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While numerous studies have analyzed the conceptions probed by the Force Concept Inventory (FCI),
assessments dedicated to electricity and magnetism lack similar analyses. This paper investigated the
conceptions explored by the Brief Electricity and Magnetism Assessment (BEMA) and the Conceptual
Survey of Electricity and Magnetism (CSEM) using exploratory factor analysis techniques. Exploratory
factor analysis (EFA) was performed on both assessments using 5368 and 4941 postinstruction student
responses for the BEMA and CSEM, respectively. A 6-factor EFA generated model was found for the
CSEM, and was fit against another sample of 4964 student responses using confirmatory factor analysis to
supply evidence for the possible generalizability of the model. The 5-factor EFA generated model for the
BEMA could not be fit against another sample when trying to check for generalizability. The EFA
generated factor models for the BEMA and CSEM were then compared and found to be similar in
conceptual content, with the exception of one or two factors. Thus, from a factor analysis perspective, the
BEMA and CSEM were found to be similar in conceptual content as revealed by student responses. With a
better understanding of these electricity and magnetism assessments, future research into this domain of
physics will then be able to make stronger conclusions based on students’ results within these assessments.
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I. INTRODUCTION

The Brief Electricity and Magnetism Assessment
(BEMA) and the Conceptual Survey of Electricity and
Magnetism (CSEM) were presented to the physics educa-
tion research community in 2006 and 2001, respectively
[1,2]. Since their validation papers, these assessments have
become common tools for evaluating students’ conceptual
knowledge of electricity and magnetism. However, these
assessments have not undergone significant psychometric
evaluation. Both assessments have been found to be valid
and reliable, see Refs. [1,2], but little has been done since
then to further understand the nature of these assessments.
A deeper understanding of the statistical properties for
these instruments will enable future studies that use these
assessments to come to more informed conclusions.
This study seeks to uncover and explore prominent

student response patterns (factor structures) which will
aid in investigating what conceptions students may be using
when taking each of these assessments. Specifically, we
will investigate the factor structure of both the BEMA

and CSEM. These factor structures will be tested in a future
study, which will focus on identifying statistically valid and
rigorous factors for each of these assessments. Previous
statistical studies of note for each assessment are their
respective validation papers (see Refs. [1,2]), a gender
grouped differential item functioning analysis of the
CSEM [3], a classical test theory comparison of both
assessments [4], and a classical test theory combined with
item response theory comparison of both assessments [5].
The comparisons made in Refs. [4,5] demonstrate that

these assessments are similar in difficulty from a classical
test theory and an item response theory point of view.
However, both of these techniques make the assumption of
unidimensionality (i.e., a single conceptual factor) when
examining assessments at an item level, and thus do not
give information on the multiple conceptions probed. The
most significant difference between these assessments is
the presence of circuits specific questions on the BEMA,
while the CSEM contains none.
The intention of this study is to explore and compare the

factor structure of these assessments. This study does not
intend to verify that students are answering the questions in
the manner intended by the creators of the BEMA and
CSEM, nor are we confirming the factors found as a result
of our exploration. We only seek to compare how students
are responding to each of these assessments. Understanding
how the factor structures of each assessment compare
to one another will help instructors and researchers in
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identifying the most appropriate assessment to use in their
classes or studies. Further, the proposed models found here
can be used in future studies to help develop expert-
proposed models.
To investigate if postinstruction student-driven models

generate factors which probe concepts of electricity and
magnetism, exploratory factor analysis will be applied to
each assessment. Exploratory factor analysis (EFA) inves-
tigates latent traits (i.e., factors) within the assessments
that help explain the variance in the student response
data. However, since EFA is not suited to validate factor
models, the exploratory-driven factor structures will need
to be validated in a future study using confirmatory factor
analysis (CFA) and an alternative set of data. A future study
will consist of using the models found within to help inform
the construction or modification of expert-proposed models
for the BEMA and CSEM.
Since the BEMA and CSEM were developed for first-

time introductory electricity and magnetism classes, it is
expected that the conceptions probed by the factors will be
similar, with the exception of circuits. So, this study sought
to address the following two research questions:
RQ 1: What are the student-driven factor structures gen-

erated through exploratory factor analysis for the CSEM
and BEMA?
RQ 2: How do the two resulting models for the CSEM

and BEMA compare, and do they assess the same or similar
conceptions?
Previously, it has been suggested by Maloney et al. that

the CSEM is a unidimensional assessment [2]. However,
without knowledge of the exact methodology used we
cannot comment on how the researchers arrived at this
conclusion. It should be noted that Maloney et al. applied a
principal component analysis to the CSEM [2], whereas the
analysis performed in this study uses principle axis factor-
ing. These two factor extraction methods make different
statistical assumptions, thus it is not unreasonable to
assume that they will generate slightly different results.
The exact differences between these methods will not be
discussed in this paper, but are addressed in multiple
references, such as Ref. [6].
The article is structured into seven distinct sections,

including the introduction, Sec. I. Section II discusses aspects
of thedataused in this study, andSec. IIIpresents thestatistical
methodology used to answer the research questions. The
results of the analysis, as well as a comparison of these results
for both assessments, are presented in Sec. IV. Lastly, the
limitations of this study, the study’s conclusions, and intended
future works are detailed in Secs. V–VII, respectively.

