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We present an empirical analysis of students’ use of partial derivatives in the context of problem solving
in upper-division thermodynamics. Task-based individual interviews were conducted with eight middle-
division physics students. The interviews involved finding a partial derivative from information presented
in a table and a contour plot. Using thematic analysis, we classified student problem-solving strategies into
two principal categories: the analytical derivation strategy and the graphical analysis strategy. We
developed a new flowchartlike analysis method: representational transformation. Our analysis of students’
strategies using this method revealed three types of transformation phenomena: translation, consolidation,
and dissociation. Students in this study did not seem to have much difficulty with the concepts underlying
the partial derivative; instead, they seemed to have difficulty with the transformation phenomena,
particularly the consolidation of multiple representations into a single representation.
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I. INTRODUCTION

Mathematics serves not only as a language to express
physical laws and phenomena in clear and conciseways, but
also as a logical pathway for solving problems. The use of
mathematical concepts and procedures is thus inevitable in
physics problem solving.One of the importantmathematical
concepts commonly used in upper-division physics, parti-
cularly in thermodynamics, is the partial derivative. Partial
derivatives are useful for representing and interpreting
thermodynamic processes and properties, such as the speci-
fic heat capacity at constant volume, CV ¼ ð∂U=∂TÞV . An
important set of tools for relating partial derivatives are
various chain rules, which can help express unmeasurable
quantities, like entropy and internal energy, in terms of
quantities that are measurable.
Physics problems can often be solved usingmore than one

strategy and using different sets of mathematical tools and
different representations of information. To solve thermody-
namics problems in multiple representations, students need
deep conceptual understanding and representational fluency
in addition to procedural skills. Although it is possible to
present problems involving partial derivatives using vari-
ous representations—such as symbolic [e.g., ð∂P=∂VÞT �,

geometric (3D surfaces), graphical (contour maps), and
numerical (data)—many traditional thermodynamic prob-
lems exclusively involve symbolic manipulation, also
known as analytical derivation [1]. We define analytical
derivation as a process by which an unknown physical
quantity is expressed in terms of known physical quantities
as an equation using relevant mathematical and physical
knowledge.
A robust understanding of partial derivatives requires

some or all of the following concepts:
(a) Conceptual: A partial derivative represents the rate of

change in a function that depends on two or more
variables due to a change in only one variable while
holding all other independent variables constant. In
thermodynamics, especially, it is important to identify
which variables are independent before taking a partial
derivative.

(b) Procedural: A partial derivative can be evaluated
numerically by computing the ratio of small changes
in the function and the variable holding all other
independent variables constant.

(c) The chain rule: A partial derivative can be expressed in
terms of one or more other partial derivatives using
mathematical identities called chain rules.

(d) Representational: A partial derivative can be repre-
sented in multiple representations, such as symbolic,
graphical, and numerical (tabular). Partial derivatives
can be computed (sometimes approximately) from
information in these various representations.

Previous studies and our own anecdotal evidence reveal
that students often struggle with one or more of the above
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aspects even when they are otherwise able to solve many
traditional homework problems [2–4]. We find that the
students in this study seem to have more difficulties with
the representational aspect than with the other aspects. In this
article, we report results from part of a long-term ongoing
research project focused on the teaching and learning of
partial derivatives [5–14]. One result of this project has been
the development of several activities and pedagogical
approaches aimed at improving the teaching and learning
of various mathematical concepts in thermodynamics,
including partial derivatives [13–19]. In this qualitative study,
our aim is to investigate students’ understanding and appli-
cation of partial derivatives when solving a multirepresenta-
tional problem, with the ultimate goal of informing curricular
development. We note that it is not our intent to compare
the performance of students who have completed different
curricula, but only to explore students’ ideas. We used a
thermodynamics context to investigate students strategies for
solving a multirepresentational partial derivative problem
because of its prevalent application in thermodynamics.
In order to probe students’ understanding of the partial

derivative concept and their abilities to apply chain rules,
we designed a multistage interview protocol. Because the
students in this study experienced instruction that focused
on multiple representations of partial derivatives in physics
courses, we deliberately gave them a challenging multi-
representational problem intended to invoke their reasoning
and problem-solving abilities. Using thematic analysis, we
identified the students’ strategies for solving the problem,
both correct and incorrect [20,21]. Our analysis of the
students’ responses during the four stages of the interview
revealed that even though they did not have much difficulty
with the conceptual and the procedural aspects, they
struggled with the chain rule and the representational
aspects of partial derivatives, which is in line with previous
research by our group [22].
We find that even with extensive classroom experiences

involving multiple representations, students still had diffi-
culty coordinating multiple representations. Although our
initial analysis hinted that students have difficulty with
multiple representations, it did not clearly reveal how the
chosen representations affected students’ problem solving.
To help resolve this emergent question, we developed a new
analysis approach focused on students’ manipulation of
representations.
Because the partial derivative problem given in the

interviews involves multiple representations, our secondary
analysis focused on how students dealt with the given
representations. We call this analysis the representational
transformation (RT) method. The RT method led us to
discover various RT phenomena that are required to solve
thegiven problem, such as translation fromone representation
to another, consolidation of multiple representations, and
dissociation of information into multiple representations.
Using this method, we were able to characterize how the

different solution methods attempted by the students involved
these various phenomena.We consider our analysismethod to
be useful for analyzing how students solve multirepresenta-
tional problems in other contexts. We emphasize, however,
that the main purpose of this study is not to describe our
analytical tool, but to investigate students’ problem-solving
strategies. The primary research question in this study is

(i) What strategies do students use for solving a multi-
representational partial derivative problem in a
thermodynamics context?

However, the following two subsequent research questions
arise as we dig deeper into the students’ strategies:
(ii) How do students deal with the representations

involved in the problem? and
(iii) Which steps in the representational aspects of the

problem are difficult for students?
In the next section, we present a brief review of

related literature on the teaching and learning of partial
derivatives. In Sec. III, we briefly discuss how students at
Oregon State University are taught partial derivatives,
particularly in thermodynamics. In Sec. IV, we describe
our overall research design, including the student popula-
tion and the methodology used to collect and analyze our
data. Section V presents the findings of both our analysis
methods. Finally, in Sec. VI, we discuss our results and give
some implications for both instructors and researchers.

II. RELEVANT LITERATURE

There has not been much research on the teaching
and learning of partial derivatives in mathematics, chem-
istry, or physics education. However, a few studies on
student understanding of the partial derivative in thermo-
dynamics contexts together with considerable anecdotal
experience suggest that conceptual and procedural diffi-
culties are common [2–4].
For example, Bucy, Thompson, and Mountcastle showed

that students have difficulty with partial derivative problems
that involve analytical derivation [3]. They asked upper-
division students to derive ð∂β=∂PÞT þ ð∂κ=∂TÞP ¼ 0,
where β and κ were defined as the isothermal compressibility
and thermal expansivity, respectively. More than half of the
students were unable to derive the expression correctly.
A common incorrect response was that because T and P are
already held constant in κ ¼ − 1

