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Theories developed by Tinto and Nora identify academic performance, learning gains, and involvement
in learning communities as significant facets of student engagement that, in turn, support student
persistence. Collaborative learning environments, such as those employed in the Modeling Instruction
introductory physics course, provide structure for student engagement by encouraging peer-to-peer
interactions. Because of the inherently social nature of collaborative learning, we examine student
interactions in the classroom using network analysis. We use centrality—a family of measures that quantify
how connected or “central” a particular student is within the classroom network—to study student
engagement longitudinally. Bootstrapped linear regression modeling shows that students’ centrality
predicts future academic performance over and above prior GPA for three out of four centrality measures
tested. In particular, we find that closeness centrality explains 28 % more of the variance than prior GPA
alone. These results confirm that student engagement in the classroom is critical to supporting academic
performance. Furthermore, we find that this relationship for social interactions does not emerge until the
second half of the semester, suggesting that classroom community develops over time in a meaningful way.
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I. INTRODUCTION

It has long been recognized that to advance our economy
and our society we need to develop a strong workforce of
experts in science, technology, engineering, and math
(STEM) [1–3]. Yet, of all students who enter a four-year
college intending to major in a STEM field, over 30% fail to
graduate with a STEM degree [4]. The situation for students
from historically underrepresented groups in STEM is even
more alarming: of all the STEM bachelor’s degrees awarded
nationwide, only 12.8 % go to Hispanic students, 8.7 % to
Black or African American students, and 0.5 % to American
Indian or Alaska Native [4]. These percentages are not
commensurate with the demographic distribution of the U.S.
national population. One pathway to address this issue and
move toward equity in STEM is bymaking systemic changes

to classes and departments that promote the retention and
persistence of students from minority groups.
Tinto’s model of student integration proposed in the mid

1970s links both retention (the successful completion of
a course) and persistence (the successful completion of a
sequence of courses) to student engagement [5–8]. More
recently, it has been suggested that persistence, engage-
ment, and performance are all interlinked and that active
learning offers key advantages over traditional lecture in all
these domains [9]. The Modeling Instruction (MI) program
at Florida International University (FIU) is an example of a
teaching approach that strongly emphasizes active partici-
pation and hands-on learning. From the instructional design
(“learning by doing”) to the flow of the activities (small
group work, multigroup discussions, a whole class wrap
up) to the flexible classroom space (tables arranged to allow
moving about freely), everything in MI is designed to
promote development of a community of learners that
each student can be an integral part of [10,11]. Indeed, prior
research shows that students in MI experience superior
outcomes in learning gains, passing rates, attitudes toward
science, and retention rates compared to their lecture-based
counterparts [12–14].
With the community structure as its defining feature, the

MI classroom offers fertile ground for examining student
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engagement. In a general sense, engagement is defined as a
multifaceted construct that describes the behavioral, emo-
tional, and cognitive ways in which students immerse
themselves into the academic system [15]. Over the years,
its meaning has grown and become more nuanced, with
studies using “integration” and “involvement” interchange-
ably with “engagement”—terms referring to related but
arguably separate constructs—exacerbating the complexity
around this term. Throughout this work, engagement is
used to signify the extent to which individuals actively
connect to the academic and social fabric of a learning
institution [6]. This working definition allows us to explore
engagement at different levels within the institution (e.g.,
the classroom) and provides a broad array of options for
defining “connected” (e.g., belonging to the same group or
enrolling in a common course). Decades of work show that
engagement is critically important to students, especially
during their first year of college [8].
To bring some much-needed specificity to the idea of

student engagement, we turn to the toolkit offered by social
network analysis (SNA) [16,17]. In particular, we opera-
tionalize engagement by quantitatively mapping students
and their interactions with one another onto a network
and then using SNA to analyze the network structure and
properties. SNA methods help reveal student interaction
patterns, characterize the roles played by specific students,
and identify preferential positions in the network based on,
e.g., “access” to other people, information, or resources. It
is, thus, very well suited to capture aspects of engagement
related to student connectedness through peer interactions.
Depending on the specific type of interactions one is

examining, connectedness can take on several meanings. In
the language of SNA this is captured through measures of
“centrality”—a family of mathematical algorithms that
calculate the various positionings of individuals in a net-
work [16,17]. It is important to stress that centrality alone
does not necessarily capture the quality of connections
between two people (e.g., the level of loyalty between
friends) nor does it provide insights into how or why the
interaction occurred. Rather, it quantifies the structural
connectedness of individuals in the network. The specific
parameters around what is defined as an interaction (e.g.,
attending the same lecture or working on a joint project)
may further shed light on the quality or characteristics of
the connections.
SNA has been used before to link students’ network

characteristics to a variety of education-related outcomes,
including concept inventory scores [18], academic per-
formance [19–24], persistence [25–28], self-efficacy [29],
and anxiety [30]. Yet, no study known to us performed
a longitudinal analysis of interaction data to show how
engagement changes throughout the semester and how
during this time the relationship between students’
engagement, course grades, and past academic performance
evolves.

Our work complements previous findings connecting
SNA and performance in a number of important ways. In
particular, in Ref. [21], the authors study students’ home-
work assistance networks, but they do so on a rather global
scale by looking at a single network of aggregated data
without taking into account the nuanced development of
interactions throughout the semester. Moreover, they study
upper-division courses where students have had many
opportunities to get to know each other from their
lower-level courses and they “have already had much of
their undergraduate career to develop collaboration strat-
egies that they believe work for them” [21]. In Ref. [22],
past performance is incorporated in a study of how informal
social interactions influence student learning (as measured
by exam performance). Yet, in their analysis the authors
rely on a single data collection and do not account for the
in-class interaction. Moreover, the population in this study
comprised of students enrolled in a highly competitive
medical school. As a postsecondary minority-serving
institution, with 76.5 % of the student population coming
from historically underrepresented minority groups [31],
FIU is an important case for studying the effects of building
communities on performance.
This paper is organized as follows: We begin with a

review of the literature in Sec. II, followed by a discussion
of the theoretical framework in Sec. III. In Sec. IV, we
describe the methodology used in this study. We then
present our results with relevant interpretation and dis-
cussion of our findings in Sec. V. Finally, we close by
drawing conclusions and suggesting future lines of inquiry
in Sec. VI.