II. DATA

The data used in this study were supplied by Physport, an
online support website for physics instructors at all levels of
education. Physport contains a collection of conceptual
inventories with varying amounts of student response data

for each [7]. The data for the BEMA and CSEM consisted
of post-test student responses from a mixture of algebra-
and calculus-based introductory physics classes, all using
potentially different teaching strategies (i.e., traditional
lecturing, inclusion of active learning, etc.). Upon receiving
the data from Physport, any student responses with even a
single unanswered question were removed from the dataset.
Each instrument was scored using the specified grading
criteria offered for each assessment. The CSEM’s data
consisted of 9905 student responses, of which 4941 were
used for EFA and 4964 were used for confirmatory factor
analysis. To generate two samples for the CSEM the
students were given random identification numbers, and
the students with even identification numbers were used for
the EFA and the odd students for confirmatory factor
analysis (CFA). In total, the BEMA had 5368 student
responses, which could not be split into two groups due to
fit issues explained in Sec. IV.
The test statistics for each of these groups can be found in

Table I. As can be seen, the two groups of data for the CSEM
behaved similarly after separating them from one another,
with mean total score values found to not be significantly
different (two-tailed t test: p ¼ 0.9245). Both assessments
have relatively low averages (<50%), indicating that these
assessments tend to be rather difficult for the students in an
introductory physics class, even after instruction. Results
like this are well understood and have been discussed in
other studies [1,2,5,8]. Further, the Cronbach’s alpha and the
KR-21 have been calculated for each of the samples, see
Table I [9]. It should be noted that the Cronbach’s alpha
reduces to the KR-20 in the limit that the data is dichoto-
mous. Comparing these results to the validation papers for
each assessment gives good agreement with an alpha greater
than 0.8 for the CSEM and BEMA each. Thus, it can be
concluded that when the students answered items on these
assessments they did so in a consistent and reliable manner.
It should be noted here that Cronbach’s alpha is not a test
statistic for unidimensionality, it is simply a measure of the
internal consistency of an assessment [9].

III. METHODOLOGY

Exploratory factor analysis, explained in detail in the
following section, was employed to investigate the

TABLE I. Test statistics for the EFA and CFA CSEM datasets
and for the full BEMA dataset.

EFA CSEM CFA CSEM BEMA

N 4941 4964 5368
Average 0.441 0.442 0.456
St. Dev. 0.187 0.185 0.173
Skew 0.496 0.474 0.071
Kurtosis −0.380 −0.424 −0.686
Cronbach’s α (KR-20) 0.83 0.82 0.82
KR-21 0.83 0.82 0.82
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groupings of questions which form from correlations
between questions within the student responses. Using
the factor extraction methods discussed below, factor
models were constructed to suggest how items (questions)
on the assessments group together using item correlations.
Each factor within these models is ideally probing one
specific conception of the students. These models were
then fit against the set of data which produced the EFA
generated model to check for goodness of fit; this was done
using CFA. To support the claim that these models are not
unique to the sample which produced the models, CFA on
independent samples was performed when possible. For
the CSEM, the EFA generated model could be fit to the
other, independent, half of the data. However, this could
not be done for the BEMA, which is discussed in detail
within the results section below. If the models were found
to have acceptable goodness of fits with the alternate sets
of data, then the models were said to be adequate
representations of the correlation groupings of the items
on the assessment.
A factor is taken to represent some underlying concept a

student employs when responding to the set of questions
which make up the factor. The qualitative interpretations of
the factors presented in this study are one of many possible
logically consistent interpretations of the factors. The
ambiguity in these interpretations is an aspect of offering
an expertlike explanation for possibly novicelike thought
processes. This inevitably leads to many possible explan-
ations for groupings sourced from nonexpert thinkers.
Student interviews should be used to lend support for
the interpretations of each factor, and is suggested as a
future study.
After identifying what physical idea the factors are

probing, comparisons of the concepts investigated by each
of the assessments can be made. This will lend insight into
the similarities and differences of the content explored by
each instrument according to the student samples used in
the analysis.
The following two subsections are brief explanations for

how EFA and CFAwere performed, and the tools that were
used in this analysis.