V ð∂V∂PÞT and β ¼ 1
V ð∂V∂TÞP, any

successive derivative of these quantities with respect to T
and P would yield zero. The students interpreted ð∂β=∂PÞT
and ð∂κ=∂TÞP as derivatives of constant quantities.
In a separate study, Thompson, Bucy, and Mountcastle

surveyed students’ interpretations of partial derivative
expressions with and without physics contexts [2]. They
found that although students were able to give correct
interpretations for the meaning of a given partial derivative,
they were unable to translate a given thermodynamic
process into a symbolic expression. They also found that
their students could routinely derive Maxwell relations
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from given thermodynamic equations with little difficulty,
but could not select an appropriate relation relevant to a
given physical situation. Thompson et al. attributed these
difficulties to students’ lack of deep understanding of the
partial derivative concept.
Becker and Towns gave a series of nine questions about

partial derivatives to upper-division chemistry students [4].
The first five questions were aimed at probing students’
conceptual understanding of the mathematical aspects of
the partial derivative, whereas the other four questions were
aimed at probing students’ application of the partial
derivative concept to given physical contexts. They found
that the majority of the participants had a reasonable
understanding of the mathematical aspects of these partial
derivatives. Nearly all the students were also able to give
physical interpretations of the partial derivatives in thermo-
dynamic contexts. However, they found that the students
had difficulty applying their mathematical knowledge to
translate a physical situation into a symbolic expres-
sion, which corroborates the findings from the study of
Thompson et al. [2].
Roundy, Kustusch, andManogue have developed a set of

activities called “Name the Experiment,” intended to focus
students’ attention on the inverse task [13]. Each of these
activities asks students to come up with a physical situation
that can be represented by a given partial derivative.
Kustusch et al. studied experts’ strategies for solving a

partial derivative problem in a thermodynamics context [6].
They conducted task-based interviews with eight experts in
physics, one in mathematics, and one in engineering. The
experts were asked to derive an analytical expression for
ð∂U=∂pÞS from given thermodynamic equations. Kustusch
et al. found that the experts used a broad range of strategies:
manipulating differentials, substituting terms, manipulating
standard thermodynamic equations, (e.g., dU ¼ pdV−
TdS), and setting the differentials of constant variables
to zero (e.g., dS ¼ 0). Although these experts had been
teaching thermodynamics and/or partial derivatives for
several years in their respective fields, some were unable
to derive the correct expression despite invoking much of
the knowledge base relevant to the task. Kustusch et al.’s
study shows that it is not only students but also experts who
are challenged by problems involving partial derivatives in
thermodynamics.
Physics and mathematics problems are often presented in

various representations, such as words, pictures, equations,
and graphs. Furthermore, the importance of these different
representations for understanding derivatives has been
highlighted by Zandieh’s concept image framework [23].
We have extended this framework to include the numerical
representation that has particular relevance in physics [7],
and we are also in the process of extending it to encompass
partial derivatives as well as ordinary derivatives [11].
Kohl and Finkelstein showed a significant difference

in student performance between (almost) isomorphic

problems presented in different representations (math-
ematical, pictorial, graphical, and verbal) [24]. In another
study on the effect of representation on student problem-
solving abilities, Kohl and Finkelstein found that intro-
ductory physics students’ problem-solving strategies varied
with representation as well as with the particular combi-
nation of representation, topic, and student knowledge base
[25]. According to the authors, students who “used fewer
strategies appeared to outperform those who used many.”
Several studies in mathematics education show that stu-
dents often choose algebraic paths over visual paths for
information processing, even when the former ones are
more complex [26,27]. Heid claimed that students usually
expect an algebraic representation when dealing with
functions, and often fail to interpret graphical representa-
tions successfully [28]. Although there have been a few
studies on various aspects of partial derivatives in physics
and mathematics education research, we have not found
any research on multiple-representational problem solving
involving partial derivatives.

III. THERMODYNAMICS AT OREGON
STATE UNIVERSITY

In physics, students generally work with partial deriv-
atives in upper-division physics courses, most commonly in
thermodynamics and electromagnetism. In this section, we
briefly describe the reformed thermodynamics course
called Energy and Entropy taught at Oregon State
University (OSU) and discuss how students deal with
partial derivatives in the course. Students typically take
the Energy and Entropy course during their junior year. It is
a part of the middle-level sequence of physics courses
designed by the Paradigms in Physics group at OSU. This
course addresses common student learning issues in
thermodynamics that have been identified by researchers
and thermodynamics instructors [29].
Prior to taking this course, students will typically have

taken a two-year lower-division calculus sequence which
includes two quarters of multivariable or vector calculus
and one quarter of ordinary differential equations.
A prerequisite middle-division physics course on electricity
and magnetism, taken by all students, covers geometric
combinations of partial derivatives—gradient, divergence,
and curl.
Energy and Entropy is a nontraditional thermodynamics

course that involves numerous active-engagement strate-
gies including small white-board questions, lab activities,
and structured group problem solving [15–17]. The course
includes a week-long mathematics session, during which
students learn the mathematics concepts that are most
relevant to the course. A main feature of this session is
that the mathematical concepts relevant to Energy and
Entropy are introduced using multiple representations
through various student-centered activities. Some activities
have been discussed in detail in prior publications
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[13,18,19,29,30]. The specific activities included during
each term depend on the instructor; below, we describe
those experienced by our interviewees that are directly
relevant to this research.

A. Partial derivative machine activities

The partial derivative machine is a mechanical tool that
allows students to explore a wide variety of mathematics
and physics concepts in a novel and hands-on context. OSU
has used it for content such as numerical integration,
numerical differentiation, exploration of partial derivative
concepts, and development of analogies to cyclic processes
in thermodynamics. A description of the partial derivative
machine has previously been published [7,19].
The partial derivative machine consists of a system of a

spring and strings mounted on a wooden board, as shown in
Fig. 1. The purpose of the string connections is to create a
nonlinear system. The two ends of the spring system are
connected to weight hangers via strings through pulleys on
the right and the left sides of the mount board. The position
of either string (xL and xR) can be measured using movable
flags or fixed by screwing down the string. The weight on
each hanger (FL and FR) can be varied by adding or
removing masses.
During the mathematics session associated with Energy

and Entropy relevant to this study, students were asked to
find the partial derivative ð∂xL=∂FLÞxR using the machine.
The activity is designed to be open ended and exploratory, so
students are guided to collect data, organize it into a table,
and use the data from the table to calculate the desired partial

derivative. In this case, students can changeFL by adding or
removing masses while holding xR fixed, then find the
partial derivative at various points by taking the ratio
ΔxL=ΔFLjxR for sufficiently small changes in the force FL.

B. Surface and contour map activities

In surface and contour map activities, students concep-
tualize various multivariable calculus concepts, such as
definite integrals and partial derivatives, using three-
dimensional transparent plastic surfaces, corresponding
contour maps, and a simple slope measuring tool, designed
by the surfaces project team, as shown in Fig. 2 [31,32].
Participants in this study had experience with these plastic
surfaces in prior upper-level physics courses on electro-
magnetism. In one particular activity, students are asked
to find ð∂h=∂xÞy at a given point on a 3D surface, where h
is the height of the surface and x and y are the spatial
coordinates. Students can find the partial derivative in two
ways: finding the slope (rise over run) at the given point on
the surface and along the direction that holds y constant on
the surface or evaluating the ratio ðΔh=ΔxÞ along the
direction that holds y constant on the matching contour
map. Students used the surfaces during their prior middle-
division physics courses, but they were not directly used
in the Energy and Entropy course, nor were students
specifically asked to explore thermodynamic functions
using them.

IV. METHODS

Like many other departments [33], Oregon State
University’s physics department has as an explicit pro-
grammatic learning outcome that students should
“Demonstrate the ability to translate a physical description
to a mathematical equation, and conversely, explain the
physical meaning of the mathematics, represent key aspects

FIG. 1. The partial derivative machine, a mechanical analogue
of thermodynamic systems used as a pedagogical tool.

