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The use of machine learning and data mining techniques across many disciplines has exploded in recent
years with the field of educational data mining growing significantly in the past 15 years. In this study,
random forest and logistic regression models were used to construct early warning models of student
success in introductory calculus-based mechanics (Physics 1) and electricity and magnetism (Physics 2)
courses at a large eastern land-grant university. By combining in-class variables such as homework grades
with institutional variables such as cumulative GPA, we can predict if a student will receive less than a “B”
in the course with 73% accuracy in Physics 1 and 81% accuracy in Physics 2 with only data available in the
first week of class using logistic regression models. The institutional variables were critical for high
accuracy in the first four weeks of the semester. In-class variables became more important only after the
first in-semester examination was administered. The student’s cumulative college GPAwas consistently the
most important institutional variable. Homework grade became the most important in-class variable after
the first week and consistently increased in importance as the semester progressed; homework grade
became more important than cumulative GPA after the first in-semester examination. Demographic
variables including gender, race or ethnicity, and first generation status were not important variables for
predicting course grade.
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I. INTRODUCTION

Workforce demand for science, technology, engineering,
and mathematics (STEM) graduates has grown significantly
over the past decade, with the number of jobs requiring at
least a STEM bachelor’s degree growing to comprise around
20% of the workforce [1]. This growth in the STEM job
sector has put significant pressure on universities to increase
the number of students who graduate with STEM degrees.
In their 2012 report, the President’s Council of Advisors on
Science and Technology [2] emphasized the need to improve
retention of STEM students to avoid a projected 1 million
STEM job candidate shortfall over the next decade. Despite
the recognized importance of improving STEM graduation
rates, only 40% of STEMmajors successfully complete their
degrees [2].
In a 2014 report on STEM attrition, the U.S. Department

of Education found a wide range of attrition (defined as
leaving a degree or university) rates across STEM disciplines
ranging from a high of 59% for computer or information
science majors to a low of 38% for mathematics majors, with

an average rate of 48% [3]. The attrition rate was much lower
than that of students in humanities, health science, and
education, whose attrition rates range from 56% to 62% and
is comparable to those of students in business and social or
behavioral science [3]. While STEM majors are retained at a
higher rate than students in other disciplines, the projected
STEM degree shortfall suggests additional steps should be
taken to retain more STEM majors.
Improving STEM degree retention is not a new problem

for educational research with many studies exploring this
issue [3–10]. These studies have often found similar results
showing measures of prior preparation such as high school
GPA (HSGPA) and ACTor SAT scores coupled with student
performance once arriving at college measured by successful
credit completion and college GPA (CGPA) produce sta-
tistically significant models of persistence.
Introductory physics courses along with introductory

mathematics and chemistry courses form key early college
hurdles for many STEM majors. While many factors affect
the retention of students to STEM degrees, academic success
in college classes must be viewed as of central importance to
college completion. As such, promoting student success in
core STEM courses may be one path to improving STEM
retention. In the last 20 years, machine learning has been
used to provide new insights into retention [11–15]. Machine
learning techniques have only recently begun to be imple-
mented in physics education research (PER) to understand
the retention of physics students [16]. At the same time,
the use of reformed instruction as an effective means of
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decreasing failure rates in STEM courses has grown [17].
Docktor and Mestre provide a thorough overview of the
use of reformed instruction in PER in their 2014 synthesis of
the field [18]. Studies of the effect of reformed instruction
have usually focused on either course grade [19–21] and/or
student gains on conceptual instruments [20,22–24] as
measures of student success. This work develops models
for the early semester identification of students at risk of
receiving a grade of “C” or lower in introductory physics;
these models could be used to direct reformed instructional
interventions toward at-risk students, thus further improving
student success and retention.

A. Research questions

This study seeks to answer the following research
questions:
RQ1: How well can introductory physics course grades

be predicted early in the semester?
RQ2: What variables are most important for the accurate

prediction of physics course grades early in the semester?

B. Educational data mining

Educational data mining (EDM) is a field that uses
statistical, machine learning, and data mining techniques to
understand large systems of educational data. Unlike data
mining in other fields, such as business or genetics, EDM
encompasses predictive modeling and integration with
education research techniques such as psychometric mod-
eling [15]. In 2014, Peña-Ayala reviewed 240 EDM studies
published between 2010 and 2013; 88% used probability,
machine learning, and statistics as their analysis method
[25]. Studies evaluating student performance, whether in-
class or overall, comprised 21% of 240 studies and were the
second most common type of study. The growth in EDM
has led to many universities adopting systems utilizing
these methods to improve their course outcomes and in-
term retention of STEM students [26].
A number of attempts have been made to classify the

methods used in EDM. In 2008, Romero et al. [27] identified
logistic regression, decision trees, random forests, neural
networks, naive Bayes, support vector machines, and
K-nearest neighbor algorithms as the most commonly
applied EDM methods. In 2014, Peña-Ayala [25] examined
themethods used in EDM. Classification was used in 42% of
the studies while either clustering or regression were used in
an additional 42% of studies. Decision trees and logistic
regression were used in 18% of works with only Bayes
theorem analysis employed more frequently in 20% of the
studies. A review by Shahiri et al. of the prediction of
students’ academic performance using data mining tech-
niques [28] compared 5 major algorithms applied in 30
studies published between 2002 and 2015: decision trees,
neural networks, naive Bayes, K-nearest neighbors, and
support vector machines. Neural networks and decision trees
were the most commonly used techniques. In both reviews,

most studies focused on overall academic performance and
not on course-level performance.
The methods used in the current study, decision trees,

random forests (a method using many decision trees), and
logistic regression, will be discussed in detail in Sec. II.
Additional information on other machine learning tech-
niques may be found in a number of machine learning texts
[29,30].

C. EDM and grade prediction

There have been several studies in EDM that produced
models that predicted student grades in undergraduate
courses. Huang and Fang [31] used linear regression, multi-
layer perceptron network modeling, radial basis function
network modeling, and support vector machines to predict
performance on the final exam in a high-enrollment core
engineering course. This study usedCGPA, performance in 4
prerequisite courses (Statics, Calculus 1, Calculus 2, and
Physics 1), and scores on the three in-semester exams as
independent variables and found minimal differences in the
accuracy of models constructed using different algorithms.
They recommended using ordinary least squares regression
with onlyCGPAas an independent variable to predict average
class performance. However, for individual student grade
prediction, they found support vector machines with CGPA,
all four prerequisite course grades, and the results of the first
in-class examination as independent variables produced the
best model. Marbouti, Diefes-Dux, and Madhavan [32] built
predictive models with variables measured in the class using
six different algorithms: logistic regression, support vector
machines, decision trees, multilayer perceptron networks,
naive Bayes, K-nearest neighbors, and a final ensemble
model consisting of the three most successful individual
models. Their study predicted course performance at week 5
of the semester when homework, quiz, and test 1 scores were
available; defined success as earning a grade of C or better;
and studied a first-year engineering course. They found
logistic regression and an ensemblemodel combining support
vector machines,K-nearest neighbors, and naive Bayes to be
superior with a prediction accuracy of 94% for logistic
regression and 92% for the ensemble model. In 2010,
Macfadyen and Dawson [33] mined data from the course
learning management system (LMS) of an undergraduate
biology course to identify 15 variables with significant
correlation to final grade. Logistic regression models pre-
dicted students at risk of failure (final grade of less than
60%) with 70% accuracy and correctly identified students
that failed the course (final grade less than 50%) with 81%
accuracy.