A. Exploratory factor analysis

Exploratory factor analysis is a statistical tool that groups
items on an assessment together based on item correlations
generated from student responses. Since the data in this
study was dichotomously graded (0–incorrect, 1–correct) a
tetrachoric correlation was used to generate the correlation
matrix [10]. This kind of analysis allows researchers to
investigate two intermixed ideas: (i) how student responses
form factors based on the correlations between the student
responses to questions, and (ii) what these factors might
represent according to an expert interpretation (i.e., specific
physical concepts). One of the key aspects of EFA is that
the number of factors used in the generated models is

selected by the researchers using one of many proposed
methods (see Refs. [11–13] for a few examples).
Mathematically, a factor is a numerical vector of

item loading values, where item loadings (often called
“loadings”) are related to the amount of variance for an
item that is explained by the factor being considered [14].
Loadings can take on values between −1 and 1, with
numbers closer to�1meaning the items are better explained
by the factor when compared to those closer to 0.
Conceptually, factors are assumed to represent the

conceptions or latent traits probed by the assessment being
analyzed. Often, identifying the conception that a factor is
representing is based on the items which load best onto a
factor. Thus, a factor must contain multiple items to best
assess the concept a factor may be representing. A common
criteria within factor analysis is that each factor should
contain at minimum 3 items [14].
This study is not concerned with how adequately a

certain conception is probed by the assessments. Instead,
the interest is specifically on which conceptions are
explored by the assessments under consideration. As a
result, a smaller than normal item loading cutoff value of
0.2 was used, with minimal exceptions, and factors were
allowed to have less than 3 items. This means factors found
within this analysis will not be able to assess how well a
student understands the conception characterizing the
factor. For quantifiable scales to be developed, more
stringent cutoff values will need to be used. There are
many suggestions for what a minimum loading should be to
place an item onto a specific factor [6].
To generate the factor models investigated in this study,

the principle axis methodology, see Ref. [15], was imple-
mented using the R function “fa” [16] with an oblimin
rotation [15,17]. Rotations to the extracted factors, like the
oblimin rotation, are performed to improve the fit of the
factors to the data [15,17]. An oblimin rotation is non-
orthogonal, meaning the rotation allows the resulting
factors to have angles between them that are less than
90° in parameter space. The cosine of these angles can be
interpreted as the correlation between factors. A non-
orthogonal rotation was used versus an orthogonal rotation
due to two reasons. First, it is likely that the conceptions
which caused the factor to form will be related to one
another. Second, if the resulting factor structure is naturally
orthogonal then a nonorthogonal rotation will be able to
capture this behavior (i.e., nonorthogonal rotations are
more general) [15,17].
Prior to performing EFA, the number of factors to be

used must be identified. There are many methods suggested
for identifying the number of factors that could be extracted
from the data [11–13]. As it stands, the community as a
whole does not have an agreed upon method to identify the
proper number of factors to use when generating an EFA
model. This study opted for using an approach that
combines many of the proposed processes currently used.
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Utilizing an algorithmic model building method (discussed
in the remainder of the section) and fitting the created
models to the data that generated them using CFA, the
model that best describes the data was found.
This algorithm begins by selecting cutoff values for

(i) the item loadings, (ii) the Kaiser-Meyer-Olkin (KMO)
test for sampling adequacy values, and (iii) the item
communalities. KMO values can be calculated for each
of the items on an assessment, and are a measure of the
sample’s ability to place the items onto factors [18]. These
values will be between 0 and 1, with numbers closer to 1
meaning the item can more confidently placed onto the
factors. It is suggested that items with KMO values above
0.8 be kept, with 0.6 being the lower limit of the possible
cutoff values [6]. Item communality is a numerical measure
of how much an item’s variance is being captured by the
factor model [14]. Communalities between 0.25 and 0.4
have been suggested as acceptable cutoff values, with ideal
communalities being 0.7 or above [6].
Generally, the stricter these cutoff values the better fit the

model has with the items that remained. So, choosing
smaller cutoff values for item communality results in
models with potentially poorer fits compared to ones
generated using stricter cutoff values. As a result, the
models generated using this algorithm will have varying
degrees of goodness-of-fits with the data depending on the
strictness of the cutoff values initially selected. This must
be balanced with the fact that stricter cutoff values can
result in fewer items being retained within the model. So,
cutoff values should be selected such that the generated
models fit the data well and retain an acceptable number of
items from the assessment.
Once these cutoff values have been selected, the number

of factors to be extracted is chosen. This number should
not exceed the maximum number of factors dictated by
parallel analysis, which models the random guessing of
students [12]. This model, called the baseline model, uses a
correlation matrix generated by selecting uniformly, ran-
domly sampled values between −1 and 1 for the entries of
the matrix. Eigenvalues are extracted from this random
guessing correlation matrix, and are interpreted as the
amount of variance that belongs to noise (i.e., random
guessing). These eigenvalues are placed in descending order
and compared to the eigenvalues of the data’s correlation
matrix; also placed into descending order. The data’s
eigenvalues that are greater than the random guessing
eigenvalues are said to be above the noise and are capable
of being extracted. Thus, parallel analysis places an upper
limit on the number of factors an EFA model can possess.
Once the cutoff values and the number of factors to be

extracted have been selected the algorithm is performed
using the following steps. If an item is removed from the
analysis at any point in these steps, then the algorithm
restarts at step 1, unless otherwise indicated. The steps are
as follows:

(1) Calculate the KMO values. If any items have a KMO
value below the cutoff value, then remove the item
with the smallest KMO value and repeat this step.

