.0001) than we found between FCI pre-
score and normalized gain gind (r ¼ 0.33, p < 0.0001), as
reported in 2005 [5].
Nissen [2] et al. cite the correlation we found between

gind and FCI prescore as evidence for prescore bias of
normalized gain. However, a multiple variable regression3

on both Lawson score and FCI prescore (r ¼ 0.51) reveals
that FCI prescore is not a significant predictor of g
(p ¼ 0.99), while Lawson score is (p ¼ 0.0001). For the
multiple variable regression, the correlation coefficient
r ¼ 0.51 has the same value found for single variable
regression, with Lawson score as the only independent
variable. Thus, careful analysis of our data that was cited
by Nissen et al. [2] as evidence for prescore bias in using
normalized gain, reveals that our data show no such bias.
Omitting Lawson scores in one’s analysis is an example of
omitted variable bias, the omitted variable being the
Lawson score. The correlation between g and FCI prescore
for these students was only a consequence of the correlation
between FCI prescore and Lawson score (r ¼ 0.50,
p ¼ 0.00001). Students with higher Lawson scores tended
to have higher FCI prescores. This makes sense because it
is reasonable that students with greater scientific reasoning
ability would likely learn more in their high school classes.

B. Example 3: Finland

Our Lawson Test correlations with g have been repli-
cated with remarkable consistency for other IE classes
at high schools, colleges, and universities in the U.S. and
Europe [8–12]. For example, Savinainnen [11] found for
136 Finnish students, that FCI gind was correlated with
Lawson prescore (r ¼ 0.53, p < 10−4) and in a multiple
regression of gind on both Lawson prescore and FCI
prescore, the dependence of gind on FCI prescore was
not significant (p ¼ 0.08), even though in a single variable
regression, with prescore as the only independent variable,
g and prescore were significantly correlated (r ¼ 0.34,
p < 10−4). Again FCI prescores were significantly corre-
lated with Lawson prescores (r ¼ 0.43, p < 10−4), and this
again seems to account for the misleading appearance of
gind depending on prescore. Savinainnen’s results show no
prescore bias in using normalized gain gind.

C. Example 4: Edward Little High School

In 2007 Phillips and both of us investigated whether SAT
combined math and verbal scores could also be used as a
predictor of normalized gain, and we found that they could

[13]. We reported correlations of gind with both Lawson and
SAT scores for LMU students and for students at Edward
Little High School (ELHS) in Maine, where Steinert taught
until 2006. The correlation coefficients between normal-
ized gain gind and SAT score were r ¼ 0.46 for LMU
(N ¼ 292) and r ¼ 0.57 for ELHS (N ¼ 335).
An especially compelling indication of the effect of SAT

score on conceptual learning in physics is provided by class
average data from 31 honors and regular classes at ELHS
from 1999 to 2006. Class average SAT scores ranged from
about 1000 to about 1300 and corresponding FCI g from
below 0.3 to above 0.7 (Fig. 2). The correlation between g
and SAT score was exceptionally strong (r ¼ 0.84,
p < 0.0001). Normalized gain g was also strongly corre-
lated with prescore (r ¼ 0.64, p < 0.0001). Apparently
this correlation was a consequence of the strong correlation
between prescore and SAT score (r ¼ 0.76, p < 0.0001),
as indicated by the fact that a multiple variable regression
of g on SAT and prescore yields the same correlation
coefficient as the correlation between g and SAT alone
(r ¼ 0.84), while the multiple variable regression indicated
no significant correlation of g with FCI prescore
(p ¼ 0.99). This shows once again no prescore bias for g.
The relationships we see between normalized FCI

gain, FCI prescore, and SAT score at ELHS provide
an explanation for why we see significant correlation
between g and prescore at many schools, where there is
a wide range of SAT scores, but no correlation at all at
Harvard (Fig. 1), where students all have very high SAT
scores—with 75% of the SAT combined math and verbal
scores above 1410.

D. Example 5: Arizona School for the Arts

From 2007 to the present, FCI and Lawson data have
been collected from 36 high school physics classes, taught
by one of us at Arizona School for the Arts (ASA). Class
average Lawson scores varied greatly and so did the values
of class FCI g, which were very strongly correlated with
Lawson scores, as seen in Fig. 3. FCI normalized gain g
was completely uncorrelated with FCI prescore (Fig. 4).
This is yet another example showing no prescore bias in
normalized gain g.

FIG. 2. Class average data for 31 classes at Edward Little High
School with a total of 361 students (r ¼ 0.84).

3For a brief description of multivariable regression, see the
Appendix.
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We also analyzed the relationships between individual
FCI normalized gain gind, individual Lawson score, and
individual FCI prescore for the 803 ASA students.
Figures 5–7 show the graphs for pairs of these variables.