II. LITERATURE REVIEW

Despite being well studied, student engagement is
challenging to define succinctly. Its rich, nuanced, and
subtle character often takes on a specific meaning from the
context in which it is viewed. As mentioned earlier,
throughout this work, engagement refers to the presence
(or absence) of social interactions, both formal and infor-
mal, occurring inside or outside the classroom, with both
peers and faculty. It does not describe these social activities
qualitatively, i.e., it does not answer the question of why or
in what ways students are engaging while interacting.
In general, engagement may be self-initiated or a result

of membership in some kind of group, either university-
sponsored or not, and is often discussed in relation to
persistence. As Tinto writes, “though we have a sense of
why involvement or integration [engagement] should
matter (e.g., that it comes to shape individual commit-
ments), we have yet to explore the critical linkages between
involvement [engagement] in classrooms, student learning,
and persistence” [6]. While several researchers have
stepped forward to answer this call [19–28] there is still
much work to be done; this study is a step toward filling
this gap.
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A. Persistence and performance

Although studies of engagement have historically focused
on persistence, academic performance is a common theme
that permeates much of the literature. Tinto’s model of
student integration provides a first heuristic and theoretical
framework for understanding how these three constructs
interlink [5]. In his seminal work, Tinto identified a critical
two-step linkage “between involvement and learning, on one
hand, and between learning and persistence, on the other”
[6]. After all, persisting in a program of study is impossible
without some successful academic performance along
the way.
Nora expanded Tinto’s model to incorporate additional

components, such as individual pull factors acting as
barriers to student engagement [32]. While focusing on
traditionally underrepresented students, he found academic
performance to be “possibly the most influential factor” on
Hispanic students’ persistence. Final grades seemed to
influence Hispanic students’ drop-out decisions three times
as much as they did for nonminorities. Nora argued that the
connections from students’ performance to their sense of
belonging and their perception of their ability to earn a
degree are essential factors when deciding whether to
remain in college [32].
In his model of student involvement, Astin went even

further and reframed the decision to persist or drop out as
polar ends of an “involvement spectrum” [33]. Under this
new framing, dropout represents the most extreme form of
disengagement at the low end of the spectrum while the rest
of the spectrum corresponds to the many possible gradations
of involvement, including consistent active engagement that
supports a student’s successful persistence. Astin categorizes
involvement into different types, including residing on
campus, academic involvement, interactions with faculty,
and extracurricular activities, such as student government,
honors programs, and athletics.
All these models include performance as an explicit

factor, providing us with the theoretical grounding for
exploring a relationship between engagement and perfor-
mance. The study reported in this paper is a part of a larger
project that explores all three of these variables, though
it does not investigate persistence explicitly. Instead, we
conceive of engagement and performance as precursors to
persistence (see Fig. 1). Our theoretical framework,
described in detail in Sec. III, further elaborates on this
relationship.

B. Network analysis in education research

Since students’ interactions are inherently relational, it is
natural to operationalize them with social network analysis.
In fact, Tinto explicitly called for the use of SNA, saying “we
would be well served … to study the process of persistence
with network analysis and/or social mapping of student
interaction patterns” [6]. Thomas answered the call posed by
Tinto using SNA to examine a nuanced relationship between

self-reported interactions and multiple factors in Tinto’s
model, including GPA and persistence into subsequent
courses [25]. Since then, education researchers have linked
network measures to a variety of constructs found in the
engagement literature, including academic performance
[19–24], persistence [25–28], self-efficacy [29], anxiety
[30], and sense of community [34]. Yuan et al. and
Gasevic et al. used network measures to define social capital
in distance-learning courses. Using four different centrality
measures, they examined the development of students’ social
capital over time (in multiple courses) and its impact on
academic performance (course grades and cumulative GPA)
[20,35]. Mayer and Puller used SNA on Facebook “friends”
data to investigate the formation of cliques at ten public
universities in Texas. In their analysis, they consider both
environmental factors of each school and personal attributes
of the students [36]. Forsman et al. used network analysis to
interpret existing persistence literature and describe how “the
networked interactions, the social system, and the academic
system are all coadapting” over time [37].
Including students’ network centrality scores as an explicit

term in a structural equation model led Hommes et al. to two
key results relevant to our study: (i) centrality was predicted
by high school GPA, and (ii) centrality predicted future
performance on a multiple-choice “factual knowledge test”
[22]. It is notable that the authors computed centrality from
three types of out-of-class networks (friendship, giving
information, receiving information). They found in all cases
that centrality was a significant predictor even when con-
trolling for age, gender, high school GPA, academic moti-
vation, and institutional-level social integration. However,
this study was limited by its discussion of only one type of
centrality and did not take into account content-related
interaction. Furthermore, the student population was exclu-
sively high-GPA Dutch medical students in the Netherlands;
results from such a setting do not necessarily generalize to
minority students in the United States.

FIG. 1. A simplified conceptual schema of the theoretical
framework combining elements from Tinto’s and Nora’s models
used in this work [5,32].
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Bruun and Brewe found that course grades were pre-
dicted by network centrality scores after controlling for
students’ FCI prescores [24]. Interestingly, they found that
the most-predictive centrality scores came from a primarily
social communication network, not from the two networks
created based on content-related communication. Such a
result defies what one may expect—that information flow
about the subject matter would be more relevant to
performance than socializing. It also differs from an earlier
report by Smith and Peterson who found quiz and paper
grades to be positively correlated with peer-reported
interactions about course advice, but negatively correlated
with peer-reported interactions about general advice [23].
These two studies vary in several key ways (student
population, centrality measures calculated, performance
metrics used) and thus are not directly comparable.
However, they highlight the powerful impact of the class-
room on students’ overall academic experience, which
motivates further study of the in-class peer interactions.

III. THEORETICAL FRAMEWORK

Our theoretical framework, depicted in Fig. 1, is based
mainly on Tinto’s model of student integration, though we
also draw from Nora’s work on student engagement and
Astin’s theory of involvement [5,32,33]. We apply these
theories to build a coherent scaffold for understanding
students’ immersion into the social and academic spheres
of their learning community, and the effects this immersion
has on them.