(2) Use the Bartlett test of sphericity to check that the
correlation matrix can be factored. If it cannot, then
factor analysis cannot be performed.

(3) Calculate the EFA model using principle axis
factoring with the specified number of factors.

(4) Calculate the communalities. If any items have a
communality below the cutoff value, then remove
the item with the minimum communality and restart
at step 1.

(5) Calculate the item loadings. If any items have
maximum loadings across all of the factors that fall
below the cutoff value, then remove the item with the
smallest maximum loading and go back to step 1.

(6) Create a factor model by placing each item onto the
factor that contains the item’s largest loading value. If
any items load equally ontomore than one factor, then
allow them to cross-load ontomultiple factors. Fit this
model to the original data using CFA, making
modifications as is suggested by CFA criteria (see
Ref. [14]), and finally extract a parsimonious fit
statistic [in this study the Akaike information
criterion (AIC) was used, but other parsimonious
fit statistics would be acceptable]. How CFA is
performed and the meaning of a parsimonious index
is discussed in the following subsection.

(7) Change the number of factors and repeat steps 1–6.
(Models with various numbers of factors should be
generated when the process is completed.)

(8) Plot the parsimonious fit index (i.e., the AIC) against
number of factors. The model with the (local)
minimum index is the preferred model, and is the
one extracted by this algorithm.

It should be noted that due to the nature of EFA, items
will occasionally load onto a factor with a small loading
value relative to the other items on the factor. This is due to
the mandate in EFA estimation methods to use all of the
items given in the data. These items are generally ignored
when discussing the qualitative meaning of the factors.

B. Confirmatory factor analysis

Confirmatory factor analysis is a model driven analysis
that tests a given factor model’s ability to recreate the
correlation matrix of the data which the model is fit against.
The model, which can be found through EFA or can be built
from an expert’s consideration of the items, is a prescription
of which items load onto each factor. This is different from
EFA since there are no cross loadings of items, unless the
model is created with them initially. A model found in EFA
will inherently have loading values on all of the factors, and
are ideally very small compared to the dominant loading
value. A general rule of thumb is if a loading value is smaller
than the dominant one by 0.3 it can be ignored, otherwise the
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item’s cross loading should be kept in the model [19]. These
cross loadings in EFA may artificially improve the fit of the
model to the data. Thus, when the EFA model is moved to a
CFA model, and the small cross loadings are removed, the
goodness-of-fit will generally change. It is this reason that
step 6 was incorporated into the algorithm used in this
study’s EFA model selection method.
The model used in CFA is fit to the data by estimating the

loadings of the items to their factors given the correlation
matrix of the data. This can be done in a number of different
ways (e.g., maximum likelihood methods) that will not be
detailed in this study; explanations of these methods can be
found inRef. [14] and the references citedwithin.Toperform
these estimations the R software “lavaan” was used [20].
After the model has been fit to the data, goodness-of-fit

statistics can be calculated. For example, there are the
confirmatory fit index (CFI) and the Tucker-Lewis index
(TLI) that compare the fit of the proposed model to a
baseline model (a model that makes no assumptions about
the fits of the items). These fit statistics are said to be
acceptable if they are above 0.9 [14]. There is also the
standardized root mean square residual (SRMSR) and the
root mean square of the error of approximation (RMSEA),
both of which should be below 0.08 [14]. Lastly, there are
parsimonious fit indexes [like the Akaike information
criterion or the Bayesian information criterion (BIC)] which
give a goodness-of-fit measure that is related to the like-
lihood of the model and an added penalty based on the
number of free parameters in a model. These statistics do not
have a range of acceptable values, but instead are used to
compare models of similar goodness-of-fit to identify the
preferred model. The preferred model is generally the one
with the smallest value for its parsimonious fit indexes. More
information on these fit indexes, as well as on how CFA is
performed, can be found in Refs. [14,21].

IV. RESULTS AND DISCUSSION

Before investigating the multidimensionality of the
assessment, the potential unidimensionality was checked.
When performing a 1-factor EFA for the CSEM and BEMA
the fit statistics were found to be unsatisfactory (CSEM
TLI ¼ 0.786; BEMA TLI ¼ 0.841). This indicates that a
unidimensional model is inadequate for representing these
assessments within a factor analysis framework.
The following is a presentation and discussion of multi-

dimensional results for the CSEM and BEMA using EFA.
Readers are encouraged to have a copy of the CSEM and
BEMA on hand to reference questions being discussed when
the qualitative meaning of each factor is presented below.