II. METHODS

A. Context for research

This study was performed in the introductory physics
classes at a large eastern land-grant university serving
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approximately 30 000 students. The undergraduate popu-
lation had ACT scores ranging from 21 to 26 (25th to 75th
percentile) [34]. The overall undergraduate demographics
were 79% White, 4% Hispanic, 7% international, 4%
African American, 4% Hispanic, 4% students reporting
with two or more races, and other groups each with 1% or
less. The sample was primarily male (81%) [34].
Data were collected from both Physics 1 (introductory

calculus-based mechanics) and Physics 2 (introductory
calculus-based electricity and magnetism). These courses
are required for most physical science and engineering
majors at the institution. The structure of the courses was
similar, but not identical, for the period studied. Each
course was led by a single experienced instructor who
implemented research-based instructional practices for the
period studied. One to two additional lecture instructors
worked closely with the course lead each semester and
replicated his or her instructional practices. The courses
met for three 50-min lectures and one 3-h laboratory each
week. Each lecture used Peer Instruction with clickers [35]
to engage students in conceptual learning; the grades for the
student’s clicker responses were based on participation and
are called lecture quiz grades. Lab sessions featured a
mixture of inquiry-based hands-on activities, conceptual
white boarding activities, group problem solving, and
traditional experiments. Students received a grade for
completing the laboratory (LabGrade) and also completed
a graded quiz (LabQuiz). Lab and lab quiz grades dis-
aggregated by class and week were only available in
Physics 2. Both classes assigned homework each week
which was a mix of conceptual and quantitative problems
and was graded to provide the variable HwkGrade. Physics
1 used an online homework system that assigned problems
from a popular textbook and allowed multiple attempts for
each problem. Physics 2 assigned problems to be worked
on paper which were graded by teaching assistants; the
problems were written specifically for the class. All grade
variables were cumulative; for example, the week 4 home-
work grade was the student’s average homework grade in
the first 4 weeks of class. To measure changes in conceptual
understanding, Physics 1 administered the Force and
Motion Conceptual Evaluation (FMCE) [36] as a pretest
and post-test; Physics 2 administered the Conceptual
Survey of Electricity and Magnetism (CSEM) [37] as a
pretest and post-test. Only the pretest scores were used in
this study.

B. Sample

The Physics 1 sample was collected over four semesters
from fall 2015 to spring 2017 in which time 1588 students
enrolled in the course. For both classes, for students taking
the course more than once, only their final attempt was
retained; any records with missing data were also removed.
For Physics 1, this left 915 complete records that form the
Physics 1 sample for this study. The Physics 2 sample was

collected from fall 2015 to spring 2017 in which time 1282
students enrolled. The data were filtered in the same
manner leaving 805 complete records. Most students were
removed for either missing pretest scores, missing HSGPA,
or missing ACT or SAT scores. Most Physics 2 students
have also taken Physics 1; the restriction to complete
records removed students who did not have a grade for
Physics 1.

C. Variables

The variables used in this study were drawn from
institutional records and from variables collected within
the physics classes and are summarized in Table I. The in-
class variables were described in Sec. II A. The institutional
variables are defined in Table I. A few variables require
additional explanation. The variable MathEntry measures
the first mathematics class the student enrolled in at the
institution. It has three levels: “Calculus” for students who
first enrolled in Calculus 1 or a more advanced mathematics
class, “Algebra” for students who first enrolled in College
Algebra, and “Pre-Calculus” for students who first enrolled
in a class between College Algebra and Calculus 1. The
variable STEMHrs captures the number of credit hours of
STEM classes completed before the start of the course
modeled. STEM classes include mathematics, biology,
chemistry, engineering, and physics classes.

D. Classification models

Classification models attempt to predict categorical out-
comes. This study predicts the dichotomous outcomes
“P1Grade” and “P2Grade” where students who received
an “A” or “B” in Physics 1 were coded as P1Grade ¼ 1
while students who received a lower grade were coded as
P1Grade ¼ 0. Similar coding was used for Physics 2 to
produce P2Grade. The models constructed “classify” stu-
dents into one of these two categories for each course. For
example, the logistic regression classifier predicts the prob-
ability that a student will be measured with P1Grade ¼ 1.
If this probability is greater than 0.5, then the classification
model assigns that student to the class P1Grade ¼ 1 other-
wise the student is assigned to the class P1Grade ¼ 0.
To construct a classification model, the full dataset is

split into two subsets: the training and test datasets. This is
done by randomly sampling the full dataset without
replacement. The training dataset is used to construct or
“train” the models, while the test dataset is reserved for the
purpose of evaluating the model performance when clas-
sifying “new” data. As much data as possible should be
allocated to the training dataset to ensure the creation of
the most accurate model while retaining sufficient data in
the test dataset for accurate characterization of model
performance. For this work, 62% of the data were allocated
to the training dataset and 38% to the test dataset; splits as
low as 50% test, 50% training have been shown to provide
accurate results [38]. This choice was made to retain
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approximately 300 students in the test dataset for each
class. This choice was fairly arbitrary and many other
criteria for selecting the test dataset size could have been
made and should yield similar results.
After a model is constructed, it is then used to make

predictions of the outcomes of the test dataset producing a
matrix containing the frequency of prediction outcomes
called the confusion matrix [39] as shown in Table II. The
confusion matrix compares the predicted outcome to the
actual outcome for the test dataset. The on-diagonal terms

represent correct predictions and off-diagonal terms incor-
rect predictions. The sum of the entries in the confusion
matrix is the size of the test dataset, Ntest.
Many different statistics characterizing prediction accu-

racy can be computed from the confusion matrix; in this
work model accuracy, the fraction of correct predictions
given by

accuracy ¼ TrueNeg:þ True Pos:
Ntest

: ð1Þ

Accuracy can be misleading because models with
substantial accuracy can be constructed by pure guessing.
For example, if the sample has an outcome equally
balanced between two classes, a classification model
which assigns all individuals to the same class will have
an accuracy of 50%. To compensate for this effect,

TABLE I. Full list of both institutional and in-class variables. An X in either the Physics 1 or Physics 2 columns denotes that the
variable was available for that dataset. True is abbreviated T, false, F.

Institutional variables

Variable Physics 1 Physics 2 Description

Gender × × Gender (Men ¼ 1 Women ¼ 0).
InState × × Student is resident of the state where the institution is located (T ¼ 1, F ¼ 0).
URM × × Student does not identify as White non-Hispanic (T ¼ 1, F ¼ 0).
MathEntry × × First math class taken (Calculus, Pre-Calculus, and Algebra).
FirstFall × × Started in a fall semester (T ¼ 1, F ¼ 0).
FirstGen × × Student is a first generation college student (T ¼ 1, F ¼ 0).
CmpPct × × Percentage of hours attempted that were completed at the start of course.
CGPA × × College GPA at start of course.
STEMHrs × × Number of STEM (Math, Bio, Chem, Eng, Phys) credit hours completed at start of course.
HrsCmp × × Total credits hours earned at start of course.
HrsEnroll × × Total credits hours enrolled at start of course.
P1Grade × (Dependent Variable) Grade for last Physics 1 attempt (A or B ¼ 1, CDFW ¼ 0).
P1Atmp × Physics 1 attempted more than once (T ¼ 1, F ¼ 0).
P2Grade × (Dependent Variable) Grade for last Physics 2 attempt (A or B ¼ 1, CDFW ¼ 0).
HSGPA × × High school GPA.
ACTM × × ACT or SAT mathematics percentile.
ACTV × × ACT or SAT verbal percentile.
Cal1Grade × × Grade for last Calculus 1 attempt (A or B ¼ 1, CDFW ¼ 0).
Cal1Atmp × × Calculus 1 was attempted more than once (T ¼ 1, F ¼ 0).
APCount × × Number of courses where AP credit was received.
APCredit × × Number of credits hours received for AP tests.
TransCnt × × Number of courses where transfer credit was received.
TransHrs × × Number of credits hours received for transfer courses.