A. The nature of engagement

Students’ peer interactionsmay occur in a variety of ways.
They may take place in the classroom or outside of it; they
may be related to course content, extracurricular activities, or
personal life; they may occur with other students or with
faculty; they may occur in settings formal or informal. All of
these types of connections, and more, contribute to a
student’s integration within the social and academic fabric
of the institution. A large body of research on student
engagement depicts a multidimensional understanding of
what engagement means in varying contexts [15].
Of all the possible places for student engagement to

develop, the college classroom is perhaps the most impor-
tant. As Tinto writes, “It is evident that participation in a
collaborative or shared learning group enables students to
develop a network of support… engaging them more fully
in the academic life of the institution” with the classroom
learning community becoming “a gateway for subsequent
student involvement” within the institution [6]. This is
especially true for first-year students, who have not yet
established a support network, and commuters, who must
attend to a variety of off-campus responsibilities throughout
the day. Thus, we focus exclusively on student-to-student
interactions occurring in the classroom and during class

time, drawing from the above-mentioned models to guide
our investigation of student engagement as it manifests in
our specific context. In particular, from Tinto, we focus on
supportive, informal peer group associations; perceptions
of “social fit”; bridging the academic-social divide; and
gaining a voice in the construction of knowledge. From
Nora, we highlight in-class experiences and collaborative
learning as ways to be part of a learning community; peer
group interactions as a meaningful social experience; and
academic performance as an important cognitive outcome.
Behaviors supporting all of these mechanisms are culti-
vated by the MI curriculum, and are further encouraged by
the course instructors.
It is important to stress that engagement does not always

come easy. There exist many barriers (inside and outside
the classroom) that hinder meaningful student engagement.
Among these, Nora identifies pull factors, both tangible
and intangible, that serve to drag students out of the
community. These include family and work responsibil-
ities, the need to commute to school, and financial needs.
For underrepresented groups, including minority students,
the presence or perception of prejudice and discrimination
on campus is especially harmful [32]. Pull factors are
everyday realities for FIU students—the vast majority of
whom commute and come from working class families;
over half of whom are first-generation college students
[38–40]—and the specific students in our classroom, 85 %
of whom are minority students.

B. The relationship between engagement
and performance

Based on a synthesis of the literature, our framework
leads us to hypothesize a direct positive relationship
between student engagement and academic performance.
Since learning in a MI classroom happens through social
interactions, there is a case to be made that more frequent
and more effective engagement corresponds to better
learning. Consequently, a better learning experience should
lead to better academic performance (and, ultimately,
persistence). Tinto identified performance as a critical
intermediate link in a two-stage relationship between
engagement and learning on one side, and learning and
persistence on the other [6]. Thus, we have sufficient
theoretical grounding to expect that engagement contrib-
utes to academic performance.
However, we are aware that the relationship may point

the other way [36]. For example, a student who performs
well on an exam may receive a confidence boost that
leads them to speak more freely in class discussions,
or be sought out by other students as a study partner.
Performing poorly on an exam, on the other hand,
may discourage a student from participating actively in
the future. These are but a few examples of how past
performance may influence future engagement; the liter-
ature reinforces this idea. Nora’s model explicitly includes
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GPA and cognitive gains (both perceived and actual) as
factors contributing to student engagement [32].
We propose that both directions of this influential

pathway are possible. We claim that student engagement
and academic performance exhibit a relationship that
is reciprocal and iterative, i.e., that past performance
influences engagement which in turn influences future
performance [22,41]. Therefore, we hypothesize that stu-
dent engagement in the MI classroom will predict future
academic performance even when controlling for prior
qualifications.

C. Formation of social networks

As we are interested in the student-to-student social
interactions occurring within a MI classroom, it is natural to
use a relational data analysis tool. SNA allows one to study
the network representation of the in-class interactions in
many ways and at many levels: from visualizing the entire
network to examining its overall structure and cohesion, to
quantifying individuals’ embeddedness within the network
(both globally and at a local, “nearest neighbors” level).
Using the various measures of network embeddedness (i.e.,
the centrality scores) as a proxy for engagement, we can
explore the relational position of a given student with
respect to the rest of the class, and to quantify that student’s
engagement within the classroom community.
Cross-group interactions are inherent to the design of the

MI course. They are explicitly encouraged during instructor-
moderated “board meetings” when multiple groups come
together to discuss their work. Since groups frequently
present solutions to different problems featuring various
aspects of a physical phenomena, intergroup discussion is a
necessity for each group to understand what the other groups
did, how they did it, andwhy. In addition, unstructured cross-
group interactions outside of the board meetings occur on a
regular basis, e.g., during problem-solving sessions and
experimental investigations. Course instructors permit this
cross-group talk, though after some minutes they generally
encourage students to return to their assigned groups to share
and implement the discussed ideas.
Integration into a community does not, however, happen

instantaneously. Rather, it is a gradual process. We expect
that over time, two things will happen: students will get to
know more of their peers and to know each other better. In
other words, both the quantity and quality of interactions
will increase. The MI curriculum is expressly designed to
encourage, even require, collaborative work and the course
instructors explicitly promote its benefits. At the same time,
since this course structure differs from traditional physics
classrooms, students might need some time to adjust but
will, as time passes, engage more often and more effec-
tively with each other. Finally, while it is natural that in-
class interactions occur more often between students in
close physical proximity, we expect to see this preference
for interacting exclusively with peers in the same group or

table significantly decrease over time. We hypothesize a
progression from little interaction at first, to interaction
with only seatmates, to some interaction outside of their
table, leading finally to moderate interaction with many
peers outside of their table.

D. Research objectives

With this framework in mind, we set out to answer
following research questions:

• Does the in-class student engagement predict future
academic performance, even when controlling for
prior qualifications?

• Which centrality measure is the most informative in
the context of in-class student engagement?

• How does the in-class student community develop
over time? When during the semester do student
interactions become important to future academic
performance?

IV. METHODOLOGY

This study is conducted at FIU, a large public research
university serving (at the time of this study) about 54 000
students in Miami, FL. The data come from one semester
(16 weeks) of a MI introductory physics course. There were
73 first-year students enrolled (32.9 % female), taught by
one professor, two teaching assistants, and three learning
assistants [42]. The demographics of the classroom is as
follows: 74.0 % Hispanic, 11.0 % Black, 5.5 % Asian,
5.5 % White, and 4.0 % other.

A. Learning environment

The MI curriculum is an example of a teaching
environment where students can actively participate in
the learning process. In this particular classroom, stu-
dents work together in small groups of three to conduct
experiments and solve problems. The course instructor
establishes the groups using an assigned seating arrange-
ment. The arrangement is modified approximately every
three to four weeks (usually after major in-class events,
such as exams and lab experiments). The instructor
makes these decisions for purely course-related reasons,
independent of the research team.
Two small groups are seated at the same round table and

are encouraged to interact with one another while solving
problems. It is worth noting that, in practice, students often
interact with peers across groups and across tables. As a
result, their academic engagement includes both intergroup
and intragroup interactions on a regular basis, which is
characteristic for this course structure. In addition, two or
three times during the class time, small groups are meeting
together in large board meetings of about 18 to 21 students
where they can ask questions, present solutions, and
discuss underlying physical phenomena. An implicit aim
of the board meetings is to reach consensus through
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discussion based on experimental evidence without explic-
itly providing students the solution. The discussion is
facilitated by instructors and undergraduate learning assist-
ants. In short, students collaborate and interact with one
another to construct their own understanding.