A. EFA of the CSEM

1. CSEM 6-factor EFA model

For the EFA of the CSEM the following cutoff values
were used: item loadings ≥0.20, KMO values ≥0.6, and

item communalities ≥0.15. As a result, the following items
had to be removed from the analysis: 1, 2, 14, 22, 28, 30,
and 32. These items were dropped due to poor item
communalities. However, it is worth noting that the
KMO values were all above 0.80, with the exception of
0.73 for item 14. In an attempt to understand why these
items did not load onto the EFA model for the CSEM, the
classical item difficulties were calculated for all of the
items. However, no consistent explanations for why an item
did or did not load could be determined after investigating
these indexes. A similar analysis was performed for the
BEMA, and again no consistent explanation for loading
and nonloading items could be determined.
A parallel analysis of half of the CSEM’s data revealed

that at most 12 factors could be extracted. However, once
items were dropped due to communality issues, this value
dropped to 10. The AIC values for the EFA models ranging
from 2 to 8 factors can be found in Fig. 1. The 9- and 10-
factor models are not presented since they contained
multiple factors with only 2 items or fewer loading on
to them, and thus were removed from consideration for
model selection.
It can be seen that the 2-, 4-, and 6-factor models are the

local minima of the AIC versus number of factors plotted
for the CSEM; see Fig. 1. Thus, they are the preferred EFA
models that should be investigated further. The 6-factor
model was selected since it contains more information (i.e.,
questions and factors or concepts) about the assessment
compared to the other models. The item loadings for the
6-factor model can be found in Table II. In the validation
paper for the CSEM, see Ref. [2], the creators offer a
suggestion on the concepts each item probe. Many of the

FIG. 1. The AIC values for the factor models that resulted from
the criteria laid out in Sec. III A for the CSEM used in CFAwith
the EFA half of the CSEM dataset. As can be seen, the 6 factor
model is the locally preferred factor model.
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factors found for this 6-factor model align well with the
creators’ suggestions.
The first of the factors for the 6-factor model of the CSEM

contained items 4, 5, 7, and 24 and pertains to Newton’s 3rd
law. As suggested by the creators of the CSEM, all of these
items require an understanding of action or reaction pairs in
the context of electricity and magnetism. Items 4, 5, and 7 all
ask about forces acting on positive and negative point
charges. These questions could be answered using
Coulomb’s law, however item 24 could not. Item 24 asks
about the force between two current carrying wires. The
inclusion of item 24 on this factor implies that it is probing
Newton’s 3rd law over Coulomb’s law.
Items 3, 6, 8, 9, 12, 16, and 17 all appear on the second

factor and probe the idea of determining the electric force
on a charge given a charge distribution or an external
electric field. Items 3, 6, 8, and 9 refer to point charge
configurations and their associated electric field or force at
a specified location and/or charge, with items 8 and 9
requiring knowledge about superposition of vector fields.
Item 12 asks about the force on a charge placed into an
electric field, and items 16 and 17 ask about the force on a
charge placed into an electric potential. However, since
items 16 and 17 loaded quite poorly onto this factor, they
will not be used to offer a conceptual interpretation for this
factor. Since the largest loading items on this factor all
require knowledge that the electric force is equal to the
charge feeling the electric force times the electric field at
the point of the charge, with some questions needing a few
more conceptual steps than the others. Ultimately, the
common idea probed by all of these items is F⃗E ¼ qE⃗.
The third factor of the CSEM’s 6-factor model contains

only two items, which investigate student understanding of
magnetic field generation from current carrying wires.
Items 23 and 26 both deal with the magnetic field produced
by current carrying wires. Item 23 contains two current
carrying wires, and will thus need superposition to answer,
whereas item 26 only has one wire.
Related to the third factor, the fourth factor is believed to

probes students’ understanding of the magnetic force on

charged particles. Items 21, 25, 27, and 31 all explicitly
require the use on the right-hand rule for the magnetic force
on a charged particle. Item 29 inquires about Faraday’s law
of induction, which can be related to the magnetic force on
charged particles. Items 13 and 16 appear to be out of place
on this factor since they probe electrostatic conceptions.
These two items happen to have poor loading values
compared to the other items, see Table II, which may
result from reducing the number of factors from 8 to 6. It
could be that this factor is the results of students’ under-
standing of the Lorentz force law, which combines the
electric and magnetic forces. Though, with a factor in this
model dedicated to examining electric forces on a charged
particles due to electric fields, this interpretation does not
appear to be consistent with the factor model. Thus, using
the better loading items (21, 25, 27, 29, and 31) it can be
concluded that this factor, for the most part, inquires about
magnetic force acting on a charged particle, which requires
the use of the right-hand rule to one degree or another.
Factor five contains 3 items (18, 19, and 20) which ask

about the electric force or field acting on a charged particle
placed into an electric potential difference. Item 18 asks for
a ranking of the electric field of three plots of electric
potentials, and item 19 asks about the direction of the
electric force exerted on a positively charged particle for
one of the cases discussed in item 18. Lastly, item 20
inquires about the direction and magnitude of the electric
force acting on a proton that is in an electric potential
difference whose plot is similar to the second one discussed
in item 18. This factor probes students’ ability to infer
vector fields from the scalar potential.
Finally, factor six contains items 10, 11, 15, and 19,

which are concerned with the relations between electric
fields, electric forces, and electric potentials. For example,
item 10 asks about the resulting motion of a charged
particle placed into an electric field, and item 11 asks about
how the electric potential energy changes for the charge in
item 10 as it moves. Similarly, item 15 asks for the direction
of the electric force for a negative point charge placed into
an electric field, and item 19 asks for the direction of the