In-class variables

Variable Physics 1 Physics 2 Description

FMCEPre × Percentage score on the FMCE pretest.
Test 1 × × Percentage score on the first exam of the semester.
CSEMPre × Percentage score on the CSEM pretest.
LecQuiz × × Average grade on the lecture quiz by each week.
LabQuiz × Average grade on the lab quizzes by each week.
HwkGrade × × Average grade on the homework by each week.
LabGrade × Average grade for the laboratory by each week.

TABLE II. Confusion matrix.

Actual negative Actual positive

Predicted negative True negative False negative
Predicted positive False positive True positive
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Cohen’s κ was developed to provide a measure of
accuracy normalized to the baseline accuracy of random
chance [40]. Cohen’s κ is given by

κ ¼ p0 − pe

1 − pe
¼ 1 −

1 − p0

1 − pe
; ð2Þ

where p0 is the model accuracy and pe is the probability
of randomly guessing the correct classification. Model fit
is classified as follows: less than 0.2 as poor agreement,
0.2 to 0.4 as fair agreement, 0.4 to 0.6 as moderate
agreement, 0.6 to 0.8 as good agreement, and 0.8 to 1.0 as
excellent agreement [41].
The final method of characterizing the quality of the

models constructed in this paper is the receive operating
characteristic (ROC) curve, a technique originally devel-
oped to determine if radar receivers were accurately
detecting aircraft. The ROC curve is constructed by plotting
the true positive rate against the false positive rate for
all values of the decision threshold from 0 to 1. Each
classification model produces a value for the probability of
each outcome. The decision threshold is the probability
where a particular outcome would be selected; it is not
always optimal to select at a threshold of 0.5. The ROC
curve provides a measure of the model’s discrimination
between the outcomes as measured by the area under the
curve (AUC). In a model that is no better than guessing,
the AUC will be 0.5 and the ROC curve will be a straight
line. A model with perfect discrimination characteristics
would have an AUC of 1.0 [39,42]. Hosmer et al. [42]
suggest an AUC threshold of 0.80 for excellent discrimi-
nation. Examples of ROC curves are presented in the
Supplemental Material [43].
A baseline model was created for each sample by

predicting all students in the test dataset would have the
most common outcome in the training data set. For example,
in Physics 1 63% of the students received an A or B, the
baseline models classifies all students as students who will
receive an A or B producing a classification that is 63%
accurate, but represents pure guessing.

E. Classification methods

Two statistical techniques were used in the prediction of
student grades in this paper: logistic regression and random
forests. Several different classification methods were exam-
ined: logistic regression, K-nearest neighbors, classifica-
tion and regression trees, naive Bayes, support vector
machines, and random forests. Logistic regression and
random forests were ultimately selected. Logistic regres-
sion was often selected as the best model in the literature
and random forests represent one of the most commonly
used techniques in EDM; each has its own unique advan-
tages and disadvantages which complement each other.
These will become evident in the following sections.

1. Logistic regression

Logistic regression represents one of the most widely
used classification methods. In logistic regression, the
probability PðY ¼ 1Þ of a binary dependent variable
Y ¼ 0, 1 is predicated by a set of independent variables
Xi. The probability, which is restricted to the range [0,1],
is first projected on the range [0,∞] by calculating the
odds; odds ¼ P=ð1 − PÞ. The odds are projected into an
unbounded range by taking the logarithm. Logistic regres-
sion, then, employs methods related to ordinary linear
regression to minimize the error by selecting an optimal set
of regression coefficients, βi:

ln

�
PðY ¼ 1Þ

1 − PðY ¼ 1Þ
�

¼ β0 þ
Xk
i¼1

βiXi; ð3Þ

where k is the number of independent predictor variables.
The odds of Y ¼ 1 is found by exponentiating Eq. (3). If all
other variables are constant, a unit increase in X1 multiplies
the odds by eβ1, the odds ratio. We report the odds ratio
instead of the regression coefficient, βi. The underlying
statistical assumptions of logistic regression are different
than ordinary least squares and models are estimated using
maximum likelihood techniques.
The odds ratio for each coefficient multiplies the base

odds, the odds when all coefficients except the intercept
are zero. If the odds ratio is above one, then the odds ratio
minus one multiplied by 100 is equal to the percentage
increase in the odds. For example, if the odds ratio eβ1 ¼
1.4 then an increase in X1 by one unit increases the odds
of receiving an A or B by 40%. If the odds ratio is less than
1, the odds ratio is inverted before subtracting 1 and
multiplying by 100 to yield the percentage decrease in
odds. For example, if eβ1 ¼ 0.25, then an increase in X1

of one unit decreases the odds of receiving an A or B by
ð1=0.25 − 1Þ × 100% ¼ 300% [29].
Logistic regression requires certain assumptions to be met

to produce valid results. The dependent variable or outcome
must follow a binomial distribution [42]. Outcomes must
also be statistically independent and the continuous inde-
pendent variables must be related linearly to the log odds.
Logistic regression is not robust against collinearity in the
independent variables and as with linear regression, models
with high multicollinearity may be problematic.
For each logistic regression model or logistic model,

each variable was fit independently in a univariate logistic
model. The fits for each were evaluated with a very liberal
screening criterion, retaining variables with p value of 0.20
to 0.25 to filter out the least important variables. Once the
variables meeting the screening criterion were selected, a
logistic model was constructed using all the selected
variables and then pruned stepwise to the most parsimo-
nious model by retaining variables with p < 0.05 [42].
This model is called the “optimal” model in the present
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work. Results were, then, confirmed using a separate
backwards step-wise process that minimized the Akaike
information criterion (AIC) of the model using the
“stepAIC” function from the R “MASS” package [44],
which stepwise removes parameters from the model until
the removal of parameters no longer significantly decreases
the AIC.
For the logistic modeling of the weekly data, the in-class-

only model was fit first. Once the optimal in-class model
was found, the institutional variables selected in the optimal
institutional logistic model were then added to these models
and the pruning process was performed again to select the
best fitting combined model.

2. Decision trees

In order to understand random forests, it is first necessary
to understand the decision trees upon which they are built.
Decision trees are a machine learning algorithm which
splits the dataset into two or more “most” homogeneous
groups based on the measured variables. The algorithm
works by taking the dataset, splitting it by each of the
independent variables, and then measuring the degree to
which these splits have created subsets of data which are
maximally homogenous by outcome (each split should
contain as large a percentage of one outcome as possible).
Each split subset is then split using the same criteria
producing a tree where each node is characterized by the
criteria used to make the split (the decisions). If allowed,
this algorithm will continue to split the data until each
terminal node or leaf is perfectly homogenous (contains
only one of the possible outcomes). To ensure that the
model is not overfit, decision trees are “pruned” back to a
model that balances the complexity of the model with the
predictive power of the model. Because the models are
based solely on homogenizing outcomes, decision trees are
not susceptible to multicollinearity [45].

3. Random forests

Random forests are an extension of the decision tree
algorithm where, instead of a growing single tree for the
model, thousands of trees are grown. This “forest” of
decision trees is used to fit the data and then the ensemble
“votes” for the most likely outcome. Each decision tree is
used to classify each participant and the most commonly
occurring classification of the forest is selected. Random
forests are a bootstrapping technique where the individual
trees are grown on Z samples of size N generated by
sampling the training dataset with replacement. Each of
these Z unique samples is fit with a decision tree which uses
a subset m ¼ ffiffiffi

k
p

of the available variables k [46]. Using a
subset of the available parameters accomplishes two goals:
first, the trees are decorrelated from each other, and second,
the strongest predictors are prevented from always over-
whelming some of theweaker predictors.With the exception

of these differences, the trees are grown using the same
technique as in the previous section without pruning [29].
Random forests also provide a characterization of the
relative importance of the independent variables through
a number of variable importance indices which indicate
the degree to which each variable is influential in the
model. The “randomForest” package in R produces two
commonly used versions of variable importance: mean
decrease in Gini index andmean decrease in accuracy [47].
This paper reports the more intuitive mean decrease in
accuracy. The mean decrease in accuracy is determined as
the average decrease in accuracy across all trees if the
variable was removed [46].
In order to construct the optimal random forest models,

10 000 decision trees were constructed using all available
variables. The 1-SE rule [45] was then applied to select the
“optimal” random forest model. This was accomplished
by fitting the ROC curve for the full model, then removing
variables and selecting the most parsimonious model
whose ROC curve was within 1-SE, 1 standard error, of
the full model.
For the random forest analysis in this work, the optimal

in-class model was found and the variables from the
institutional random forest model were added; however,
no pruning was done due to the limited number of
parameters in the model.