B. Academic performance data

For the purpose of this study, we divide students’
academic performance data into two categories: past and
future. Past performance is represented by a student’s GPA
prior to the MI course, expressed on the typical 4.0 scale.
Future performance is represented by student’s final grade
in the course (see Fig. S1 in the Supplemental Material [43]
for histograms of past and future performance measures).
Note that the past performance is used only as a control
variable capturing prior qualifications and we do not
consider gains in a pre-post format.
In this particular class, only full letter grades are

assigned, recorded using the standard grade point per unit
conversion scheme (A ¼ 4.0, B ¼ 3.0, C ¼ 2.0, D ¼ 1.0,
F ¼ 0.0). Students who drop or withdraw after the enroll-
ment deadline are assigned a final grade of zero. The grades
dataset was downloaded from FIU’s electronic record
system. Data management and analysis is done using the
statistical programming language R [44–46].

C. Network data collection

While there are various ways to define and collect
student interaction data (e.g., video analysis of students
group work, discussions on a web-based social forum; see
Ref. [30] for additional approaches), we measure student
interaction using a pen-and-paper survey, shown in Fig. 2.
Content and face validity of the survey was established
through iterative discussions between the authors and other
SNA experts, as well as through findings from other studies
(see, e.g., Refs. [27–30]).
The survey asks students to identify who they had

meaningful in-class interactions with during a week prior

to a given collection. A roster of all students enrolled in the
course is included with the survey to assist students’
reporting. Teaching staff is also included on the roster
and appeared in the data. However, to focus exclusively on
students’ peer interactions we removed teaching staff from
the network prior to analysis.
Each reported interaction is inherently directional: when

a survey respondent marks down another student’s name,
the interaction is recorded as initiated by the respondent
and received by the other student. Directionality indicates
which student considered a particular interaction “mean-
ingful” enough to remember and report on the survey
and which interactions were mutual. Moreover, to explore
different levels of meaningful, students are asked to
indicate how often they interacted with each identified
person, choosing from “one time,” “more than one time,”
and “every day.”
The survey was administered five times throughout the

semester, spaced approximately three weeks apart (weeks
2, 6, 8, 11, and 13). Response rates were on average 83.8 %
(unbiased SD¼8.4 %).

D. Conceptualizing student engagement

Network analysis allows us to quantify classroom
interactions by framing the student community in a rela-
tional way: we conceptualize the community of people as
nodes and the interactions between them as ties [17]. The
arrangement of nodes and ties represents the social struc-
ture of the classroom community. If student A reports an
interaction with student B, then the tie points from A to B.
If, instead, student B reports an interaction with student A,
then the tie points from B to A. If both students reported an
interaction with each other, then the tie is considered
bidirectional. The reported frequency of interactions is
used to ascribe numerical weights to ties: one time is coded
as 1, more than one time is coded as 2, and every day is
coded as 3. A student’s position in the network is purely
relational, dependent on their ties to the other students.
Ties are used to quantify the level of engagement within

the community through centrality. As there is more than
one way to be engaged, there is an entire family of
centrality measures, each accounting for the network ties
in a unique way. Consequently, each centrality measure
represents a different way that students integrate within the
classroom community. In this study, we consider four
centrality measures (see Fig. 3). We divide them into
two categories based on the cross sections of the network
structure they pertain to: local, which include only a
student’s nearest neighbors, and global, which depend
on all of the students in the network [47]. The following
descriptions are intended to ground the centrality measures
in a classroom context. Rigorous mathematical discussion
of these measures is beyond the scope of this paper; for a
more thorough treatment, see Refs. [16,17].

FIG. 2. An excerpt from the SNA survey that was given in the
Modeling Instruction classroom [27].
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For local measures, we consider only the direct con-
nections between adjacent nodes, paying special attention
to the direction of each interaction. The number of
interactions reported by a given student, i.e., the number
of ties pointing away from a given node, is called outdegree
[see Fig. 3(a)]. Since outdegree is calculated exclusively
from self-reported interactions, we use it to capture a
student’s self-perception of their engagement in the
classroom.
We are also interested in students’ engagement behavior

according to their peers. The number of times a given
student appeared on other students’ surveys, i.e., the
number of incoming ties pointing toward a given node,
is called indegree [see Fig. 3(b)]. Indegree can be thought
of as a measure of popularity or sociability, as perceived by
other students in the network [17].
The global measures are more complex and require

additional framing. They describe the position of a node
within the whole network. This position is strictly rela-
tional, describing where a student is located in terms of
their connections to others. Not all connections are direct,
though. If student A and student C report no interactions
with each other, there is no tie between them. Yet, if each of
them interacted with student B, then A and C have an
indirect path connecting them (A to B to C) where B acts as
an intermediary [see Figs. 3(c) and 3(d)]. In a sense, the
indirect path between A and C is two steps long. This
distance is defined as path length: the number of ties
separating two nodes. In a large network where two
nodes may be connected by many paths, it is useful to
identify the shortest path (the geodesic). Both global
measures we consider, closeness and betweenness, depend
on the geodesic.
Betweenness centrality indicates how often a node lies

on the geodesic between two other nodes [see Fig. 3(c)].
In the example above, B is in between A and C because B
lies on the geodesic connecting them. In the classroom
context, a student with high betweenness may occupy a
position where they act as a bridge between two or more

tightly connected groups of students—groups that would
otherwise be isolated from each other. Such a position puts
the student in a gatekeeper role, giving them control of
information flow within the network.
Finally, closeness centrality captures how “close” a node

is to all other nodes in the network [see Fig. 3(d)]. Stated
simply, one node is close to another node if they are
separated by a short path length. In the example, A and B
are closer together than A and C. Closeness represents how
deeply a student is embedded in the community as a whole;
it represents a student’s ability to access others in the
classroom network easily (without going through many
intermediaries).