TABLE II. CSEM 6 factor EFA model. The following items had to be dropped due to their communality values falling below the 0.1
cutoff value: 1, 2, 14, 22, 28, 30, and 32. All loading values above 0.2 were retained in the presented model. Within this table “Q”
indicated the questions number and “L” the associated loading value.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Newton’s 3rd law F⃗E ¼ qE⃗þ Superpos: B⃗ by I F⃗B ¼ qv⃗ × B⃗ E⃗ ¼ −∇V q in fields

Q L Q L Q L Q L Q L Q L
4 0.826 8 0.521 23 0.669 21 0.495 20 0.401 11 0.343
5 0.628 6 0.473 26 0.624 27 0.363 18 0.330 15 0.312
7 0.547 9 0.411 25 0.350 19 0.218 10 0.247
24 0.310 12 0.409 29 0.315 19 0.213

3 0.405 31 0.289
17 0.256 16 0.205
16 0.207 13 0.202
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electric force exerted on a positive charge when placed into
a potential gradient. This factor appears to cover some of
the same ideas as factors 2 and 5. However, Table V reveals
that factors 2 and 6 as well as 5 and 6 are not well
correlated. Thus, this factor is measuring something the
other two factors did not cover. So, this factor seems to
probe the interactions between charged particles and the
electrostatic fields around them.
Exploratory factor analysis does not have a medium that

allows for a discussion for the conceptual reason governing
why questions were removed from the analysis. Thus, the
rationale offered for why any single item was removed is
purely speculation on the part of the researcher. For
example, when considering the removed CSEM items no
overarching conceptual theme could be seen amongst more
than two or three of the items. This is contrasted by the
interpretation of factors, where a more consistent rationale
is the derivative of multiple, well-loaded items.

B. EFA of the BEMA

In an attempt to repeat the methodology applied to the
CSEM (i.e., splitting the data into two separate samples for
EFA and CFA to be applied separately) the BEMA data was
initially split into two groups. However, fitting the EFA
generated model against the other half of the data, using the
R software lavaan, caused a divergence in the fit. After the
groups were merged and the full sample was used, the EFA
algorithm generated acceptable models with good fit
statistics for CFA. It is not clear why splitting the data
in half caused issues, and indicates that further study of the
BEMA should be done using a different set of data. As a
result, since a CFA sample group was not able to be formed,
the EFA model generated could not be tested against an
alternate, independent sample. This should be done in a
future study to check if the generated model is unique to the
sample or if it is potentially generalizable.
Using the following cutoff values: item loadings

≥0.175, KMO values ≥0.6, and item communalities
≥0.10 with the full BEMA sample, it was found that a
5-factor model was the preferred model for the data,
shown by the AIC fit statistic in Fig. 2. As a result of
the cutoff values selected the following items were removed
from the model: 7, 8, 9, 10, 11, 14, 17, 18, 19, 27, and
28=29. Items 9 and 18 were removed due to poor KMO
values, and the others were removed due to poor item
communality values. The factors can be found in Table III,
and the meaning of the factors will be discussed for the
remainder of this section.
The first factor for the 5-factor BEMA model contains

items 6, 12, 20, 23, 25, 26, and 30 and is interpreted as
inquiring about the Lorentz force. Items 20, 23, 26, and 30
ask about situations where charged particles move through
a magnetic field and feel a resulting magnetic force. Item 25
contains a figure with two current carrying wires and asks
about the force on one wire due to the other. Items 6 and 12

are not as well loaded onto this factor compared to the other
items. Item 6 asks about an electric field that is acting on an
electron and item 12 inquires about the direction of an
electric field acting on electrons while they are traveling
through a light bulb that is hooked up to a battery. Since the
items contained by this factor appear to be about the electric
and magnetic forces acting on charged particles, this factor
can be inferred to probe the Lorentz force, see Table III.
Items 21, 22, and 24, which make up the second factor

for this model, pertain to the magnetic field generated by a
bar magnet at two locations (items 21 and 22) and about the
magnetic field generated between two loops of current
carrying wire (item 24). This factor has been labeled
magnetic fields since the most prominently loaded items
for this factor are concerned with magnetic field generation.
Item 13, the poorest loading item on this factor, asks for the
current which results from a charged capacitor decaying
after it is connected to an ammeter. This item is thought to
exist on this factor due to the nature of EFA utilizing all
items it is given within the generated model, and not due to
conceptual content.
Factor three contains items 15 and 16, which touch on

the electric potential difference between two points in a
uniform electric field. It is interesting that item 14 did not
load onto this factor considering it also asks about the
electric potential difference between two points in a uni-
form electric field using the same figure as items 15 and 16.
Item 14’s removal as a result of small item communality
suggests that this question had little in common with the
other items on this assessment. This lack of commonality is
not obvious to the authors, and student interviews for
question 14 may help elucidate its removal from this factor.