The strongest correlation is between FCI gind and Lawson
score (r ¼ 0.55, p < 10−4). The correlation between FCI
gind and FCI prescore (r ¼ 0.25,<10−4) appears to be a
consequence of the correlation between FCI prescore and
Lawson score (r ¼ 0.39, p < 10−4) because a multiple
variable regression of FCI gind on Lawson and FCI pre-
scores yields the same r of 0.55 as when Lawson score is
the only independent variable, with a p < 10−4 for Lawson
score and a p of 0.16 for FCI prescore, indicating no
significant correlation. This example shows no prescore
bias in individual normalized gain gind.

III. NISSEN’S DATA; MISSING DATA

Nissen [2] et al. reported their own data for 89 courses,
showing correlation between gain and prescore (r ¼ 0.43).
Their study did not include analysis of either SAT or
Lawson data. In light of the examples above, without such
analysis one should not conclude that the results demon-
strate prescore bias. Their conclusion is based on omitted
variable bias.
Another problem with their analysis is the large quantity

of missing data. They rejected data from 27 other courses
with a total enrollment of 1116 students, because in those
classes more than 60% of the data were missing. However,
in their analysis of the 89 classes, they had complete
pretests and post-tests for only 2626 of the 4551 students
enrolled in those classes. They considered the 42% missing
data acceptable because in 4 other published studies that
reported the rate of missing data, the average was 37%
missing data. Nineteen studies they looked at did not report
how much data might have been missing. We suspect that
in many of those cases missing data were not reported
because they were insignificant. That has certainly
been the case with data we have reported in the past,
including our 2005 and 2007 papers [5,13]. Missing data
have been well under 5%. When missing data rise to the
level of 40%, we are concerned that the data could well
be unrepresentative of the class as a whole. Nissen uses
multiple imputation software to replace missing data, but if
there is a systematic bias to the missing data, the results
could be quite different than what would have been

FIG. 3. Class average data for 36 classes at ASA, with a total of
803 students (r ¼ 0.78). Here we have used a quadratic fit to the
data, providing a better fit to the data than a linear function
(r ¼ 0.78 vs r ¼ 0.71).

FIG. 4. Class average data for 36 classes at Arizona School for
the Arts, with a total of 803 students (r ¼ 0.00).

FIG. 5. Individual data for 803 students at Arizona School for
the Arts, 2007–2018 (r ¼ 0.55).

FIG. 6. Individual data for 803 students at Arizona School for
the Arts, 2007–2018 (r ¼ 0.25).

FIG. 7. Individual data for 803 students at Arizona School for
the Arts, 2007–2018 (r ¼ 0.39).
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obtained by complete data. As Jelicic, Phelps, and
Lerner [14] wrote, “the best solution to missing data is
not to have any.” When pretests and post-tests are given in
class, with a small point incentive for taking the post-test,
our experience has been that very few students will have
their results missing from the dataset.
Even if there was no systematic error introduced by the

large amount of missing data in Nissen’s analysis, that
analysis suffers from missing variable bias, and therefore
one should not accept their claim that normalized gain is
prescore biased.

IV. NORMALIZED CHANGE

Nissen et al. cited the 2007 work [15] of Marx and
Cummings as support for their claim of prescore bias,
and so we shall address that work in this section. Marx and
Cummings advocated for replacing individual normalized
gain gind by individual normalized change c, defined in
terms of an individual’s pretest and post-test scores:

c ¼
8
<

:

postscore%−prescore%
100%−prescore% if postscore > prescore

postscore%−prescore%
prescore% if postscore < prescore

:

Note that a different denominator is used when c is
negative. If prescore ¼ postscore, then c is set equal to
zero, unless prescore and postscore both equal either 0 or
100, in which case the data point is omitted. Marx and
Cummings advocate using the class average of students’
individual c’s, cavg, to report class results.
One argument they give for this new measure is that the

calculation of gind in some extreme cases can lead to strange
results. We shall provide what we believe is a better way to
deal with such cases. Marx and Cummings argue that gind
has a “low test score bias” because, for example, a prescore
of 20% and a postscore of 0% leads to a negative gain
of −20=80 ¼ −0.25, whereas prescores and postscores of
80% and 0%, respectively, lead to a much greater magni-
tude negative gain of −80=20 ¼ −4. Because higher pre-
scores could in such cases lead to more negative gains than
is possible with low prescores, they claim that gind is biased
in favor of lower prescores, a claim cited by Nissen et al.
[2] as another reason for discontinuing use of normalized
gain. It is doubtful that anyone has ever seen actual student
data with such extreme numbers, but what is occasionally
seen is student data in which some students miss one more
question on the post-test than on the pretest, resulting in
about a 3% drop in score. For a prescore of 80%, this would
result in a gind of −3=20 ¼ −0.14, whereas for a prescore
of 20%, this would result in a gind of −3=80 ¼ −0.01.
We believe that a better way to deal with negative gains is to
eliminate them by setting gind equal to zero whenever the
postscore is less than the prescore, so that individual
normalized gains will always range between 0 and 1.