E. Network analysis

Data from each survey collection is converted into a list
of connections (so-called “edge list”). Interactions are
weighted at three levels based on the frequency of occur-
rence: interactions that occurred more often were given
greater weight. For network analysis, we use the igraph and
tnet packages [48,49] to calculate centrality scores, using
the weighted version of each centrality measure. For
outdegree and indegree, we use the function strength
(i.e., the sum of weights assigned to the node’s direct
connections) with the direction parameter set to count only
outgoing or only incoming ties, respectively. For betwe-
enness and closeness, we utilize the built-in weight
parameter offered by their corresponding tnet functions
(see Table S1 in the Supplemental Material [43] for
descriptive statistics for all centrality measures).
It is important to note that the network survey response

rate was never 100 %. As a result, our data sample contains
missing nodes. At the same time, as we are conducting
longitudinal analysis, we need a consistent list of nodes for
the whole semester. While imputation may generally be
used to accommodate missingness in data, it did not seem
applicable in our case. Imputation “fills in” the missing data
values without changing the pre-existing ones which is not
appropriate for interdependent centrality measures. In prac-
tice, changing the centrality of a single node will affect
centrality for at least one other node. Thus, we choose to
address the issue with an approach that is consistent with
network methods [50]: by carefully defining network boun-
daries. In particular,we create the network roster by listing all
of the students who were registered for the course after the
enrollment deadline. In this way, any student who appeared
on the roster but did not appear in a given collection was
added as an isolate to that collection’s network (an isolate
is a node with no connecting ties). Importantly, since all of
the data collections occurred after the enrollment deadline
this method preserves any student who dropped out of
the course after that date as an isolate, which is reflective
of their noninvolvement, and is immune to additional
students enrolling. Centralities were computed once the
roster was established.

FIG. 3. Visualization of the four centralities used in this work.
In each case, B has higher centrality than A according to
(a) outdegree (a measure of engagement), (b) indegree (a measure
popularity or sociability), (c) betweenness (a measure of control
over the flow of information through the network), and (d) close-
ness (a measure of overall connectivity or embeddedness within
the entire network). Adapted from Ref. [27].
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The computed centrality scores are incorporated as node
attributes. Students’ academic performance data (past:
GPA; future: course grade) are also stored as node attributes
(see the Supplemental Material [43] for descriptive statis-
tics of all data used in the analysis). This process ensures
consistent one-to-one matching between centrality data and
performance data.

F. Statistical analysis

As a first step, we seek to verify that course grade is
predicted by precourse GPA to establish a benchmark
consistent with prior work [41]:

Mbase∶ final grade ∼ GPA: ð1Þ
This benchmark serves as a standard against which all
subsequent models are compared. We then perform a
statistical analysis on the five data collection samples.
Each collection is analyzed independently as described in
the following paragraphs.
To determine if any of the four centrality measures

predicts future academic performance, we conduct an
exploratory series of bootstrapped simple linear regres-
sions. Linear regression modeling relies on the assumption
that data is normally distributed and independent. However,
this is not the case for centrality measures (see Table S1 the
Supplemental Material [43] for descriptive statistics for
centrality measures) [51]. To account for this, we use the
bootstrap method [52]. Bootstrapping is a permutation
technique in which dataset values are randomly resampled
to run a statistical test a large number of times. The boot-
strapped statistical test results are then constructed into a
distribution of values, from which a confidence interval (CI)
can be calculated. If the CI excludes zero, the test result is
considered statistically significant. In our analysis, we apply
this technique to the results of the linear regression models:
for each model of interest we run a corresponding boot-
strapped linear regressionwith1000 iterations to build a 95%
CIs on the regression coefficients (estimates) andR2

adj values.
Thuswe are able to ensure thevalidity of our statistical results
in spite of the centrality scores’ interdependence and non-
normality. All linear regression models discussed in this
paper are bootstrapped in this way.
The four bootstrapped simple models are of the form

Msimple∶ final grade ∼ centrality; ð2Þ
where centrality ∈ {indegree, outdegree, closeness, betwe-
enness}. These are used to corroborate prior results [41].
Next, we perform a series of bootstrapped multiple linear

regression models to determine whether each centrality
measure’s significance survives when controlling for past
performance. These multiple regression models, which we
will call full models, are of the form

Mfull∶ final grade ∼ GPAþ centrality; ð3Þ

where, again, centrality ∈ {indegree, outdegree, closeness,
betweenness}. As there is the possibility of collinearity
between explanatory variables in multiple regression mod-
eling, we calculate the variance inflation factor (VIF) for
each collection to check for any collinearity between GPA
and the centrality scores. The VIF, ranging from 1.0 to 1.13,
indicates no collinearity between variables.
Finally, we use the likelihood ratio test to compare full

models to the benchmark. Doing so allows us to judge
whether the full models are statistically different from the
benchmark, and thus select the appropriate model to
explain the relationship between course grade, centrality,
and prior GPA.
Because of the large number of regression tests per-

formed, there is a concern of encountering type I error (i.e.,
false positive) and inferring a relationship spuriously. This is
corrected by making Bonferroni adjustments to the p values
in order to maintain valid alpha levels (i.e., by correcting the
significance level proportionally to the number of tests in a
given trial). Since each survey collection is an independent
dataset, the Bonferroni corrections are made at the collec-
tion level (i.e., by scaling the p values by a factor of nine).
Unless otherwise stated, all p values reported throughout
this paper are adjusted this way. We consider results with
Bonferroni corrected p < 0.05 as significant.

V. RESULTS AND INTERPRETATION

We first seek to establish a benchmark against which all
other models can be compared. The benchmark model,
given by relation (1), shows that the course grade is indeed
predicted by GPA with standardized coefficient β ¼ 0.46,
standard error of estimate SE ¼ 0.11, significance level p <
0.001, F statistic Fð1; 71Þ ¼ 18.5, and adjusted R-squared
R2
adj ¼ 0.196. This verifies our expectation that future per-

formance would be predicted by prior qualification.
Next, we test the four simple regression models, given

by relation (2), for all five network collections. Each model
is tested independently of all the others. Simple models
are tested to establish a proof of concept before moving
on to tackling our research questions. The results, shown in
Table I, are consistent with previous work [41] (see
Table S3 the Supplemental Material [43] for a table with
regression results for all tested simple models). For each
centrality, we report the standardized coefficient βX
(X ∈ fI; O;Cg, where I denotes indegree, O denotes
outdegree, and C denotes closeness), F statistic F1;71,
and adjusted R-squared R2

adj. With a statistically significant
F statistics, the data give evidence that the best-fitting
linear model of the specified type has at least one predictor
with a nonzero coefficient (i.e., that fit of the tested model is
significantly better than of the intercept only model).
Moreover, while R-squared provides a measure of strength
of relationship between the predictors and the response
variables, F statistic allows us to determine whether that
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relationship is statistically significant. Since betweenness is
not significantly correlated with final grades when tested in
the simple model, we do not include it in the analysis of full
models.