FIG. 2. The AIC values for the factor models that resulted from
the criteria laid out in Sec. III A for the BEMA used in CFAwith
the full BEMA dataset. As can be seen, the 5 factor model is the
preferred factor model.
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The ideas concerning Coulomb’s law explain the group-
ing of items 1, 2, and 3 for the fourth factor of the BEMA.
These items examine the electric force between two
particles and how it changes relative to the original
configuration, when aspects of the particles are changed.
Item 1 increases the charge of a particle and asks about the
resulting force on the unchanged particle, item 2 asks about
the force on the changed particle, and item 3 moves the
particles farther apart and asks about the resulting force
acting on the changed particle. As a result, this factor has
been labeled Coulomb’s law.
Lastly, factor five investigates electric field or force

generation. Items 4 and 5 provide a charge distribution and
ask about the direction of the resulting electric field
generated at two points in space. Item 6 has an electron
move through a region that contains an electric field and
shows how the path of the electron changes in that region.
Based on this information, the direction of the electric field
in the unknown region of space is inquired about. It should
be noted that the Coulomb’s law factor asks explicitly about
the force on the charged particles, whereas this factor asks
about the electric field. Knowledge of how the electric force
and the electric field are related could be used by students
to answer all of these questions, which is where this factor
gets its qualitative interpretation.

C. Confirmatory factory analysis of the
data-driven models

Performing CFA using the EFA generated model for the
CSEM and the half of the data not used in the exploratory
analysis resulted in acceptable fit statistics, see Table IV.
This lends evidence that the EFA model is not sample
specific and may be generalizable to the population the
sample was obtained from. It is important to reiterate that
the sample used in this study was taken from a broad
spectrum of sources, and thus should be a good represen-
tation of all students taking an introductory electricity and
magnetism course. For the BEMA, however, this analysis
could not be performed. Since all of the data for the BEMA

was used in EFA, no independent sample was available at
the time of this study. The CFA fit statistics presented for
the BEMA in Table IV are using the data which generated
the EFA model. The acceptable fit indexes suggest that the
generated model adequately represents the samples but,
without an independent sample, may not be generalizable.
Examining the potential generalizability of this model is
suggested as a future study.

D. CSEM and BEMA model comparisons

For each assessment, EFA was able to generate factor
models which placed the items into groupings that gen-
erally probed a single expertlike conception as seen by the
students. When interpreting these models, it is important to
note that EFA is a data driven analysis that extracts the
factor model that best fits the data used to generate it. From
a correlation point of view this implies that the factors
found represent how the sample as a whole grouped the
questions together. These models will be compared to infer
how two samples drawn from similar populations interact
with the items on each assessment.
Since the BEMA and CSEM each probe similar con-

ceptions with the exception of circuits, one would assume
that any model for the BEMAwould contain more factors
than the one for the CSEM. However, since all of the circuit
specific questions on the BEMA had to be removed when
performing EFA, one would expect the models to have the

TABLE III. BEMA 5 factor EFA model. Items 9 and 18 were dropped due to poor KMO values, and the following items were dropped
due to their communality values falling below the 0.1 cutoff value: 7, 8, 10, 11, 14, 17, 19, 27, 28=29, and 30. All loadings above 0.15
were used for this model. Here “Q” indicates the questions number and “L” the associated loading value.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Lorentz force Mag. field ΔV given E⃗ Coulomb’s law Elec. field

Q L Q L Q L Q L Q L
30 0.486 21 0.703 15 0.907 2 0.794 4 0.690
26 0.477 22 0.699 16 0.443 1 0.543 5 0.437
20 0.412 24 0.234 3 0.178 6 0.223
23 0.378 13 0.220
25 0.364
12 0.318
6 0.267

TABLE IV. CFA fit statistics for the two models found through
EFA for the CSEM and BEMA. The CSEM was fit using the half
of the data set aside for CFA, and the BEMAwas fit back against
the sample that originated the EFA model.

CSEM 6 factors BEMA 5 factors

CFI 0.939 0.959
TLI 0.928 0.949
SRMR 0.026 0.030
RMSEA 0.029 0.032
RMSEA 95% CI 0.031 0.034
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same number of factors. Yet, the model for the CSEM
contains one more factor than the BEMA, specifically
comprehension of Newton’s 3rd law. The remainder of this
section compares the factors between these assessments.
The CSEM’s third factor and the BEMA’s second factor

are very similar in that they both probe the generation of a
magnetic field for different situations. The CSEM exclu-
sively uses current carrying wires to generate the magnetic
field, and the BEMA uses current carrying wires and a bar
magnet. Though the generation of the magnetic field is
considered for different situations within the two assess-
ments, they each attempt to investigate student’s under-
standing of how magnetic fields are generated in simple
situations.
Similarly, the CSEM’s fifth factor and the BEMA’s third

factor both consider the relationship between electric fields
and electric potentials. The CSEM looks at how an electric
field is generated from a potential difference, and the
BEMA looks at the opposite situation, inferring a potential
difference from a given electric field. Although the ques-
tions are superficially different, they are each probing the
same content.
Both of the EFA generated models for the BEMA and the