F. Opening the “black box” of machine learning: Local
interpretable model-agnostic explanations (LIME)

While machine learning provides powerful tools for
understanding large datasets, the algorithms work as “black
boxes” where the model builds itself. Even if the model fits
well and predicts the test dataset adequately, it is difficult to
extract additional meaning from the predictions. Ribeiro,
Singh, and Guestrin [48] developed a method for explain-
ing how any machine learning model makes its predictions
by assuming that locally all models behave linearly. Their
local interpretable model-agnostic explanations (LIME)
algorithm works by selecting the record of a single student
and fitting a sparse linear model to predict that one
outcome. The process then perturbs the model around
that fit and uses data from other students close by to
determine the degree to which each variable is necessary
to the predicted outcome. Using this method, it is possible
to see which variables influence a model’s decision and
the degree of importance these variables have to that
decision. This can be used to determine if a model is
making decisions based upon variables that make sense
(for example, a student with a high CGPA is more likely to
graduate) rather than spurious correlations (for example,
not attending class increases the odds of course success).
The LIME algorithm can also be used diagnostically to

determine the features of an individual student’s perfor-
mance which are most predictive of their success or failure.
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III. RESULTS

The goal of this work was to understand the variables
important to the prediction of physics course grades at six
time points early in two introductory physics classes:
before the class begins using only institutional data and
at the end of weeks 1 through 5. The results for Physics 1
and 2 are discussed separately.

A. Physics 1 classification accuracy

As the Physics 1 class progresses and the students
complete assignments, the classification models become
more accurate. Table III reports the accuracy, kappa, and
AUC for the in-class models and the combined institutional
and in-class models for week 1 through week 5 as well as
the institutional model using data available before students
begin the course. For the institutional model, both results
using all variables and results pruning the model to an
optimal model are presented. Figure 1 plots the evolution
of these quantities for the weekly models. The random
guessing baseline model is also presented; the horizontal
axis represents the performance of the baseline model in
each plot in Fig. 1.
Using logistic regression, the third week of the semester

was the first where the models using only in-class variables
outperformed the model using only the institutional vari-
ables with superior kappa and AUC. We will focus on
kappa and AUC because, unlike accuracy, these two
measures correct for the effect of guessing. In weeks 1
through 4, the combined in-class and institutional models
outperformed each of the in-class only models for that
week; however, this was not the case in week 5. The week 5
logistic models were statistically indistinguishable using
DeLong’s test comparing the AUC of the separate ROC
curves, indicting that by the first in-semester examination
the institutional variables were no longer necessary for the
prediction of student grades. The weekly logistic models

demonstrate the importance of including the institutional
data if student risk is to be accessed very early in the
semester.
The random forest results in Table III show that the

random forest models performed almost identically to the
logistic models. Unlike the logistic models, the kappa of
the in-class-only random forest model only exceeded the
optimal institutional model in week 5. The optimal in-class-
only model AUC exceeded the institutional model AUC in
week 3, but the two AUC values were equal in week 4. In
week 5, the in-class-only model once again was no longer
distinguishable from the combined institutional and in-
class model.

B. Physics 1 variable importance

1. Institutional model

For Physics 1, the optimal logistic model of the institu-
tional data required only a small subset of the available
variables, as shown in Table IV. This optimal model had
acceptable, but average, fit statistics with an accuracy of
70%, an improvement of 7% over the baseline model, and
Cohen’s κ of 0.32 representing fair agreement of the model
with the test dataset [41]. The ROC curve produced an
AUC of 0.79, with a 95% confidence interval that included
the 0.80 threshold for excellent discrimination. Each
logistic model reports the odds-ratio and its 95% confidence
interval using unstandardized variables. For example, in
Table IVa one-point increase in CGPA on a four-point scale
multiplies the odds by 11.4. The normalized odds ratio uses
standardized continuous variables. To standardize or nor-
malize a variable, the mean is subtracted from the variable
and the result is divided by the standard deviation. A one-
standard deviation increase in CGPA multiplies the odds by
3.47, an increase in odds of 247%. Each model also reports
an intercept; this is the base odds if all the independent
variables are zero. Most unnormalized intercepts are zero; a

TABLE III. Physics 1: Logistic and random forest model performance. The 95% confidence interval for AUC is shown in brackets.

Logistic regression Random forests

Model Variables Accuracy κ AUC R2 Accuracy κ AUC

Baseline None 0.63 0.00 0.50 0.63 0.00 0.50
Institutional All 0.71 0.35 0.78 [0.72, 0.83] 0.35 0.73 0.40 0.78 [0.73, 0.83]

Optimal 0.70 0.32 0.79 [0.74, 0.84] 0.33 0.72 0.40 0.77 [0.71, 0.82]
Week 1 In-Class 0.70 0.26 0.71 [0.65, 0.76] 0.16 0.67 0.20 0.67 [0.61, 0.73]

In-Class and Institutional 0.73 0.39 0.81 [0.77, 0.86] 0.37 0.72 0.40 0.79 [0.75, 0.84]
Week 2 In-Class 0.71 0.31 0.78 [0.72, 0.83] 0.24 0.71 0.34 0.75 [0.69, 0.80]

In-Class and Institutional 0.78 0.50 0.84 [0.80, 0.89] 0.41 0.75 0.46 0.81 [0.76, 0.86]
Week 3 In-Class 0.76 0.45 0.81 [0.76, 0.86] 0.30 0.73 0.38 0.80 [0.75, 0.85]

In-Class and Institutional 0.79 0.53 0.86 [0.81, 0.90] 0.43 0.75 0.44 0.82 [0.78, 0.87]
Week 4 In-Class 0.76 0.46 0.81 [0.77, 0.86] 0.32 0.74 0.39 0.77 [0.72, 0.83]

In-Class and Institutional 0.78 0.50 0.86 [0.81, 0.90] 0.43 0.75 0.46 0.82 [0.78, 0.87]
Week 5 In-Class 0.82 0.59 0.88 [0.85, 0.92] 0.46 0.78 0.52 0.85 [0.81, 0.89]

In-Class and Institutional 0.80 0.55 0.88 [0.84, 0.92] 0.51 0.80 0.56 0.86 [0.82, 0.90]
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student with a zero CGPA or HwkGrade has a very small
chance of passing the class. The normalized intercept
represents the odds of a student with all dichotomous
variables equal to zero and average values on all continuous
variables of receiving an A or B in the course.
The optimal institutional logistic model required four

variables: CGPA, ACTM, CmpPct, and MathEntry. Higher
CGPA, ACTM, and CmpPct increased the odds of a student
receiving an A or B in the course. CmpPct is the percentage
of credit hours attempted that were completed. Math Entry

Point is a 3-level categorical variable with levels: Calculus,
Pre-Calculus, and Algebra where Calculus was used as the
reference level for the variable. Students who did not arrive
at the university ready to take calculus had lower odds of
receiving an A or B in Physics 1. CGPA was much more
important than either CmpPct or ACTM with an increase in
CGPA of 1 standard deviation corresponding to an increased
odds of receiving an A or B of 247%. Students starting
mathematics in a course below Calculus 1 had significantly
lower odds of earning an A or B; the odds for students
entering in College Algebra decreased by 270%, 245% for
those entering in Pre-Calculus. This has important implica-
tions for physics instruction, because all students in Physics
1 had passed Calculus 1, a prerequisite for the course;
therefore, weak high school mathematics preparation is not
completely remediated by matriculating through college
mathematics classes.