A. Predicting the future, accounting for the past

To answer our first research question, we build three
multiple regression models that incorporate prior GPA [see
Eq. (3)], with each collection network analyzed independ-
ently of any other. This corresponds to a total of 15 models
with GPA as a control variable. Full models’ statistics are
reported in Table II (see Table S4 the Supplemental
Material [43] for a table with regression results for all
tested full models). Again, we report the standardized
coefficients for GPA (βGPA) and the appropriate centrality
(βX with X ∈ fI; O;Cg), F statistic (F2;70), and adjusted R-
squared (R2

adj). We then use the likelihood ratio test (LRT)
to compare each model against the benchmark to determine
if they are statistically distinct. The results are shown in
Table III.
In the first collection, no centrality measure emerges as a

significant predictor of final grade. Thus we conclude that
integration levels at such an early time during the semester
do not predict future academic performance. A comparison
of the network [visualized in Fig. 4(a)] with the course
seating chart (provided by the course instructor) confirms
that students mostly reported ties with their group members
sitting at the same table. This suggests that this collection
occurred too early in the semester for meaningful classroom

connections to have formed and the reported interactions
occurredmostly out of convenience stemming from physical
proximity.
In the second collection, outdegree becomes a significant

predictor of final grade, even when controlling for GPA.
The outdegree model (R2

adj ¼ 0.296) explains about 12 %
more of the variance than GPA alone (R2

adj ¼ 0.175). The
LRT further confirms that the full model with outdegree is

TABLE I. Linear regression results for the simple models
(final grade ∼ centrality). Reported p values have been Bonfer-
roni adjusted at the collection level. Significant p values are
marked with the appropriate number of asterisks. Models in
which centrality is not a significant predictor and models that
failed the bootstrap test are omitted for clarity. This includes the
entire week 2 and the betweenness centrality throughout the
semester.

Regression statistics

Centrality Week 6 Week 8 Week 11 Week 13

Indegree βI - 0.40** 0.55*** 0.36*

F1;71 - 13.7 30.6 10.4

R2
adj - 0.15 0.291 0.115

Outdegree βO 0.43** 0.52*** 0.40** 0.44**

F1;71 16.3 26.2 13.3 16.7

R2
adj 0.175 0.259 0.145 0.179

Closeness βC - 0.50*** 0.55*** 0.44***

F1;71 - 24.1 30.7 17.0

R2
adj - 0.243 0.292 0.182

***p < 0.001, **p < 0.01, *p < 0.05.

TABLE II. Linear regression results for the full
models (final grade∼GPAþ centrality) for centralities with
at least one occurrence of significant correlations in simple
models. Reported p values have been Bonferroni adjusted at
the collection level. Significant p values are marked with the
appropriate number of asterisks. In all reported cases, the p
value of F statistics is p < 0.001. Models in which centrality
is not a significant predictor and models that failed the
bootstrap test are omitted for clarity. This includes the entire
week 2.

Regression statistics

Centrality Week 6 Week 8 Week 11 Week 13

Indegree βGPA - - 0.42*** 0.41**

βI - - 0.52*** 0.30*

F2;70 - - 32.3 14.3

R2
adj - - 0.465 0.272

Outdegree βGPA 0.37** 0.34** 0.44*** 0.40**

βO 0.34* 0.43*** 0.38** 0.37**

F2;70 16.1 21.3 19.3 18.3

R2
adj 0.296 0.361 0.337 0.324

Closeness βGPA - 0.34* 0.43*** 0.41***

βC - 0.41** 0.53*** 0.39**

F2;70 - 19.5 33.0 19.3

R2
adj - 0.339 0.471 0.337

***p < 0.001, **p < 0.01, *p < 0.05.

TABLE III. Summary table of the likelihood ratio test (LRT)
comparing full models (final grade ∼ GPAþ centrality) to the
base model (final grade ∼ GPA). Reported p values have
been Bonferroni adjusted based on the total number of LRTs
(i.e., scaling by a factor of nine). Significant p values are
marked with the appropriate number of asterisks. Nonsignifi-
cant values have been omitted for clarity. This includes the
entire week 2.

χ2ðd:o:f: ¼ 1Þ
Centrality Week 6 Week 8 Week 11 Week 13

Indegree - - 30.8*** 8.3*

Outdegree 10.8** 17.8*** 15.1*** 13.7**

Closeness - 15.3*** 31.6*** 15.1***

***p < 0.001, **p < 0.01, *p < 0.05.
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significantly better than the benchmark. It is interesting that
outdegree remains significantly correlated with grades,
even when controlling for GPA, but for indegree even
the simple model is not. This is to say that a student’s self-
reported social interactions matter, but not interactions
reported by their peers. Such a result indicates the impor-
tance of a student’s engagement beliefs, i.e., a student’s
own perception of their engagement.
Results from the following three collections are some-

what similar to each other. In particular, we find that in
addition to outdegree, closeness becomes significantly
correlated with the course grade when controlling for
GPA starting at the third collection and indegree starting
at the fourth collection. The LRT further confirms that the
corresponding full models are significantly more inform-
ative than the benchmark model [relation (1)]. Furthermore,
the R2

adj values reveal that all these models predict future
performance better than the benchmark does, explaining
up to 47 % of the variance in course grade, compared to
the benchmark’s explanatory power of only about 20 %.
Interpreting these results in terms of the classroom, the
significance of outdegree and indegree confirms the
importance of direct interaction with peers. The signifi-
cance of closeness indicates the importance of integration
into the whole network in a broader sense.
In the findings described above, we observe a general

trend for the R2
adj values to increase over time, with peaks at

collection 4 (week 11) for indegree and closeness, and at
collection 3 (week 8) for outdegree (see Fig. 5). The
explanatory power of models containing mid- or late-
semester student interactions is up to 2.3 times greater
than the explanatory power of GPA alone.