FIG. 2. A plastic surface and matching contour map used in a
variety of activities aimed at improving students’ understanding
of multivariable calculus.
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of physics through graphs and diagrams, and use geometric
arguments in problem-solving” [34]. To help with this
learning objective, many of the upper-division faculty
choose to use active-engagement classroom tasks which
may require students to extract information from hands-on
manipulatives and/or present information in multiple rep-
resentations. We also ask students in class to solve
problems that may be open ended or ambiguous in some
way so that they experience a need to translate between a
description of the physical situation and other representa-
tions. As a research group, we believe it is valuable to
interview students using similar tasks. In these cases, our
research intent is to give rich descriptions of the broad
range of strategies that students employ when solving these
problems and identify those places in their problem solving
where they are having trouble, rather than to try to quantify
particular behaviors or compare populations.
We conducted individual semistructured interviews with

eight middle-division physics students who were enrolled
in the Paradigms in Physics series at OSU. The participants
were selected on a voluntary basis without any incentive.
The interviews took place after all relevant instruction.
Each interview lasted for about an hour. All interviews were
videotaped using a digital camcorder.
Because the main purpose of this study is to identify the

nature of the various problem-solving strategies used by
middle division students, we did not select participants
based on ability or grades. Our IRB protocol does not allow
us to collect demographic information. All students were
enrolled in OSU’s Paradigms in Physics program, which, as
described above, is an atypical example of upper-level
physics: students in physics departments with more tradi-
tional methods of upper-division instruction may have
different experiences and abilities than those who partici-
pated in this study. The reader is encouraged to exercise
suitable caution in generalizing the results of this study.

A. Interview task

The interviews were conducted based on a set of
predetermined questions and were structured in four stages.
In the first stage, the participants were given a contour map
of internal energy as a function of temperature and volume,
UðT; VÞ, and a numerical table of temperature, volume, and
constant pressure as shown in Fig. 3. The prompt asked the
students to evaluate the partial derivative ð∂U=∂TÞP at a
single specified point. Except for some minor clarifications,
students were not interrupted or given any other prompts
during this stage. In the second stage, if a student did not
express the required partial derivative in terms of other
computable partial derivatives, they were asked to write
ð∂U=∂TÞP in terms of the other partial derivatives
ð∂U=∂TÞV , ð∂U=∂VÞT , and ð∂V=∂TÞP. In the third stage,
if a student was still unable to derive the expression, the
student was prompted to use a tree diagram to express an
appropriate chain rule. In the final stage, if a student still

was unable to derive the expression, they were provided
with the correct formula and asked to use it to find the
partial derivative.

B. Initial thematic analysis

Once the interviewproblemwas developed,we looked for
all the possible ways in which the problem can be solved
correctly. We found that it can be solved by deriving an
analytical expression for the required partial derivative in
terms of other partial derivatives (i.e., using themultivariable
chain rule). We call this approach the analytical derivation
(AD) method. The AD method can be implemented in two
different ways, using either differentials or a tree diagram,
which have the same mathematical underpinning. To ascer-
tain the existence of other possible methods, we consulted a
knowledge extraction expert [35]. He suggested an alter-
native approach to solve the problem, which we call the
graphical analysis (GA) method. The GA method involves
analyzing the graph, identifying the constant pressure path,
and calculating the indicated partial derivative along that
path. Both the AD andGAmethods to solve the problem are
discussed in Sec. IV D.
All the interview sessions were videotaped and tran-

scribed. We analyzed the audio-video and the written data

FIG. 3. The problem asked in the interviews. In stage 1,
students were given a page with the figure (as shown) and the
prompt was also explained verbally. In stages 2–4, more explicit
prompts were given as shown.
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together using a thematic analysis approach [20,21]. The
initial themes were constructed from the ideal solutions
described above. Each individual student’s strategies were
first identified and compared with other strategies including
the ideal strategies. Then they were grouped in a way that
included all the important features within the data. The goal
of the thematic analysis approach is to produce compelling
explanations of the patterns that emerge and the over-
arching themes that connect them. This approach is more
flexible than other approaches, such as grounded theory
[36] and phenomenological analysis [37], yet equally
powerful in generating meaningful themes and reporting
rich descriptions of observed phenomena.

C. Secondary RT analysis

Though our thematic analysis of the data revealed the
strategies that students pursued, it did not clearly describe
the cause of students’ difficulty with multiple representa-
tions. Our data were rich enough to support a secondary
analysis, which was focused on the following subsidiary
research questions stated earlier: (ii) what are the patterns in
how students transform between representations? and
(iii) where in the process of transformation do students
have difficulty?
For each generalized theme from the primary analysis,

we constructed a diagram depicting the representational
transformation steps involved in the problem-solving proc-
ess. We call this type of diagram a representational trans-
formation (RT) diagram (see, e.g., Fig. 7). Thus the
secondary analysis is a method of describing the subthemes
that arose in the thematic analysis using the RT diagrams.
In an RT diagram, each representation is enclosed in a box
and the transformations between representations are indi-
cated by one or more arrows connecting the boxes. More
about the RT diagrams and various transformations is
presented in Sec. V.

D. Ideal solutions

As indicated in Sec. IV. B, the thematic analysis revealed
two general ways to solve this problem: the AD method
(with two submethods) and the GA method. In this section,
we discuss the ideal solutions to the problem. Both methods
require reading the values of U from the contour map to
find a numerical answer; our analysis focused mostly on
students’ strategies and not on the numerical accuracy of
their answers. We also asked the students to neglect units in
their calculations, so that they would focus mostly on their
strategies.
AD method.—The required partial derivative cannot be

computed directly from the graph or the table. However,
one can express it in terms of other partial derivatives that
are more easily computed from the given representations of
the data as follows:

�∂U
∂T

�
P
¼

�∂U
∂T

�
V
þ
�∂U
∂V

�
T

�∂V
∂T

�
P
: ð1Þ

The equation above is a multivariable chain rule. In the
Paradigms in Physics, students are generally introduced to
two principal methods for deriving a chain rule: the
differentials method (Fig. 4) and the tree diagram method
(Fig. 5). However, it should be noted that other methods
may also be used [10].

1. The differentials submethod

In the differentials method, the dependent variables in
different representations are represented by functional
forms, such as UðT; VÞ from the graph, VðT; PÞ from
the table, and UðT; PÞ from the symbolic expression of the
required partial derivative. Then the total differential for
each variable is found using the differentials version of the
chain rule, as shown in Fig. 4. The differential dV in the
second expression is substituted into dV in the first
expression and then the resulting expression is factored
and compared term by term with the third expression to
“identify” the desired analytical expression for the required
partial derivative.
Once the equation is derived one can approximate the

individual partial derivatives from the graph and the table

FIG. 4. The differentials submethod for deriving the analytical
expression of the desired partial derivative.