The performance of the optimal random forest institu-
tional model was better than that of the optimal logistic
model producing an accuracy of 72% and a kappa of 0.40
representing moderate agreement of the model with the test
data. The model discrimination was somewhat worse than
that of the logistic model with an AUC of 0.77 representing
adequate model performance. The optimal model selected
by the 1-SE rule contained the 4 variables in the logistic

0.7

0.8

0.9

1.0
A

cc
ur

ac
y

Model

Random Forest In-Class
Random Forest Combined

Logistic In-Class
Logistic Combined

A
U

C
(a)

0.00

0.25

0.50

0.75

1.00

C
oh

en
’s

 K
ap

pa

(b)

0.5

0.6

0.7

0.8

0.9

1.0
(c)

Week 1 Week 2 Week 3 Week 4 Week 5

Week 1 Week 2 Week 3 Week 4 Week 5 Week 1 Week 2 Week 3 Week 4 Week 5

FIG. 1. Physics 1: Model accuracy (a), Cohen’s κ (b), AUC (c). The horizontal axis represents the performance of the baseline model in
each plot.

TABLE IV. Physics 1: Optimal institutional logistic model.

Variable
Odds
ratio 95% CI

Norm
odds
ratio

Z
score

p
value

Intercept 0.00 [0.00, 0.00] 4.93 −8.69 <0.001
CmpPct 1.03 [1.02, 1.05] 1.68 3.90 <0.001
CGPA 11.40 [6.62, 19.64] 3.47 8.77 <0.001
ACTM 1.02 [1.01, 1.04] 1.45 2.64 0.008
MathEntry:
Algebra

0.27 [0.13, 0.53] 0.27 −3.73 <0.001

MathEntry:
PreCal

0.29 [0.16, 0.52] 0.29 −4.15 <0.001
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model: CGPA, CmpPct, ACTM, and MathEntry, as well as
a fifth variable, HrsCmp (the total credit hours completed).
Figure 2 plots the mean decrease in accuracy of the

institutional random forest model. The mean decrease in
accuracy is the average decrease in classification accuracy
across all decision trees using the variable if the variable is
removed from the tree. Analysis of the importance indices
in Fig. 2 showed that despite the optimal model requiring
only five variables, several other parameters were important
when predicting student success in Physics 1. All five of the
optimal variables show high or reasonably high importance
in Fig. 2. The largest drop in importance occurs after CGPA
where the next most important parameter was only one-
third as important to the model fit. Although not included in
the optimal model, HSGPA performs very similarly to
HrsCmp, MathEntry, and ACTM in variable importance
and would likely have been included had CGPA not been
included. Demographic factors including first generation
status, in-state residence, ethnic or racial minority status,
and gender were all minimally important to the model.
These results further support the variables selected for the
previous logistic model with all 4 of the logistic variables
with medium to high importance.
Substantial additional analysis is suggested by Fig. 2.

Measures of college success, CGPA and CmpPct are the
most important in the model; however, measures of
pre-college preparation are also important, HSGPA,
ACTM, and MathEntry. The three high school variables

are approximately equally important suggesting that it is
not only math readiness, but general academic success in
high school that is important. Taking college-level prepar-
atory courses in high school either through Advanced
Placement (AP) or through transfer credit seems of less
importance than general success in high school measured
by HSGPA or overall preparation measured by ACTM.

2. Physics 1 in-class-only models

The weekly models use in-class and institutional vari-
ables on a by-week basis to predict the course grade
students will receive with data available in each week.
In this section, models using only in-class variables are
presented. These models use data that is easily accessible
for most introductory physics instructors. The logistic
models from week 1 through week 5 are presented in
Table V. Because of the small number of variables
available, the random forest analysis will only be discussed
in detail for the combined models.
The variables selected by the in-class logistic models

were consistent across all five weeks with FMCEPre,
HwkGrade, and LecQuiz significant in all models. The
normalized odds ratio of the homework grades increased
from 2.77 in week 1 to a high of 7.64 in week 4

FirstGen
URM
FirstFall
Gender
HrsEnroll
Cal1Grade
STEMHrs
InState
APCount
TransCnt
TransHrs
APCredit
ACTV
Cal1Atmp

HrsCmp
HSGPA
MathEntry
ACTM

CmpPct
CGPA

0.00 0.02
Mean Decrease in Accuracy

0.04 0.06

FIG. 2. Physics 1: Variable importance for institutional varia-
bles. High values represent more important variables for the
goodness of fit of the random forest models.

TABLE V. Physics 1: Logistic models in-class variables only.

Variable
Odds
ratio 95% CI

Norm
odds
ratio

Z
score

p
value

Week 1
Intercept 0.01 [0.00, 0.02] 0.87 −6.68 <0.001
FMCEPre 1.04 [1.02, 1.05] 1.88 4.60 <0.001
HwkGrade 1.05 [1.03, 1.07] 2.77 6.24 <0.001
LecQuiz 2.34 [1.37, 3.98] 2.34 3.12 0.002

Week 2
Intercept 0.00 [0.00, 0.00] 1.69 −8.05 <0.001
FMCEPre 1.05 [1.03, 1.07] 2.33 5.19 <0.001
HwkGrade 1.08 [1.06, 1.10] 4.95 7.56 <0.001
LecQuiz 3.58 [1.54, 8.34] 1.41 2.95 0.003

Week 3
Intercept 0.00 [0.00, 0.00] 0.40 −9.12 <0.001
FMCEPre 1.06 [1.04, 1.08] 2.91 5.64 <0.001
HwkGrade 1.10 [1.07, 1.12] 6.89 8.68 <0.001
LecQuiz 5.47 [1.84, 16.24] 1.46 3.06 0.002

Week 4
Intercept 0.00 [0.00, 0.00] 0.28 −9.30 <0.001
FMCEPre 1.06 [1.04, 1.08] 2.84 5.55 <0.001
HwkGrade 1.10 [1.08, 1.13] 7.64 8.67 <0.001
LecQuiz 7.90 [2.26, 27.58] 1.53 3.24 0.001

Week 5
Intercept 0.00 [0.00, 0.00] 0.32 −10.72 <0.001
FMCEPre 1.03 [1.01, 1.05] 1.74 2.75 0.006
HwkGrade 1.10 [1.08, 1.13] 7.35 8.13 <0.001
LecQuiz 7.66 [1.76, 33.29] 1.51 2.72 0.007
Test 1 1.10 [1.08, 1.13] 4.64 8.26 <0.001
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demonstrating the increasing predictive importance of
homework grades as the semester progressed. The odds
ratio for the normalized lecture quiz grade was largest in
week 1 when the lecture quiz captured whether the student
enrolled on time and whether they promptly obtained a
clicker as well as first week attendance. In the subsequent
weeks, the normalized coefficient was smaller and fairly
constant as the variable transitioned to primarily a measure
of attendance.
The significance of HwkGrade and LecQuiz were not

surprising. Student success should depend on successful
homework completion and consistent class attendance.
These results provide support that the analysis method is
working and that the class studied is functioning as intended.