B. Which centralities matter?

Of the four tested centrality measures, closeness is most
strongly correlated with final grades. It also seems to be the
best representation of Tinto’s student integration model.
This is because closeness represents a student’s ties to the
classroom as a whole—granting easy access to information
as well as academic and social support from a robust group
of peers without the need to go through many intermedi-
aries. It thus seems to be the most valuable centrality
measure to study when considering questions of student
engagement and persistence [27,28]. Another point in favor
of closeness is that it explains the most variance of all
measures in its peak at week 11 with R2

adj ¼ 0.47. Therefore
a midsemester closeness measurement represents the best
waywediscovered to predict the end-of-semester final grade.
The outdegree model peaks at week 8, and is also the

best predictive model available at that time, with R2
adj ¼

0.361. Furthermore, the outdegree model’s predictive
power emerges the earliest, at week 6, with R2

adj ¼ 0.296
(1.5 times better than the GPA model alone). As such, it is
the best choice for predicting performance early on in the
semester. Indegree, on the other hand, while significant for

the last three collections when looked at alone, looses its
predictive power when GPA is considered until week 11.
Finally, betweenness is never a significant predictor,

even when GPA is not included. This result is consistent
with our theoretical framework, as betweenness represents
a very specific type of position in the network characterized
by being a bridge between otherwise disparate groups.
Such a position may be indicative of an ancillary status as a
member of multiple small groups, rather than being well-
connected within any one group [compare the bridging
position of the orange nodes in the network from the
beginning of semester shown in Fig. 4(a) and their peripheral
position by week 11 shown in Fig. 4(b)]. The active
engagement nature of the MI curriculum does not seem to
provide an environment where such bridging positions
would be easy to establish nor benefit students. Our study
suggests that this type of engagement, while important to
prevent network fragmentation, does not serve the interest of
supporting a student’s own academic performance.

C. Community formation over time

We observe that, as the semester progresses, interper-
sonal interactions become more significant. At the local
level this is indicated by outdegree; at the global level by
closeness. On the first collection, none of the measures are
significantly correlated with grades and on the second only
one local level measure is significant (outdegree). On the
following three collections, three out of the four considered
measures, i.e., indegree, outdegree, and closeness, are
significantly correlated with final grades, with outdegree
and closeness remaining significant even when controlling
for GPA. This indicates that in the first half of the semester
there is little to no effective integration occurring; the little
integration that does occur exists only with nearest neigh-
bors and is predicated on each student’s self-perception of
their own behavior. Yet, by midsemester, interactions at the
local and global scales all predict higher performance. Such
a change indicates a time development of the classroom
community, wherein the student interactions in the second
half of the semester effectively predict final grade at the end
of the course.

1. Group dynamics

Time development is also apparent from viewing the
network diagrams of the classroom as in Fig. 4. Early in the
course [Fig. 4(a)], the majority of ties exist between same-
group members and the six-person seating arrangement is
readily apparent. Later in the course, seating groups are
almost completely indistinguishable in favor of a more
unified network, indicating classroom-wide integration
[Fig. 4(b)].
Considering both structured and unstructured cross-group

interactions, the development of the network over time may
be explained by a number of factors. For example, students
may be developing a rapport as they get to know each other
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better. As they change groups and are forced to work with
new assigned seatmates, they might recall better working
relationships with former seatmates and seek them out
instead of (or in addition to) working with the new group
members. Growing rapport would also explain increased
cross-group interactions in board meetings: students who
have previously worked together well will likely communi-
cate more meaningfully in large discussions than if they had
not. As the semester progresses, increasing number of
students in a given boardmeeting have priorwork experience
with the other students in attendance. This interpretation is
corroborated by anecdotal observations from the course
instructors (and this study’s authors on data collection days)
and by follow-up interviews with students, which indicated
that students did indeed becomemore comfortable talking to
each other in the board meetings as the semester progressed.
This time development may also indicate a shift in students’
perception of the word meaningful from working together
on a problem to discussing phenomena in board meetings.
In fact, evidence from an in-progress study suggests that
students who have taken a first semester of MI have more
positive attitudes toward MI in their second semester and
more quickly embed themselves in the classroom network.

2. Shift in perception: Towards efficient networks

We find that students’ engagement changes in a non-
intuitive way throughout the semester. Although we
hypothesized that over time the network density will
increase, we found that the number of reported interaction

actually slightly decreased, from 358 on the first collection
to 302 by the end of the semester (with Nweek 2 ¼ 359,
Nweek 3 ¼ 302, and Nweek 4 ¼ 312; (see Table S2 the
Supplemental Material [43] for comparison of network
characteristics). The median values of indegree and out-
degree also decrease over time (see Fig. 6), with indegree
reaching equilibrium around week 8 and outdegree around

FIG. 4. Network visualization for two different collection times. At the first collection, ties largely represent seating arrangement; at
the fourth collection, the structure of ties is demonstrably more complex. This structural difference is indicative of the network’s
development over time. The three orange nodes indicate students who did not complete the class. It is interesting to observe how they
over time moved from fairly central position in the network (a) to being either at a peripheral position or completely disconnected by
week 11. The size of nodes represents closeness at the fourth collection.

FIG. 5. Scatter plot of R2
adj values for the full models

(final grade ∼ GPAþ centrality) for indegree (yellow square),
outdegree (green circle), and closeness (purple diamond), shown
chronologically. The horizontal dashed blue line shows R2

adj for
the base model (final grade ∼ GPA) for comparison. We observe
a general trend of increasing predictive power as time passes.
Markers for R2

adj for models that were not statistically significant
are left empty.
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week 6. Closeness median oscillates over the first half of
the semester, reaching its peak at week 6 and stabilizing by
week 8. The average values for all three measures,
renormalized to account for the number of students whose
names appeared on a given collection, as well as the raw
number of ties per student also decreases over the first half
of the semester before stabilizing around week 8. This
assures us that the observed time development of the in-
class network is not simply a measurement or reporting
error (i.e., that students know only a few of each others’
names at the beginning of the semester but learn and report
more names over time).
This unexpected evolution of the in-class network does

not mean that engagement is stagnant or decreasing; while
the number of ties trends slightly down, the structure of the
network also changes dramatically. What we see in the
network evolution is a shift in the distribution of ties from
primarily seatmate connections to meaningful cross-group
connections. This shift in the connectedness is clearly
visible when comparing Figs. 4(a) and 4(b): While there are
more ties overall and more ties per student reported on the
first collection [shown in Fig. 4(a)], the network is more
scattered and has more weakly interconnected clusters
than the network from the fourth collection [presented in
Fig. 4(b)]. We interpret this change as evidence of a
selection effect: While the quantity of interactions decreases
over time, their quality improves, suggesting that, after the
initial exploratory in nature interactions, students begin to
make more calculated decisions regarding whom to interact
with. During the first half of the semester, they cast a wide
net to interact with each other but, as they find that not all of
these interactions are desirable, by midsemester they begin
to interact with slightly fewer but more selectively chosen
people. It may be that students need enough time to find
the “right” people with whom to collaborate with and who

can support their academic development. The fact that the
total number of interactions reported by all students on
each collection and the average number of ties reported per
student present does not increase over time further supports
the selection effect.