FIG. 5. Deriving the partial derivative in terms of other partial
derivatives using the tree diagram submethod.
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and substitute them into the equation to find the required
partial derivative as follows:

�∂U
∂T

�
P
≈
ΔU
ΔT

����
V¼3.05

þ ΔU
ΔV

����
T¼410

ΔV
ΔT

����
P¼10�∂U

∂T
�

P
≈

49 − 35

434 − 388
þ
�

35 − 49

3.78 − 2.58

��
3.25 − 2.86
420 − 400

�
�∂U
∂T

�
P
≈
14

46
þ
�
−14
1.2

��
0.39
20

�
¼ 0.07:

2. The tree diagram submethod

The tree diagram is a mnemonic device that can be used
to encode the information in the differentials method in
diagrammatic form, to express a partial derivative of a
function of several variables in terms of other partial
derivatives using the chain rule. In the given problem,
becauseU is a function of T and V as depicted in the graph,
one can branch out the differential dU into the differentials
dT and dV. Similarly, because V is a function of T and P as
seen in the table, one can branch out dV into dT and dP.
Since T is a function only of itself, the two Ts can be
connected with an arrow as shown in Fig. 5. For each arrow,
there is a partial derivative of the variable at its tail with
respect to the variable at its head with the adjacent variable
at the same horizontal level held constant. To compute a
partial derivative, one adds up the contributions from all the
possible paths that connect the dependent variable at the top
(dU) to the independent variable at the bottom (dT). The
partial derivatives near each arrow are multiplied while
moving from one differential to another along a specific
path. For example, while going from dU to dT along the
right-hand path, ð∂U=∂VÞT is multiplied by ð∂V=∂TÞP,
whereas for the left-hand path, ð∂U=∂TÞV is multiplied to
1. In order to find an expression for the desired partial
derivative, one adds the contributions from all the possible
paths that one can follow to get from dU to dT.
GA method.—Another solution method for this problem

involves use of the table and graph without an explicit chain
rule formula. All the values of temperature and volume in
the given table correspond to the same pressure value
(P ¼ 10 atm.), so it is possible to plot the corresponding
values of T and V on the given graph to create a path along
which the pressure is constant. Then ð∂U=∂TÞP can be
approximated by computing the ratio ΔU=ΔT in the
neighborhood of ðT; VÞ ¼ ð410; 3.05Þ along the constant
pressure path. Figure 6 depicts this path of constant
pressure (the curve connecting the dots). Any pair of close
neighboring values of U and T along the path can be used
to estimate the desired ratio. In the example depicted, the
dots immediately adjacent to ðT; VÞ ¼ ð410; 3.05Þ are
used. It is important to note that this path of constant
pressure is very close to, but not exactly the same as, the

U ¼ 42 line. This strategy was chosen by one of the
knowledge extraction experts.

V. RESEARCH FINDINGS

Our initial analysis revealed that students pursued either
the GA approach or the AD approach. Furthermore, those
who pursued the AD approach used either the differentials
method or the tree diagram method. We found exemplars of
each of the expected solution methods. No new methods
arose in the student data. However, we saw significant
variation in the details of how each method was imple-
mented. Our secondary analysis focused on how students
dealt with the given representations to solve the problem.
In particular, we were interested in students’ trans-

formation of representations during the problem-solving
process. The representations that are discussed in this study
are external representations that are expressed by the
students either verbally or in written form. The partial
derivative problem shown in Fig. 3 contains three principal
representational classes: symbolic, numerical, and graphi-
cal. Although the initial interview prompt involved only the
three representational classes, we also included a fourth
class in our analysis, the diagrammatic representation,
because one of the solution methods of interest involved
drawing a chain rule diagram.
We observed two broad categories of representational

transformations, namely, intraclass transformations and
interclass transformations. In the former, the transforma-
tion occurs between two representations of the same class,
such as from one symbolic expression to another symbolic
expression. In the latter, the transformation occurs between
two representations of different classes, such as from a
numerical representation, e.g., a data table for the values of
P, T, and V, to a symbolic functional form, e.g., VðT; PÞ.
We also observed three common transformation phenom-
ena in students’ strategies, which we called translation,
consolidation, and dissociation.
Translation is a process in which one representation is

transformed into another. It may be either an intraclass or

FIG. 6. One possible method for evaluating the desired partial
derivative using graphical analysis strategy.
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an interclass transformation. For example, transforming
ð∂U=∂TÞP into UðT; PÞ is an intraclass translation and
transforming the values V ¼ 3.05 cm3, T ¼ 410 K, into a
point on a graph is an interclass translation.
Consolidation is a process in which a student transforms

two or more representations into a single representation.
Because each individual representation may carry a specific
piece of information, consolidation involves not only the
transformation of multiple representations into one, but
also the processing of multiple pieces of information
through one or more mathematical operations that may
have varying degrees of sophistication. For example,
consolidation of multiple differential expressions that carry
separate pieces of information into a single partial deriva-
tive equation involves substitutions and comparison of
coefficients, as shown in Fig. 4. This type of conversion
may involve either an intraclass, interclass, or both types of
transformations.
Dissociation is a transformation process in which one

representation is expanded into two or more representa-
tions. For example, expressing ð∂U=∂TÞP as ΔU=ΔT and
the constant pressure constraint is a dissociation of the
partial derivative representation. Similar to consolidation,
this type of conversion may involve either an intraclass, an
interclass, or both types of representations.
In the sections below, we document various analytic

(AD) and graphical (GA) strategies that students used
during the interviews. We also discuss the transformation
phenomena associated with the strategies using a new
analysis flowchart, the RT diagram. In Table I, we give an
overview of the strategies each student used during each
stage of the interview to help the reader stay oriented to the
overall flow of the analysis.

In an RT diagram (see, e.g., Fig. 7), each representation
is enclosed in a box, a translation is designated by a single
arrow pointing from one box to another box, a consolida-
tion is indicated by arrows from multiple boxes pointing
into a single box, and a dissociation is depicted by multiple
arrows generating from one box entering into more than
one boxes. For reference purpose, we use numbers on the
left side of the diagram to show the major transformation
steps involved in a solution. We use a thin arrow and a bold
thick arrow to indicate intraclass and interclass representa-
tions, respectively.

A. AD strategy

In an AD strategy, a correct derivation of the partial
derivative equation is a crucial part of a correct solution.
This strategy was initially pursued by six students during
the first stage of the interviews. Of the six students, none
solved the problem correctly during the first stage. For
these students, the derivation of this equation was the most
challenging aspect of their problem-solving process. These
students made use of various resources, some appropriate,
including the single and multivariable chain rules, and
some inappropriate, including the cyclic chain rule, the
ideal gas law, and the first law of thermodynamics. Not
only were students unable to provide a correct solution, but
they were also unable to arrive at a conclusive result.
During the second and the third stages, everyone pursued
the AD approach because they were provided a well-
defined instruction to derive a specific equation. However,
only five students completed a correct AD and the other
three remained inconclusive or incomplete. In the fourth
stage of the interviews, the students who were unable to
derive the equation were provided the equation. Once the
students had the equation, all of them successfully

TABLE I. The strategies used by each student to solve the partial
derivative problem. Strategies in bold were completed correctly,
and arrows indicate when students switched from one strategy to
another. GA—graphical analysis approach; AD—analytical deri-
vation approach. DF—differentials submethod; TD—tree diagram
submethod; CCR—cyclic chain rule submethod. *—interviewer
asked, “how else would you solve the problem?” or “is there any
alternative way you can solve the problem?” †—after the inter-
viewer asked, “can U be expressed as the function of only two
variables instead of three?” ✓—correctly computed the individual
partial derivatives from the table and the graph.