3. Physics 1 in-class and institutional models

Models were also constructed using a combination of in-
class and institutional variables. The logistic models are
presented in Table VI. In weeks 1 to 4, CmpPct, CGPA, and
MathEntry were significant institutional variables and
FMCEPre, HwkGrade, and LecQuiz were significant in-
class variables (LecQuiz was not significance in week 1).
With the inclusion of test 1 in week 5, MathEntry was no
longer significant. ACTM was only significant in week 2
with a p value of 0.044. The odds ratio of CmpPct remained
relatively stable across all models and MathEntry became
fairly constant after week 1. The normalized CGPA odds
ratio decreased from a high of 3.55 in week 1 to a low of 1.96
in week 5 when test 1 grades became available.
The combined models show that both in-class-only and

institutional-only models provide an incomplete picture
of student risk and that both sets of variables are important
to fully evaluate the chances of success of students in a
physics class.
Random forests provided additional insight by estimat-

ing variable importance, which characterizes the value of
each parameter without sensitivity to multicollinearity.
These models combine the optimal institutional model
with the optimal in-class model without further pruning.
Figure 3 shows that CGPAwas the most important variable
in weeks 1 to 4 by a factor of at least 2 when compared to
every other variable except homework grade. Test 1 became
the most important variable in week 5. The random forest
models routinely performed more weakly than the logistic
models by a small margin.
In all weeks, the in-class variables FMCEPre and LecQuiz

were of little importance to the accuracy of the random forest
models. This does not agree with the parameter estimates of
the logistic models in Table VI where FMCEPre often had
a normalized odds ratio commensurate with HwkGrade.
This suggests the collinearity expected between the grades of
different assignments in the same class may be influencing
the parameter estimates of grades in the logistic models. This
shows the efficacy of using both logistic and random forest
models in parallel.

TABLE VI. Physics 1: Logistic models combining in-class and
institutional variables.

Variable
Odds
ratio 95% CI

Norm
odds
ratio

Z
score

p
value

Week 1
Intercept 0.00 [.00, .00] 5.32 −9.34 <0.001
FMCEPre 1.04 [1.02, 1.06] 1.94 3.89 <0.001
HwkGrade 1.03 [1.02, 1.05] 1.96 3.95 <0.001
CmpPct 1.03 [1.02, 1.05] 1.66 3.68 <0.001
CGPA 11.91 [6.62, 21.44] 3.55 8.26 <0.001
MathEntry:
Algebra

0.23 [0.13, 0.43] 0.23 −4.60 <0.001

MathEntry:
PreCal

0.29 [0.16, 0.53] 0.29 −4.07 <0.001

Week 2
Intercept 0.00 [0.00, 0.00] 1.47 −9.32 <0.001
FMCEPre 1.05 [1.02, 1.07] 2.24 4.28 <0.001
HwkGrade 1.05 [1.03, 1.08] 2.87 4.74 <0.001
LecQuiz 3.03 [1.13, 8.15] 1.35 2.20 0.028
CmpPct 1.03 [1.01, 1.05] 1.65 3.63 <0.001
CGPA 8.70 [4.73, 16.01] 3.02 6.95 <0.001
ACTM 1.02 [1.00, 1.04] 1.36 2.01 0.044
MathEntry:
Algebra

0.42 [0.19, 0.89] 0.42 −2.25 0.024

MathEntry:
PreCal

0.43 [0.23, 0.81] 0.43 −2.62 <.009

Week 3
Intercept 0.00 [0.00, 0.00] 1.16 −9.81 <0.001
FMCEPre 1.06 [1.03, 1.08] 2.72 4.89 <0.001
HwkGrade 1.07 [1.04, 1.09] 3.79 5.74 <0.001
LecQuiz 4.35 [1.26, 15.00] 1.39 2.32 0.020
CmpPct 1.03 [1.01, 1.05] 1.63 3.57 <0.001
CGPA 7.65 [4.11, 14.21] 2.83 6.43 <0.001
MathEntry:
Algebra

0.33 [0.17, 0.63] 0.33 −3.35 <0.001

MathEntry:
PreCal

0.43 [0.23, 0.81] 0.43 −2.63 0.008

Week 4
Intercept 0.00 [0.00, 0.00] 0.77 −9.82 <0.001
FMCEPre 1.05 [1.03, 1.08] 2.59 4.72 <0.001
HwkGrade 1.07 [1.05, 1.10] 3.98 5.67 <0.001
LecQuiz 6.49 [1.59, 26.50] 1.47 2.61 0.009
CmpPct 1.03 [1.01, 1.05] 1.63 3.56 <0.001
CGPA 7.09 [3.79, 13.25] 2.72 6.14 <0.001
MathEntry:
Algebra

0.33 [0.17, 0.64] 0.33 −3.29 0.001

MathEntry:
PreCal

0.45 [0.24, 0.84] 0.45 −2.52 0.012

Week 5
Intercept 0.00 [0.00, 0.00] 0.40 −10.69 <0.001
FMCEPre 1.04 [1.02, 1.06] 2.00 3.23 0.001
HwkGrade 1.09 [1.06, 1.11] 5.54 6.69 <0.001
LecQuiz 7.33 [1.57, 34.26] 1.49 2.53 0.011
CmpPct 1.03 [1.01, 1.05] 1.57 3.29 0.001
CGPA 3.72 [1.91, 7.24] 1.96 3.87 <0.001
Test 1 1.09 [1.07, 1.12] 4.10 7.12 <0.001
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C. Physics 2

Physics 2 is usually taken the semester after Physics 1
and has Physics 1 as its prerequisite. As such, the Physics
2 models contain additional important variables not
available to the Physics 1 models: the grade in Physics
1 (P1Grade) and whether Physics 1 was taken more than
once (P1Atmp). Physics 2 also maintained more detailed
weekly records allowing the use of lab grades and lab quiz
grades.

1. Institutional model

The accuracy, kappa, and AUC of each Physics 2 model
is presented in the Table VII. The optimal logistic model
using only institutional variables produced an accuracy of
80%, an improvement of 12% over the baseline model and
10% over the performance of the same model in Physics 1.
This model also had kappa of 0.55 and AUC of 0.89,
values that were not obtained until the week 5 models in
Physics 1.
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FIG. 3. Physics 1: Weekly variable importance of the combined in-class and institutional models.
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The optimal logistic model of the institutional data for
Physics 2 was strongly related to performance in Physics 1
as shown in Table VIII. The normalized odds ratios for
receiving an A/B in Physics 2 improved by 169% if the
student received an A or B in Physics 1. CGPA remained an
influential variable with a one standard deviation improve-
ment in CGPA improving the odds of receiving an A or B in
Physics 2 by 243%. Taking Physics 1 more than a single
time decreased a student’s odds of receiving an A or B by
426%. Physics 1 is the direct prerequisite for Physics 2 and,
therefore, this result was not surprising; however, Calculus 1
is a direct prerequisite for Physics 1, butwas not significant in
any of the Physics 1 models. Cal1Atmp (whether Calculus 1
was taken more than once) was significant in the Physics 2
random forest models.
The institutional random forest models for Physics 2 also

performed very well with the optimal institutional model
achieving an accuracy of 81%, kappa of 0.58, and AUC of
0.86. This high degree of predictive power was achieved
using CGPA, P1Grade, Cal1Atmp, HrsCmp, and CmpPct.
The variables CGPA, HrsCmp, and CmpPct were also
included in the corresponding random forest model in
Physics 1. The variable importance indices in Fig. 4 of the
full model show similar results to Physics 1 with CGPA the
highest importance variable with a mean decrease in
accuracy of more than twice that of the next most important
variable. The demographic variables were once again

unimportant for predicting grade. Only a small subset of
institutional variables were necessary to build highly
performing models of student course success in the random
forest model.

2. Weekly models

The detailed weekly logistic models and the weekly
random forest variable importance estimates are presented

TABLE VII. Physics 2: Model accuracy, κ, and AUC.