CSEM contain the concepts of electric and magnetic forces.
The CSEM covers these conceptions using 3 factors
(electric force, magnetic force, and Newton’s 3rd law)
and the BEMA does this with 2 factors (Lorentz force and
Coulomb’s law). Given the EFA models, the CSEM probes
the electric and magnetic forces individually, whereas the
BEMA probes them simultaneously through the Lorentz
factor. Depending on how deeply one would like to probe
electric and magnetic forces, the selection of assessment is
important for these instruments. If the electric and magnetic
forces independently are of interest to a researcher then the
CSEM should be used.
The similarities between the EFA factors that were found

for each assessment indicate the samples agree, with minor
differences, that the BEMA and CSEM cover the same
major concepts of electricity and magnetism in very similar
manners, according to student responses. That a factor for
the BEMA which probes circuits did not appear was
unexpected. This could suggest that there may not be a
coherent enough understanding of circuits within the
student sample to be extracted through EFA.

Additionally, when considering the correlations between
the factors for each model, all of the factors can be seen to
be positively correlated with one another, as shown in
Tables V and VI. This implies that the conceptions
represented by each of these factors are distinct but are
not independent. This is not surprising, since the ideas in
physics generally play off of one another or share similar
conceptual characteristics.

V. LIMITATIONS

The results of this study were generated using a data set
that was a mixture of classes using different levels of
mathematical sophistication and teaching techniques. Since
EFA is data driven, and thus sample dependent, there could
be differences between the factors for nonmixed data.
The qualitative interpretations supplied in this study are

offered by the authors as possible meanings behind each of
the factors found in the analysis. It is understood that there
will be other interpretations that are equally logical and
consistent with student thinking. This does not invalidate
the factor structure found, which are backed up with
statistical evidence, it is merely a reflection of the ambi-
guity that can enter when trying to supply a qualitative
interpretation to the factors.
Lastly, since the BEMA’s EFA generated model could

not be fit to another independent student sample, the results
cannot be assumed to be generalizable to the student
population. Although the factors found made conceptual
sense, it is still suggested that a future study be done to
validate the model found in this study.

VI. CONCLUSIONS

As a result of this study potential factor structures for
both the CSEM and BEMA have been generated. This
gives instructors and researchers a clearer picture as to what
concepts students are using when answering questions on
these assessments. It was found that the CSEM is well
modeled by a 6-factor model, which probes concepts like
Newton’s 3rd law, force due to an electric field, magnetic
field generation by current carrying wires, magnetic forces
on moving charges, and the relationship between an electric
field and its associated electric potential, and the BEMA by
a 5-factor model, which probes concepts like the Lorentz

TABLE V. The correlations between each of the factors for the
CSEM after an oblimin rotation. Since the matrix is symmetric
only the lower left corner is displayed.

F1 F2 F3 F4 F5 F6

F1 1.00
F2 0.40 1.00
F3 0.38 0.65 1.00
F4 0.39 0.35 0.39 1.00
F5 0.20 0.34 0.29 0.29 1.00
F6 0.35 0.44 0.44 0.36 0.27 1.00

TABLE VI. The correlations between each of the factors for the
BEMA after an oblimin rotation. Since the matrix is symmetric
only the lower left corner is displayed.

F1 F2 F3 F4 F5

F1 1.00
F2 0.58 1.00
F3 0.46 0.49 1.00
F4 0.42 0.35 0.33 1.00
F5 0.55 0.63 0.49 0.41 1.00
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force, magnetic field generation, the relation between
an electric field and its associated electric potential,
Coulomb’s law, and electric fields due to point charges.
The factor structures for each assessment (see Tables II

and III) examine similar domains of electricity and magnet-
ism: electric forces and fields, magnetic forces and fields,
and the relationship between voltage and the electric field.
This is to say that students are using the domains of
electricity and magnetism that an expert would expect
when taking these assessments. However, the assessments
may not approach certain concepts in identical manners.
For example, the CSEM and BEMA investigate the
relationship between voltage and electric field in an
opposite manner (ΔV from a given E⃗ and vice versa).
Ultimately, from a factor analysis perspective these assess-
ments are effectively identical.
The correlations between the factors shown in Tables V

and VI suggest that the conceptions measured by the
factors are distinct but not independent. This lack of factor
orthogonality is expected due to the presence of a single
predominant eigenvalue within both assessments’ correla-
tions matrices.

VII. FUTURE WORK

Future work will move beyond exploring the manner in
which students are responding to these instruments, and
will focus on a formal validation of these assessments. This
formal validation will utilize (i) confirmatory factor analy-
sis of expert-proposed models, (ii) exploratory and con-
firmatory multitrait item response theory, and (iii) interview
or free response data.
According to Ref. [2], when students take the CSEM as a

pretest they do not appear to be randomly guessing. So, it
would be informative to investigate the factor structure of
pretest data for the BEMA and CSEM to see what questions
group together. Also, further research into the effects that
more homogeneous samples (i.e., algebra versus calculus)
have on the resulting factor structures for each assessment
is suggested.
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