Student strategy

Student Stage 1 Stage 2 Stage 3 Stage 4

Student 1 GA!� No CCR → DF TD ✓

Student 2 GA → GA!� AD DF → TD TD† ✓

Student 3 AD → GA → GA!� AD AD TD ✓

Student 4 AD → GA CCR → TD � � � ✓

Student 5 AD → GA TD � � � ✓

Student 6 AD → GA → AD TD → DF � � � ✓

Student 7 AD CCR and DF TD ✓

Student 8 AD TD � � � ✓

FIG. 7. An analytical derivation strategy—the differentials
method. This strategy involves translation, consolidation, and
dissociation.
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computed the individual partial derivatives and thus the
required partial derivative using the graph and the data table
together. Below, we present examples of the different ways
students manifested the AD strategy.

1. AD strategy 1: The differentials submethod

This method involves deriving the multivariable chain
rule using total differentials. A correct solution using the
differentials method is discussed in Sec. IV D 1. The
representational transformations involved in this type of
strategy are depicted in Fig. 7.
From the representational transformation perspective, it

is first necessary to translate the desired partial derivative
expression, the data table, and the contour graph into
functional forms as depicted in step 1 of Fig. 7. These
translations involve both intra- and interclass transforma-
tions, as indicated by the fine and bold arrows, respectively.
Next, in step 2 the functional forms are transformed into
total differentials. The next step is to consolidate the
differentials into a single total differential whose coeffi-
cients are combinations of partial derivatives (step 3).
In step 4, the desired partial derivative is “identified” as
the coefficient of the first term of this consolidated total
differential. Then each of the partial derivatives in this
equation must be translated into corresponding ratios of
differences in step 5. The ratio expressions, along with the
graph and the table, are consolidated into the numerical
ratios as shown in step 6 of Fig. 7. To calculate a final
numerical answer, the numerical ratios are multiplied and/
or summed (not shown in the figure).
None of the students who pursued the differentials

method were able to derive the partial derivative expression
correctly. During the first stage, some students correctly
transformed the given functional form UðT; VÞ into the
correct total differential, whereas others invoked an incor-
rect functional form UðT; V; PÞ and transformed it into the
total differential in terms of three independent variables.
However, none transformed the table and the given partial
derivative expressions into their corresponding functional
forms.
During the second stage of the interviews, students who

pursued the differentials method transformed the given
partial derivatives in terms of the corresponding functional
forms either explicitly or implicitly. They also correctly
invoked the corresponding total differentials either directly
from the given partial derivatives or through the functional
forms. Despite invoking all the correct total differentials,
these students were unable to consolidate the differentials.
They considered various cyclic chain rule expressions in
order to consolidate the total differentials without any
success. Below, we present an example of a student who
unsuccessfully attempted the AD strategy during the first
and second stages of the interview.
As shown in Fig. 8, student 4 correctly transformed the

given functional form UðT; VÞ into the total differential.

However, he did not transfer the other representations to the
functional forms. He invoked a cyclic chain rule, but did
not find it useful. He gave the reason as,

Student 4: The reason I don’t think it is useful is because
I want a derivative of U with respect to T holding
pressure constant, but… I know from the total differ-
ential of U, I have derivatives of U with respect to T,
holding volume constant and vice versa and none of that
is in the cyclic chain rule. So, that makes me think it’s
not going to be useful. [Pause] Actually, I guess, I’m
little bit stuck. I real–, I really don’t know where to go. Is
this [referring to UðT; VÞ] saying this graph is a plot of
the internal energy?

After realizing what the level curves represented, he
shifted his focus towards a GA strategy. After attempting
the GA strategy inappropriately, the interviewer gave him
the second prompt, in response towhich he invokedmultiple
cyclic chain rule expressions. Finding him stuck on the
cyclic chain rule expressions, the interviewer asked him if he
could use an alternative approach. In response, he trans-
formed the given partial derivatives into functional forms,
which were then transformed into total differentials as
shown in Fig. 8. Despite the correct transformation, he
failed to consolidate the total differentials into the partial
derivative expression. Instead, he expressed the given partial
derivatives as branch diagrams and then derived the expres-
sion successfully by pursuing the tree diagram submethod.
This is discussed in more detail in the next section.
During the second stage of the interviews, the students

who chose the second AD strategy, the tree diagram
method discussed in the next section, successfully
expressed the given representations into branched func-
tional forms. This indicates that the students’ failure to
transform the given representations into the corresponding
functional forms during the first stage might not be due to
an inability to see or interpret the given representations as
functional forms. It could, instead, be due to an inability to
deal with the multiple representations and the openness of
the prompt.

FIG. 8. Student 4’s AD strategy. (a) During the first stage, he
failed to transform the given representations into functional
forms. (b) In the second stage, he failed to consolidate the
differentials into a single equation.
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2. AD strategy 2: The tree diagram submethod

The tree diagram submethod is an alternative AD
strategy with the same mathematical underpinning as the
differentials submethod, namely, the multivariable chain
rule. An ideal tree diagram solution is presented in Sec. IV
D 2. In this submethod, one first translates the given
representations into functional forms with the dependent
variables branching out into their independent variables as
shown in step 1 of Fig. 9. As in the differentials method,
this conversion involves both intra- and interclass trans-
formations. In the second step, the functional forms are
then consolidated into a single tree diagram representation,
which involves intraclass transformations. The consolida-
tion process involves several ministeps which are not
shown in separate diagrams, such as connecting dependent
and independent variables, writing partial derivatives, and
identifying and adding the paths. These steps are discussed
in detail in Sec. IV D 2. Once the proper tree diagram is
constructed, it is then translated into the partial derivative
equation as seen in step 3. After deriving the chain rule
equation, the rest of the steps are exactly the same as the
corresponding steps in the differentials submethod as
discussed in the previous section.
Students were introduced to the tree diagram submethod

in one of the Paradigms in Physics courses. As seen in
Table I, five students pursued this submethod during the
second stage of the interview and three during the third
stage. Of all eight, five students implemented this method
successfully. However, three were unable to implement it

properly due to difficulty with either the initial translation
of the given representations into branched functional forms
(step 1), the consolidation of the branched functional forms
into the tree diagram (step 2), or the translation of the tree
diagram into the partial derivative equation (step 3). Below,
we discuss two cases that depict the ways in which students
implemented the tree diagram submethod.
As shown in Fig. 10, student 4’s tree diagram aligned

closely with the ideal solution, manifesting almost all the
transformation steps depicted in Fig. 9. Unlike student 4,
student 1 struggled with one of the steps, but eventually
was able to complete his solution with some scaffolding, as
discussed below.
When student 1 was explicitly asked to use the tree

diagram, he said that since he used the tree diagram only a
couple of times in his previous classes, he remembered it
only vaguely. When the interviewer asked him to try it out,
he started by drawing the diagram shown in Fig. 11(a)
based on the correct functional relations UðT; PÞ, UðT; VÞ,
and VðT; PÞ. It was clear that student 1 had no issue with
the initial translation of representations.
After translating each of the given representations into

branch forms that are analogous to the symbolic functional
forms, student 1 identified the partial derivative that he
needed to determine, as well as the partial derivatives that
he could compute from the graph and table. Then student 1
correctly translated the functional relations into the tree
diagram shown in Fig. 11(a). However, he did not at first
connect the variable T on the second and third levels of the
diagram. Student 1 then incorrectly wrote down the
required partial derivative in terms of only the two partial
derivatives corresponding to the right path. The student’s
incomplete tree diagram appears to have led to some

FIG. 9. An AD strategy—the tree diagram submethod.
This strategy involves simple translation, consolidation, and
dissociation.