Logistic regression Random forests

Models Variables Accuracy κ AUC R2 Accuracy κ AUC

Baseline None 0.68 0.00 0.50 0.68 0.00 0.50
Institutional All Variables 0.81 0.57 0.89 [0.86, 0.93] 0.34 0.80 0.55 0.88 [0.84, 0.92]

Optimal 0.80 0.55 0.89 [0.85, 0.93] 0.31 0.81 0.58 0.86 [0.82, 0.90]
Week 1 In-Class 0.73 0.33 0.75 [0.69, 0.81] 0.12 0.74 0.36 0.74 [0.68, 0.80]

In-Class and Institutional 0.81 0.57 0.90 [0.87, 0.94] 0.35 0.81 0.57 0.88 [0.84, 0.92]
Week 2 In-Class 0.75 0.40 0.78 [0.73, 0.84] 0.21 0.75 0.42 0.75 [0.70, 0.81]

In-Class and Institutional 0.81 0.57 0.91 [0.87, 0.94] 0.38 0.82 0.61 0.88 [0.84, 0.92]
Week 3 In-Class 0.78 0.49 0.85 [0.80, 0.89] 0.30 0.79 0.52 0.87 [0.82, 0.91]

In-Class and Institutional 0.82 0.59 0.91 [0.88, 0.94] 0.42 0.84 0.62 0.91 [0.87, 0.94]
Week 4 In-Class 0.78 0.48 0.85 [0.81, 0.90] 0.31 0.75 0.43 0.83 [0.78, 0.88]

In-Class and Institutional 0.84 0.62 0.91 [0.88, 0.95] 0.44 0.81 0.57 0.89 [0.85, 0.92]
Week 5 In-Class 0.85 0.65 0.94 [0.91, 0.97] 0.56 0.85 0.66 0.93 [0.90, 0.96]

In-Class and Institutional 0.85 0.67 0.95 [0.93, 0.97] 0.60 0.86 0.68 0.95 [0.92, 0.97]

TABLE VIII. Physics 2: Optimal institutional logistic model.

Variable
Odds
ratio 95% CI

Norm
odds
ratio

Z
score p

Intercept 0.00 [0.00, 0.01] 1.76 −7.53 <0.001
P1Grade 2.69 [1.56, 4.63] 2.69 3.57 <0.001
P1Atmp 0.19 [0.07, 0.54] 0.19 −3.12 0.002
CGPA 11.66 [6.01, 22.59] 3.43 7.27 <0.001
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FIG. 4. Physics 2 variable importance for the institutional
variables.
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in the Supplemental Material [43]. The performance of the
optimal logistic model of the institutional data was not
matched by the in-class-only model until week 5 and test
1, much later than the Physics 1 logistic models. All of the
logistic models were highly accurate with all combined
institutional and in-class models having accuracies in
excess of 80%, kappas in the range of good agreement,
and excellent discrimination characteristics as measured
by AUC. In each case, the Physics 2 models performed
better than similar models in Physics 1. This may have
resulted from the additional in-class variables available,
the availability of P1Grade as a variable, the increased
difficulty and unfamiliarity of the material, or from hand-
graded homework providing a more accurate measure of
students’ understanding.
The in-class logistic models were remarkably consistent

from week 1 to week 5 with only LabQuiz and HwkGrade
significant in the first 4 weeks. The week 5 model retained
both parameters along with test 1 grade. Unlike the behavior
of LecQuiz in Physics 1, there was no large difference in the
LabQuiz normalized odds ratio between week 1 and week 2.
The normalized odds ratio for HwkGrade increased from
2.13 in week 1 to 4.40 in week 5 showing the increasing
importance of homework grades for predicting student
success in this course.
The combined institutional and in-class models also

performed similarly to those of Physics 1 with all variables
except CGPA and LabQuiz consistently significant over
the five weeks. As the course accumulated grade data, the
normalized odds ratio of CGPA dropped from 2.89 in week
1 to 2.17 in week 4; in week 5, when the test 1 grade was
available, CGPA was no longer significant. LabQuiz was
only significant in weeks 3 and 4.

The random forest results in Table VII show that the
random forest models performed similarly to the logistic
models. The in-class model was not an improvement over
the institutional model until week 5.
Variable importance in Physics 2 was similar the variable

importance in Physics 1 with CGPA the most important
variable and homework grade increasing in importance
throughout the five week period to match CGPA in week 5.
Unlike Physics 1, when test 1 was included in week 5, it
was nearly twice as important as either CGPA or
HwkGrade. Physics 2 logistic models and importance plots
can be found in the Supplemental Material [43].

D. LIME results

Once a classification model is constructed, the variable
importance and the odds ratios can help instructors and
researchers understand the factors that are important for
predicting students’ success. The classification model can
then be used to identify students at risk of receiving a low
grade. The LIME algorithm allows further understanding of
the classification model, showing the factors that were
important to making the prediction for individual students.
Figure5 shows theLIMEanalysisof theprogressionof the

optimal logisticmodel for a singlePhysics 1 student inweeks
1, 3, and 5. The student ultimately earned a B in the class. In
the firstweekof theclass, themodelpredicted that the student
would receive an A or B with 61% probability. Poor
performance on the first in-class homework assignment, a
relatively weak ACTM score, and a weak CGPA were the
largest contributors to lowering the probability, shown in
Fig. 5(a).Byweek 3, the probability of earning anAorBwas
62%. The student’s low homework grade was the strongest
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FIG. 5. Physics 1 LIME results for one student for week 1, week 3, and week 5. The student received a B in the class.
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factor lowering this probability. A strong record of previous
course completion, strong lecture quiz scores, and a fair (for
theclass) scoreon theFMCEpretest supported theprediction
of earning an A or B. By week 5, the probability increased
dramatically due to a very strong performance on the first
examination. Despite a number of variables indicating that
this student would not do well in the course prior to week 5,
themodel accuratelypredicted that the studentwould receive
a B or better in the first week of class.
The LIME analysis opens a number of exciting instruc-

tional possibilities. While tailored to individual students,
examination of the LIME results for the set of at-risk
students can allow an instructor to develop a greater
understanding of the risk factors as well as the critical
thresholds for those factors. For example, for students with
moderate CGPA, what homework average represents the
threshold for increased risk of failure. The LIME analysis
could also allow instructors to provide more detailed advice
to at risk students; it is possible this process could be
automated to provide feedback to all students.

IV. DISCUSSION

This study investigated two research questions; they will
be discussed in the order proposed.
RQ1: How well can introductory physics course grades

be predicted early in the semester? Highly accurate models
of student success were constructed in both Physics 1 and
Physics 2 using institutional variables, in-class variables,
and a combination of in-class and institutional variables. In
both classes, the models with only institutional variables
performed well with strong fit statistics. These models
outperformed similar models reported by Huang and Fang
[31] that had a maximum classification prediction accuracy
of 67% compared to the 70% to 80% for our logistic
models. The optimal logistic institutional-only models
outperformed, as measured by kappa, models using only
in-class variables early in the class. In Physics 1, three
weeks of in-class data were required before in-class-only
models matched the performance of the institutional-only
models. In Physics 2, in-class-only models did not match
the performance of institutional-only models until week 5
when the score on the first in-semester examination became
available. In Physics 1, models combining institutional and
in-class variables had superior performance, measured by
kappa, in week 2 to in-class-only models in week 4; thus
allowing the accurate identification of at-risk students much
earlier in the semester. In Physics 2, the week 1 combined
institutional and in-class model had superior properties to
the week 4 in-class-only model, allowing very early
identification of at-risk students. This early identification
may allow interventions to be directed toward students in
time to positively affect their first test grade.
The in-class models presented in this study performed

similarly to those developed by Macfadyen and
Dawson [33], but were around 10% to 15% less accurate

than the in-class models developed by Marbouti et al. [32].
There are many potential reasons for the lower accuracy of
our models: the current study used grades less than a B as a
classification criteria while Marbouti et al. classified grades
less than a C. The course studied by Marbouti et al. was an
introductory engineering course which had students with a
fairly homogeneous preparation and may have weighted
participationmore strongly thanmastery of content. Physics
1 and 2, aswell as the introductory biology course studied by
Macfadyen and Dawson [33], are courses taken by a variety
of majors at different points in their academic careers.
RQ2: What variables are most important for the accu-