VI. CONCLUSIONS

In this study, we establish a relationship between
engagement, as measured by network centrality, and future
academic performance. Examination of the in-class com-
munity development over the course of the semester allows
us to not only identify which centrality measures are useful
for capturing the important aspects of student engagement
but also to determine when community interactions begin
to be predictive of performance. In the process, we find
evidence that the relationship between engagement and
performance is more nuanced than we expected. While our
study has some limitations, it inspires us to look toward
future lines of research.

A. Engagement predicts academic performance

We find three out of four centrality measures, acting as
proxies for student engagement, to be significantly corre-
lated with future academic performance. Models based
on these measures predict future performance even when
controlling for past performance—and better than past
performance alone.
The best predictive power of student engagement comes

from the closeness model (final grade ∼ GPAþ closeness)
at fourth collection. This result is powerful for two reasons.
From a theoretical perspective, closeness centrality repre-
sents how easily a student may interact with all members
of the classroom community using as few intermediaries as
possible. Thus, it is the closest analog to Tinto’s conception
of student integration. From a data-driven perspective,
closeness yields the most powerful model in the entire
study, explaining nearly half of all the variance in students’
course grades. Therefore, measuring closeness centrality
around week 11 (approximately two-thirds of the way into
the semester) seems to be the best way to capture student
engagement as relevant to final course performance.
It is also useful to consider the earliest predictive power

of student engagement. The outdegree model’s predictive
power peaks as early as the second collection (week 6),
explaining nearly 30 % of the variance in final grade. By
the third collection (week 8), the model with outdegree and
GPA improves to account for over 36 % of the variance,
which is only 10 percentage points less than the best model
and is the third-best model overall. The fact that students’
self-perceptions of engagement reaches peak predictive
power so early is empowering to course instructors. Since
predictions about students’ course grades are accessible as
early as week 8, there is still plenty of time for instructors to
enact interventions that promote student engagement, thus
positioning attrition-risk students for increased success.

FIG. 6. Scatter plot of the centrality median change (with
polynomial trend lines) for indegree (yellow square), outdegree
(green circle), and closeness (purple diamond), shown chrono-
logically. To compare the overall trend, the median values are
normalized to [0, 1] for each centrality. We observe a general
trend of decreasing median value for all presented measures, with
equilibrium reached around week 8.
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B. Network evolution

We expected the number of network ties to increase over
time as more time affords students more opportunities for
engagement. Instead, we find the total number of ties as
well as the number of ties per person to decrease slightly
over time, while at the same time the predictive power of
the models increases. This suggests that, rather than having
more interactions over time, students change their inter-
action patterns to best accommodate their social and
academic needs (the selection effect).
This change can be interpreted in several ways. It could

be that students need time to find the right people with
whom they can effectively collaborate; it may also be that
they need time to get used to the concept of a collaborative-
learning physics classroom and see each other as valuable
learning resources. Another possible interpretation is that
students’ understanding of meaningful interaction changes
over time, perhaps due to an evolving comprehension of
which peer interactions are important to their classroom
experience (social, academic, structured, unstructured).
A slight shift in weight distribution, from p1 ¼ 4.5%,
p2 ¼ 25.1%, and p3 ¼ 70.4% during the first collection
(where pi denotes the percentage of ties with weight i) to
p1 ¼ 5.6%, p2 ¼ 34.1%, and p3 ¼ 60.3% during the last
collection, supports the latter hypothesis. However, it could
also simply be the case that the second half of the semester
is more important: whether a student begins the semester
strongly or weakly, if they work hard and do well in the
middle and towards the end of the semester, they will earn a
high final grade purely due to the algebra of how course
grades are calculated. We acknowledge that these inter-
pretations are speculative—network analysis alone is inad-
equate to understand how students conceive of their
network engagement. Qualitative follow-up is necessary
to provide a more detailed understanding.

C. Practical applications for network methods

The results from this study have practical applications
for the use of network analysis in an academic setting,
especially the classroom. We find significant predictive
power primarily between weeks 8 and 13 of a 16-week
course, and the results are fairly consistent. This suggests
that network data can be collected only once during
this time frame without major information loss. Such
streamlining of the data collection process will benefit
researchers who can collect and analyze less data; student
participants will face less survey fatigue; and instructors
will not have to disrupt their class for multiple data
collections. Minimal data requirements ensure a lower
barrier to implementation.
Moreover, such insight provides markers for universities

seeking to retain students through careers in science that
require courses like introductory physics. Failure to pass
introductory science courses the first time around exacts a
price from both students and the institutions that keep them

from persisting in their majors at greater rates [53,54].
Universities with high populations of students from minori-
tized backgrounds, such as FIU, should take special note
of the practical applications of our results as a form of
gauging student embeddedness with the express purpose
of facilitating success and/or providing targeted support
to students. Both Nora and Tinto remind us of the value of
social embeddedness as a characteristic of students who
persist in higher education [8,32].

D. Limitations and future work

There are some limitations to the results of this study.
First, the sample we look at represents only one section of
an introductory physics course (N ¼ 73 students) offered at
FIU. Further investigation of more courses, at both intro-
ductory and upper-division level, and more varied popu-
lations should be studied. Second, our interpretations of
why academic performance is predicted by certain central-
ity measures at certain times (and not other measures at
other times) are speculative. Although we have offered
several possible interpretations grounded in a framework of
engagement theories, qualitative work must be done to
determine which of these interpretations (if any) represents
the mechanism(s) underpinning our results.
Future work should further explore the reciprocal relation-

ship between performance and engagement. Structural
equation modeling may be used to disentangle the direct
effect of past performance on future performance from the
indirect effect of past performance on engagement, thus
influencing future performance. Accounting for interactions
occurring outside of the classroom in a more casual setting to
determine whether they are related to in-class interactions,
performance, and other outcomes, would also be valuable.
The ties’ weights can be utilized to capture different

information. While this study uses them to quantify the
frequency of interactions, one could instead use them to
assess their quality by explicitly asking students to, e.g., rank
their meaningful interactions on a scale. Students could also
be asked to distinguish among various kinds of interactions
(e.g., friendship vs content related) to determine if different
peer interactions are related to different outcomes.
Finally, qualitative methods (especially interviews)

should be used as a follow-up to investigate how students
perceive their engagement in learning communities—both
inside and outside the classroom. For example, the liter-
ature around sense of belonging (see Ref. [55]) supports the
notion that students who feel they belong to a community
of peers are more likely to be retained in courses and persist
through their academic careers. While it is plausible that
students who feel a sense of belonging in the classroom
have high closeness centrality (or vice versa), qualitative
studies could help confirm the connection between the
quantitative measure of closeness to the affective construct
of belongingness.
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