This seems reasonable from a practical point of view
because, while it is possible for a student to have learned
nothing from a course, justifying a 0, it is hard to imagine a
course (at least an IE course) in which someone actually
knew less at the end of the course than at the beginning.
A more likely interpretation of a lower postscore is that the
student made some lucky guesses on the pretest, not that
they knew less at the end of the class. Hence setting 0 as a
minimum in computation of gind seems reasonable. This
seems to us a better method than using normalized change.
Marx and Cummings also consider the example of an

individual’s prescore being 100%, leading to a 0 in the
denominator of the equation defining gind. This is a problem
easily avoided by simply eliminating that data point.
A student with a perfect prescore has no possibility of
demonstrating learning by achieving a higher post-test
score, and so it seems reasonable to delete that data point.
Even if the prescore is not 100%, but is very high, there is
little gain in score that can be achieved and little need to
focus on students with such scores. It is reasonable to
regard scores above 80% as an indication of strong
Newtonian thinking, and we have long eliminated such
scores from our student data as we indicated in our 2005
paper [5]. In most cases such scores are relatively rare.
When scores above 80% are common, for example, at elite
universities such as Stanford, the FCI is not a very
useful test.
Nissen et al. argue in most of their paper that normalized

gain is positively prescore biased, but in their consideration
of the work of Marx and Cummings, they claim normalized
gain is negatively prescore biased. In fact normalized gain
is neither positively nor negatively prescore biased, as we
have shown in Sec. II.

V. NORMALIZED GAIN VS COHEN’S d

Nissen et al. argue for the use of Cohen’s d instead of
normalized gain, where d is defined as the difference
between two means divided by the pooled standard
deviation s. Nissen et al. proposed to use it to measure
the effect size of the change in average scores on the same
test, preinstruction to postinstruction:

d ¼ av postscore% − av prescore%
s

We have already shown that the claim of prescore bias
for normalized gain is not valid. We shall now show just
how misleading use of Cohen’s d can be. Consider two
classes, one with average pretest score of 20% and average
post-test score of 40%, the other with pre and post average
scores of 60% and 80%, respectively. Suppose for sim-
plicity that each class has the same standard deviation s for
both prescores and postscores. Because both the percent
gain, pre to post, and s are the same, the values of d for the
two classes are identical, a value of 2.0 if s happens to be
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10%. In contrast, the average g’s for the two classes are
quite different, 0.25 for the first class and 0.50 for the
second. If the populations of the two classes are similar, say
for example both with average SATs of 1200 and/or a
Lawson average of 70%, this difference in g’s would
indicate that one of the classes was significantly more
effective than the other. The first class’s normalized gain is
consistent with results that are typically seen in traditional
classes, while the second class’s gain is typical of a class
that makes effective use of interactive engagement meth-
ods, as shown by Hake [1]. Normalized gain has been used
by many for the last 20 years to provide that valuable
information, which is often used to guide instructors toward
use of more effective IE methods, as it did one of us. That
kind of revealing information is lost if one considers only
Cohen’s d.

VI. DISCUSSION

We have provided evidence that normalized gain is not
prescore biased. In doing so, it was necessary to consider
other important predictors of gain. Failure to do so is an
example of omitted variable bias.
These omitted variables must be considered in order to

interpret the meaning of a class’s normalized gain, either g
or gind. More specifically, in order to determine what the
value of the gain might imply about the effectiveness of
the pedagogy for the conceptual learning achieved by the
students, it is necessary to consider the class’s scores on
either the Lawson test, SAT, or ACT,4 because the reason-
ing abilities of the class, as reflected in these scores, may
well be a stronger determinant of conceptual learning than
the pedagogy that is used in the course. For example, as
shown in Sec. II C (Fig. 2), Steinert’s classes, which varied
dramatically in reasoning abilities because some were

honors classes and some were not, had dramatically
different normalized FCI gains, even though he used the
same methods to teach all classes.

APPENDIX: MULTIPLE VARIABLE
REGRESSION

Simple linear regression is an attempt to find a linear
relationship between a single predictor variable and a
response variable. Our goal in using it is to determine
the extent to which variation in the response variable can be
predicted by variation in the predictor variable. Multiple
linear regression (MLR) is a statistical tool that allows
one to simultaneously examine relationships between many
different variables, to attempt to relate two or more
predictor variables to a single response variable. In this
context, we use MLR to propose a linear relationship
between normalized gain, FCI prescore, and Lawson score:

gind ¼ β0 þ β1ðpre-FCIÞ þ β2ðLawsonÞ;

which we then fit using various datasets. The standard
practice is to estimate the regression coefficients (the betas)
using the method of ordinary least squares (OLS): mini-
mizing the sum of the squared differences between the
estimated value of normalized gain and the normalized
gain in the actual dataset. We indicate estimated parameters
with a hat:

ĝind ¼ β̂0 þ β̂1ðpre-FCIÞ þ β̂2ðLawsonÞ þ ϵ:

The regression residual ϵ is the difference between g and
its estimate at each value of FCI prescore and Lawson
score. The regression r2, which ranges between 0 and 1, is
the fraction of the sample variance of the response variable
predicted by the predictor variables. The p value for each
of the coefficients is the probability that there is no
relationship between that predictor variable and the
response variable and that the computed coefficient is a
result of random error.
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