FIG. 10. Student 4’s tree diagram approach to derive the partial
derivative equation.
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difficulty with the translation process, leaving him with an
incomplete expression for the partial derivative.
At this point, the interviewer recognized the missing step

in student 1’s transformation process and intervened by
pointing at U on the top and T on the bottom of the tree
diagram and said:

Interviewer:How many ways you get from here to here?
Student 1: Oh and then I would also, I need, um, let’s
see… I feel like I should add this one [referring to the
previous expression] plus ð∂U=∂TÞV . Ways to get from
here to here… Yeah, so I’m adding this path to this path,
where this path is this chunk and this path is that chunk.

In the above excerpt, student 1 referred to the two paths
that connect U and T on the top and the bottom of the tree
diagram respectively. In response to the interviewer’s
targeted guidance, student 1 corrected his translation
process and added the missing partial derivative to get
the correct expression as shown in Fig. 11(b). Once he
derived the required expression, he computed the individual
partial derivatives without any issues. Not all the students
who pursued the tree diagram method were able to
complete it, but those who implemented it successfully
were able to derive the required equation more easily than
the differentials method. The tree diagram method seems to
provide an elegant way to organize the variables and
derivatives. Thus this method seems to reduce the effort
required to connect several dependent and independent
variables involved in the analytical derivation easing the
transformation processes.

3. Inappropriate and irrelevant AD strategies

During the first stage of the interviews, students man-
ifested a number of inappropriate and inconclusive AD
strategies. As stated earlier, they invoked various facets of
mathematical and physical knowledge, such as the cyclic
chain rule, differentials, the ideal gas law, and the first law

of thermodynamics. Although four students attempted the
differentials method to different extents, none were able to
implement it correctly. Even after the interviewer’s prompt
to derive an expression for the partial derivative in terms of
other partial derivatives, two students were still unable to
arrive at a correct expression. Below we present an example
of an inappropriate and inconclusive AD strategy. We chose
this example to depict the types of transformation that are
generally seen in these types of AD strategies. We also
show the crucial transformation processes that students
often fail to execute in AD strategies.
In response to the first prompt, student 3 initially wrote

down ð∂U=∂TÞP. Then he looked at the table and realized
that it had the variables P, T, and V. After a momentary
pause, he invoked the ideal gas law PV ¼ NkBT and
continued:

Student 3: Although I don’t think we were given this as
an ideal gas. No. [Shifting focus towards the graph] I
would want to hold the volume constant and just look at
the line [V ¼ 3.05], the change around that point
[T ¼ 410].

Because the problem did not state whether or not the
system was an ideal gas, he did not pursue this strategy
further and shifted focus to the graph. He drew a V ¼ 3.05
line and described how he would find the ratio ΔU=ΔT
along that line. However, he later realized that he needed to
compute the partial derivative along a constant pressure
path and thus that the ratio along the V ¼ 3.05 path would
not be appropriate. He correctly drew the constant pressure
path and computed the required partial derivative.
When the interviewer pressed for an alternative

approach, student 3 invoked two cyclic chain rules.
However, he did not find them useful for solving the
problem. Although the student identified that the problem
did not indicate whether or not the system could be treated
as an ideal gas, he returned to the ideal gas law and
attempted to translate the constraint into a different repre-
sentation so that he could translate it on the graph to find
the constant pressure path. As seen in the right side of
Fig. 12 in steps 1 and 2, student 3 translated the tabular
representation to the symbolic representation, using the
ideal gas law equation, which resulted in a correct but
unhelpful equation V ¼ NkBT=P. As a consequence he did
not find the strategy productive for this purpose and thus
found it pointless to translate the resulting equation into a
graphical representation. In this strategy, student 3 failed to
translate the constraint to the graph because of the
inappropriate intermediate process. Because the student
was unable to conclude his solution, the interviewer moved
on to the second stage of the interview.
In response to the prompt in the second stage, student 3

proposed a few other inappropriate strategies, including
the first law of thermodynamics and Maxwell relations.
The interviewer then asked him to try the tree diagram

FIG. 11. Snapshots of student 1’s tree diagram method. Student
1 added the paths in the tree diagram and the extra term in the PD
expression after the interviewer’s intervention.
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method. However, his inability to translate the given
representations into functional form persisted even after
the interviewer reminded him about the tree diagram.
Student 3 incorrectly branched dU into three total differ-
entials dP, dV, and dP (he meant dT), clearly showing his
failure to realize the functional forms of the given repre-
sentations. He engaged in the method for awhile without
much progress and finally gave it up, confessing that he did
not remember the method. As in the previous situation, he
again failed to analyze the variables in the given repre-
sentations, a crucial step for initiating the tree-diagram
submethod. In this example, student 3 moved back and
forth between several mini strategies invoking both relevant
and irrelevant knowledge bases and transformations of
representations.

4. Summary of AD strategies

Often, thermodynamics problems involving analytical
derivation pose challenges to students even when the
problems involve only algebraic representations. More-
over, the problem presented in this study seemed to pose an
extra layer of complexity to the AD process due to the
presence of multiple representations. Because the problem
contained multiple representations, the AD strategy not
only required coordinating multiple facets of mathematical
concepts and procedures, but also finding links between
various representations. The students who pursued AD
strategies first realized that they could not compute the
required partial derivative directly from the given repre-
sentations, so they needed to find an expression in terms of
other directly computable partial derivatives. In order to
find the correct expression, they needed to carry out a
variety of transformations: identify dependent and inde-
pendent variables, translate them into functional forms,
write differentials, find connections between the expres-
sions, and consolidate them into a single expression.
However, none of the students were able to complete the

transformation process during the first stage of the inter-
view (i.e., without intervention from the interviewer).
Only a few of the students who pursued an AD strategy

manifested some level of difficulty with translation and
dissociation, but the majority showed considerable diffi-
culty with the consolidation process. One possible reason is
that consolidation involves multiple mathematical opera-
tions with varying degrees of sophistication. The consoli-
dation process was difficult in both the differentials and the
tree diagram submethods. Despite successfully translating
the given symbolic, numerical, and graphical representa-
tions into functional forms and further translating them into
differentials, most of the students who chose the differ-
entials method were unable to consolidate them into a
single equation. Most attempted the consolidation process
by invoking and implementing the cyclic chain rule, which
was not productive in the given context. The underlying
difficulty with the consolidation of representations was a
failure to recognize what must be substituted from one
equation into another so that coefficients can be compared
to get the desired equation.
Similarly, the students who chose the tree diagram

method were either unable to consolidate the branched
out functional form into a single tree diagram or to
consolidate the tree diagram into the desired equation.
Their failure to consolidate the representations was mostly
due to an inability to implement the underlying rules of the
tree diagram method. Most students used this method only
at the interviewer’s prompt.
Some students invoked inappropriate or irrelevant phys-

ics and mathematics knowledge, such as the ideal gas law,
the first law of thermodynamics, and the cyclic chain rule
while attempting an analytical derivation. These students
did not perform all the necessary translations; instead, they
unsuccessfully attempted to translate and/or consolidate the
invoked representations. Even though many students were
unable to execute an AD strategy, they had little difficulty
computing the other partial derivatives from the table or the
graph when they were provided the correct partial deriva-
tive equation. This implies that students’ greatest difficulty
was with the multiple representations and transformations
associated with the problem.

B. GA strategy

In the GA strategy, drawing or identifying a correct
constant-pressure path is a crucial part of a correct solution.
As depicted in Table I, a total of six students pursued the
GA strategy during the first stage of the interviews.
Although two students chose this strategy in the beginning,
the other four pursued it after failing with the AD strategy.
Of the four students, two used the strategy correctly and the
other two did not use it correctly. Below we discuss the
three general ways students manifested the GA strategy in
the interviews.

FIG. 12. Student 3’s unproductive analytical derivation strat-
egy. He invoked the ideal gas law and rearranged it.
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1. GA strategy considering the constraint

An ideal GA strategy involves computing the required
partial derivative along a constant pressure path, as depicted in
Fig. 6. The RT diagram for this method is depicted in Fig. 13.
The first step involves consolidating the partial derivative
expression and the given numerical values ofT andV into the
data table. In the second step, the data table and the graph are
consolidated into a constant pressurepath on thegraph and the
partial derivative expression is translated into the ratio
expression. Finally, the ratio and the constant pressure graph
are consolidated into the ratio of numbers.
Four interviewees realized that it is necessary to identify

a path of constant pressure in order to evaluate the required
partial derivative directly from the graph. These students
drew at least two points on the graph to form the path
corresponding to the given constant pressure (P ¼ 10 atm).
Below, we discuss a representative GA strategy considering
the constant pressure path.
Student 1 initially approached the GA method incor-

rectly, but he quickly realized the correct process and
manifested all the steps that are depicted in Fig. 13. Student
1 planned to compute the partial derivative using the table.
In order to find the partial derivative, he first needed to find
ΔU andΔT, but he realized that the table does not have any
information about energy. In addition, he was not initially
sure what each level curve on the contour map is intended
to represent, perhaps because the numbers on the level
curves do not have units. He first translated the given values
of P and T into the table and then translated the corre-
sponding T and V values to the graph. He also realized that
the pressure is constant, but he was not able to consolidate
either the graph or the table with the ratio due to his failure
to interpret what the table and the graph represent. He asked
the interviewer,

Student 1: [Pointing over the level curves] Um, what
are these numbers?
Interviewer: So there is a caption below the figure.
Student 1: Oh internal energy U as a function of T. Oh,
okay, I see… Ah, alright, I understand now.

Once the interviewer pointed out the label of the graph,
the functional formUðT; VÞ, student 1 quickly realized that
the level curves represent the internal energy and immedi-
ately figured out how to find the required partial derivative
by determining the ratio of ΔU and ΔT. Although he
unintentionally wrote the denominator as ΔU, he later
realized that the correct denominator would be ΔT as seen
in Fig. 14(a). He also realized that in order to find the
required partial derivative, it is necessary to use points
along the constant pressure path. To find the path, he
plotted three points corresponding to P ¼ 10 atm in the
neighborhood of T ¼ 410 K as shown in Fig. 14(b). Given
the resolution that he was using for his points on the graph,
he then found that the points lie on U ¼ 42, so he decided
that the change in energy would be 0. The above strategy
manifested by student 1 is close to an ideal GA strategy.
As in the RT diagram shown in Fig. 13, student 1

successfully dissociated the given symbolic representation
of the partial derivative into two new, distinct representa-
tions: the derivative as a ratio of small changes and the path
of constant pressure. Then he consolidated the partial
derivative expression and the given values of P and V
into the table, which was then consolidated with the graph
to produce a constant pressure path. Finally, he consoli-
dated the ratio and the graph into a ratio of numerical values
extracted from the graph as in step 3.

2. GA strategy without considering constraint

Although the problem asks for the partial derivative at a
specific (constant) pressure, three students who pursued the
GA strategy, including student 1 and student 3 in the
previous examples, did not initially utilize the constant
pressure condition while solving the problem. However,
they later realized their error and corrected their strategy.
Here, we present the strategy of student 2, who initially
failed to realize that it was necessary to choose a path of
constant pressure.
In response to the given problem, student 2 first wrote

∂U=∂TjP and then marked three dots, one at U ¼ 42

corresponding to ðT; VÞ ¼ ð410; 3.05Þ and the other two in
the neighborhood of that point along a horizontal line. HeFIG. 13. The RT diagram for an ideal GA strategy.

FIG. 14. Student 1’s GA strategy for solving the problem. The
dashed oval has been added to highlight the path of constant
pressure that student 1 identified.
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found the ratio of ΔU and ΔT using the two neighboring
points. However, student 2 soon realized that the partial
derivative he found above was not a correct one because the
path he chose was not a constant pressure path.

Student 2: [Referring to the information given in the
problem] I’m not looking at this right. This right here is
not necessarily labeled ri-[ght] or how I would expect it
to be labeled.

Student 2 realized that he was not interpreting the
problem correctly, so he discarded the above work and
corrected his strategy just as student 1 did in the previous
example. He recognized that he needed to find the partial
derivative along a constant pressure path, thus he now
plotted ðT; VÞ ¼ ð410; 3.05Þ and then two other points in
its neighborhood from the table. Student 2 also realized that
since all the points on the table were at P ¼ 10 atm, the
curve passing through the three points he just drew formed
a constant pressure path. As with student 1, student 2 found
that the constraint path overlapped the contour U ¼ 42, so
he determinedΔU and thus the partial derivative to be zero.
Although a few students needed intervention from the
interviewer to recognize the constraint, it was a sponta-
neous realization in student 2’s case.
As shown in Fig. 15, student 2 first matched the given

values of temperature and pressure on the table. Then he
translated the corresponding values of temperature and
volume on the graph. Finally, he consolidated the graph and
the ratio. Although he translated the given partial derivative
into a ratio, he failed to dissociate it into two separate
entities and thus overlooked the constraint. However, once
he realized the constant pressure constraint, the trans-
formation paths were similar to the one depicted in Fig. 13.

3. Inappropriate GA strategies

Incorrect graphical analysis strategies included students
using inappropriate graphical features, such as the slope of
a contour line, to evaluate ð∂U=∂TÞP. For example, in
response to the initial prompt, student 4 drew a vertical line
corresponding to T ¼ 410 K and a horizontal line corre-
sponding to V ¼ 3.25 cm3, then looked for the point at
which the lines intersected. When the interviewer asked
him if that would give the required partial derivative, he
responded

Student 4: I guess, I put that because I don’t really,
don’t understand the question and I didn’t know what to
do and so I just thought maybe the intersection is the
answer but …

Student 4 did not know what exactly he was supposed to
do, so he just applied the given information (the values of
T and V) to draw the horizontal and vertical lines on the
graph. He admitted that he did not know how to find the
required partial derivative because unlike a traditional

thermodynamics problem there was no algebraic function
given in the problem. When the interviewer pointed out that
the number he found was not actually a partial derivative,
he added.

Student 4: My first instinct was… I need an answer for
this problem… Um, so I just guessed, it was the
intersection of the lines. But now I’m thinking, because
it’s a derivative and pressure isn’t on this graph that it
could just be the slope of the line. So now, ah, I’m, I’m,
drawing a line tangent to that point and I’m gonna try to
get a slope.

Student 4 was unable to come up with a reasonable GA
procedure to find the partial derivative. He inappropriately
evaluated the slope of a curve and thus failed to distinguish
between the derivative of U with respect to T and the
derivative ofV with respect toT. He correctly interpreted that
the partial derivative should involve constant pressure, but he
did not use the idea while solving with the problem. Student
4’s strategy resembles student 2’s strategy depicted in Fig. 15
from theRT perspective, but there is amajor difference in the
consolidation process between the two approaches. Despite
his failure to consider the constraint, student 2 correctly
consolidated the graph and found a ratio by computing the
partial derivative along the constant volume line. In contrast,
student 4 inappropriately consolidated thegraph and the ratio
by computing the slope of the tangent line to a curve, as is
common when computing a derivative of a function of one
variable from a graph.

4. Summary of GA strategies

The students who provided a correct solution using the
GA strategy dissociated the given partial derivative repre-
sentation into the ratio of changes and the constraint. They
consolidated the constraint and the table into the graphical
representation by drawing the constant pressure curve.
Finally, the graph and the ratio of changes were consoli-
dated into a numerical ratio. The GA approach seemed

FIG. 15. GA strategy without considering constraint.
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easier to implement than the AD approach. Students were
more able to recognize the connections between the given
representations and the use of the given constraint. Finding
such connections and recognizing the constraint often
involved one or more transformation processes. When
students failed to execute one or more transformations,
that resulted in an incomplete or inappropriate solution as
documented in the case of GA strategy without considering
the constraint.
Although an ideal GA strategy comprises all three

transformation phenomena (as the AD strategy does), all
the given representations are consolidated into a graphical
representation rather than an algebraic one. For the students
who failed to execute the strategy correctly, the most
challenging aspect was the consolidation of the symbolic
and the numerical representations of the constant pressure
constraint into the graphical representation. Although some
students failed to dissociate the given partial derivative,
they nevertheless were able to translate the numerical
representations into the graphical representation—that is,
they were able to draw a line of constant volume on the
graph corresponding to the given numerical value of V. In
addition, they did not seem to have any difficulty comput-
ing the partial derivatives along the chosen path. This
further implies that the difficulty was not with the partial
derivative concept, but with the underlying representational
transformation.

VI. CONCLUSIONS AND IMPLICATIONS

In this study, we investigated students’ strategies for and
difficulty with solving a partial derivative problem with a
thermodynamics context presented in multiple representa-
tions. Students’overall strategies fell into two broad catego-
ries: analytical derivation and graphical analysis. In the AD
strategy, students derived an expression for the required
partial derivative in terms of other partial derivatives using
either differentials or a tree diagram.To complete the solution
using this strategy, students first identified the functional
form of the given partial derivative, i.e.,UðT; PÞ, recognized
which chain rule to use, derived the required expression, and
finally computed the individual partial derivatives using the
graph and the table to determine the numerical value of the
required partial derivative. The GA strategy has fewer steps
than the AD strategy: students plotted the constant pressure
path on the given graph and then evaluated the required
partial derivative graphically. The most common obstacle
students hadwith the lattermethodwas that theywere unable
to realize that they first needed to plot a constant pressure path
on the graph and that with the former method was their
inability to implement the chain rule correctly. The identi-
fication of the two strategies and the difficulty with each
strategy together answer our primary research question. We
also note that students occasionally switched between the
ADandGAstrategies, especiallywhen they did not appear to
be making progress with one strategy (see Table I). Once the

students got stuck with the AD strategy, they looked for
alternate way to connect the representations, for which they
chose the GA strategy.
In Sec. I, we described several concepts that are required

to solve advanced partial derivative problems. Comparing
the responses of our interviewees to this set of concepts
suggests they had little difficulty with the procedural
aspects of the partial derivative and only some difficulty
with the conceptual aspects, as evidenced by the fact that
the majority of students successfully computed the indi-
vidual partial derivatives once they had the final expression
from a chain rule or the graph. Instead, the most difficult
aspects for our students were in making connections
between the given representations and transforming them
from one class to another class. In particular, students had
substantially more difficulty deriving a chain rule when the
prompt was more open and involved multiple representa-
tions, as in stage 1 of the interviews, than when it was direct
and involved only the symbolic representation, as in stages
2 and 3 of the interviews. The students who failed to solve
the problem either got stuck or switched to other strategies
involving different representational transformations, as in
student 3’s case, discussed in Sec. VA. These findings
inspired us to analyze the students’ strategies using the
perspective of representational transformation (RT) focus-
ing mostly on how students transitioned between classes
of representations—symbolic, numerical, graphical, and
diagrammatic—while solving the problem.
We analyzed students’ strategies based on the representa-

tional transformation perspective to answer the secondary
research questions. Our analysis revealed that students’
inability to solve the problem was primarily due to an
inability to deal with various aspects of multiple representa-
tions. Although there are a number of studies on the role of
multiple representations in problem-solving in PER and
RUME, only a few of them seem to have focused specifically
on representational transformation phenomena in student
strategies. There also seems to be a lack of specific methods
for analyzing the transformation phenomena. Thus, we have
developed a new type of flow chart to depict the trans-
formations that arose in the process of problem solving,
which we called representational transformation diagrams.
We consider RT diagrams to be an elegant way to show the
steps involved in a problem-solving process across various
contexts from a representational transformation perspective.
The transitions were either within or between the classes,

which we called intraclass transformation and interclass
transformations, respectively. We found three distinct ways
that students transformed the given representations:
translation, consolidation, and dissociation. Translation is
a one-to-one transformation of representations, consolida-
tion involves combining two or more representations into a
single representation, and dissociation involves breaking a
single representation into more than one representation.
The representational transformation phenomena answer our
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second research question about the ways students deal with
the representations involved in the problem.
We found the answer to our third research question by

comparing the RT diagrams for incorrect or incomplete
solutions to the RT diagram for an ideal solution. The
comparisons reveal that the type of transformation that
proved most difficult for many students was the consoli-
dation process. Student difficulty with the consolidation
process was often due to an inability to utilize the cues
presented in the problem or to invoke the mathematical
tools necessary to connect different representations.
There has been a strong emphasis on using multiple

representations in conceptual understanding and problem-
solving in STEM and other fields [24,25,38,39]. Previous
studies have shown that students often have difficulty with
various aspects of multiple representations including the
translation process [2–4,24,25]. Studies on multiple rep-
resentations in K-12 and lower-division contexts have
documented translations between and within different
representational classes, which we referred to as interclass
and intraclass transformations [38,40]. However, prior
research has not discussed either consolidation or dissoci-
ation. We think that consolidation and dissociation are
particularly important in middle- and upper-division prob-
lem solving. The participants in this study, who were
middle-division students, did not seem to have as much
trouble with simple translation as with consolidation and
dissociation.
We found that students often responded effectively to

minimal but targeted scaffolding questions, including the
prompt in the second and the third phases of the interviews,
which specified a major intermediate step in solving the
problem analytically. This suggests that instructors might
help students with complicated consolidation and dissoci-
ation processes by guiding them to identify goals such as
the objective of a consolidation step in a procedure. Making
students consciously aware of the three different types of

representational transformation processes may therefore
help them solve problems.
In this study, we implemented the RT method to analyze

student strategies for solving one problem only. The
method was essential to our analysis from the perspective
of multiple representations, which was necessary to answer
our research questions. However, we suggest that the
examples we presented do not show everything that might
be possible with this analysis method. We intend to utilize
this method in our future research as well as in our
instruction. We also anticipate that other researchers may
find this method useful for analyzing student strategies for
solving multirepresentation problems in other mathemati-
cal contexts.
We suggest that RT diagrams might be useful not only

for analyzing data, but also for instructional purposes. For
example, individual instructors might construct ideal RT
diagrams for all possible solutions of in-class or homework
problems. Such diagrams could then be used to identify and
prepare for the particular transformations that students will
end up considering. This knowledge would have value both
as a means for preparing to interact with students and when
identifying learning goals. Similarly, curriculum developers
might benefit from RT diagrams when analyzing classroom
tasks, both for describing ideal solutions and for assessing
how students actually solve problems.
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