rate prediction of physics course grades early in the
semester? In both courses, the institutional models were
constructed using only a small subset of available param-
eters: CGPA, CmpPct, ACTM, and MathEntry in Physics 1
and CGPA, P1Grade, and P1Atmp in Physics 2. As such,
only a limited amount of additional information would
need to be provided to an instructor to greatly increase the
accuracy of the identification of at-risk students. Additional
institutional variables are important predictors of student
success; however, they were unnecessary for the identi-
fication of at-risk students in the introductory physics
course in this study.
The differences in variable selection between the two

courses was most likely the result of the availability of
Physics 1 course information for the Physics 2 models.
Physics 1 performance serves as a strong indicator of
student performance in a Physics 2. The high importance
of CGPA is consistent with other research into grade
prediction [31,49]. As the direct prerequisite for
Physics 2, Physics 1 gradewas expected to be the strongest
predictor; however, its variable importance was less than
CGPA showing that overall academic performance at the
college level was more important than prior physics
performance. All Physics 2 students in the sample had a
grade for Physics 1. The grade in the primary prerequisite
course for the Physics 1, Calculus 1,was not as important as
was expected from prior research [31,49]. Whether
Calculus 1 was attempted more than once was not impor-
tant to the Physics 1 models and was only significant in the
Physics 2 random forest models. The grade in Calculus 1
was not significant in anymodel. In Physics 1, the student’s
math entry point was an important variable in both the
institutional-only and the combinedmodels. All students in
Physics 1 had completed Calculus 1; therefore, completing
a college mathematics class did not completely remove the
effects of weak high school mathematics preparation. This
was consistent with previous work showing prior math-
ematics performance was predictive of current course
performance [31,50]. The observation that Calculus 1
was important in Physics 2 models, but not in Physics 1
models may suggest that Calculus 1 might be more
appropriate as a co-requisite to Physics 1 than as a
prerequisite.

CABOT ZABRISKIE et al. PHYS. REV. PHYS. EDUC. RES. 15, 020120 (2019)

020120-14



For the in-class models for both courses, HwkGrade was
the most important variable until test 1 grade became
available. In the courses studied, the student’s homework
grade was the variable most directly related to mastery of
the topics tested by the in-semester examinations. The
importance of this variable increased as the class pro-
gressed. This may have been a result of the increasing
weekly difficulty of assignments early in a physics class
providing a better measure of student capability. It could
also result from HwkGrade measuring whether the student
self-regulates to improve homework scores early in the class.
The conceptual pretest was of lower importance than

homework grade in the Physics 1 models and was not
significant in Physics 2 models. This may have resulted
from the low pretest scores in both classes making the
pretest scores less predictive of success. Henderson et al.
demonstrated that CSEM pretest scores were less strongly
related to conceptual preparation for women than for men;
they attributed this difference to the lower scores of women
shifting their score distribution nearer to the pure guessing
distribution [51]. A similar effect may lessen the predictive
power of the pretest in the classes studied.
Gender, race or ethnicity, and first generation college-

goer status were not important variables to predicting
students’ physics course success. Prior work has sug-
gested that race or ethnicity and first generation status are
strongly mediated by academic preparation variables such
as ACT or SAT scores [52,53]. While there is substantial
literature suggesting gender is an important variable for
the predication of physics post-test scores [54], there is an
equally significant literature suggesting that, in general,
women earn higher course grades than men [55]. Neither
effect was important to the prediction of physics grades
when general college-level control variables, such as
CGPA, were available.

A. Additional observations

Beyond the possibility of constructing accurate classi-
fication models, the logistic regression results, the variable
importance results, and the LIME results provide additional
insight into student outcomes. Variable importance mea-
sures show where an instructor should look to identify
at-risk students and show that different measures are
important at different times in a physics class. This also
allows the identification of grades that are collected which
do not predict student course outcomes; it may be effica-
cious to revisit these assignments to determine why grades
on the assignment are not related to overall success in the
course. Logistic regression odds ratios quantify the size of
the effects of different variables. The LIME algorithm,
Fig. 5, provides a detailed, by-student, characterization of
how the models made their decision when predicting
student outcomes and provides insights into where inter-
ventions could have the greatest impact. It is important to
understand that the LIME results are particular to each case

and should not be generalized to all students; however,
examining LIME results for the cohort of students iden-
tified as at risk can provide substantial additional insight.
The conceptual pretest scores had very low variable

importance in any model that included institutional vari-
ables, particularly CGPA. While this may be the result of
the low pretest scores as discussed above, it may also result
from the pretest providing primarily a measure of general
academic ability rather than specific physics prior prepa-
ration. This would explain why pretest scores were unim-
portant in models containing superior measures of general
academic ability such as CGPA.

B. Recommendations

The methods explored in this paper allow any instructor
to develop risk models for introductory physics classes.
These models could be used to target interventions to at-
risk students, possibly strongly improving STEM retention.
The models are more accurate earlier in the semester if a
few institutional variables are available, particularly CGPA.
Departments and institutions should develop practices to
make these variables easily available to instructors.
The LIME models provide a detailed student-level

picture of probable class outcomes and a time-resolved
evolution of the outcome along with the factors influencing
the prediction. In the future, further studies may investigate
whether it is productive to make these models available to
the students.
Once at-risk students have been identified, a broad set of

possible interventions become available. These can be as
simple as communicating to the student that they are at risk
of not successfully completing the class (with appropriate
messaging) [33,56,57]. This could be done electronically
through an indicator in the LMS or personally through a
message from the course instructor or from the student’s
laboratory teaching assistant (TA). Beyond an expression
of concern, the message could suggest connecting with
existing campus resources such as office hours or supple-
mental instruction. By examining the student’s record to
date in the class (perhaps informed by the LIME algo-
rithm), behaviors that enhance risk of failure can be
identified and communicated to the student. If the class
uses interactive instruction, learning or teaching assistants
can be directed to ensure the student is involved. This might
involve reshuffling laboratory or recitation groups. If the
source of the student’s risk is failure to complete assign-
ments, the student could be encouraged to turn in a late
assignments for reduced credit. If the source of risk is
failure to attend class, the student’s absences could be
excused under the condition of improved future attendance.
Instructors may consider forming optional components of
the course open to all students such as study groups
overseen by a TA. These additional components could
implement alternate pedagogical methods addressing the
needs of students who were not prospering in the
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instructional environment provided to the majority of
students. At-risk students could be directed to these
resources.

C. Limitations

Even with both in-class and institutional data, the models
were not completely accurate. Analysis of the confusion
matrices in Supplemental Material [43] shows a bias toward
false positives in many of the models. The decision threshold
should be determined on a case-by-case basis depending on
instructor comfort with misclassification. These models may
not be entirely generalizable as they depend on the local
educational environment at the institution studied. Because
of this, the techniques for constructing the models should be
adopted instead of the individual models when extending to
different environments.

D. Future work

This work provided an introduction to the use of
classification algorithms to predict student success. A
significant amount of additional research is needed to
fully understand the application of these algorithms to
physics classes. The classification algorithms require the
researcher to make a number of choices such as the
relative size of the test and training datasets, the number of
decision trees grown to form the random forest, and the
minimum required sample size. Optimal criteria for these
choices should be determined. This study used the default
parameter choices for the machine learning algorithms;
different values of these parameters should be explored to
determine the optimal values for prediction of physics
grades. This work chose to predict whether a student
would achieve an A or B; this choice was made partially to
have an outcome variable the was somewhat balanced
between two outcomes. Many interesting outcome vari-
ables are substantially unbalanced, for example whether a
student receives a “D” or “F” in the classes studied; the

behavior of classification algorithms for very unbalanced
outcomes should be investigated.
This study found that demographic variables were not

important predictors of success. This was true in both the
logistic and random forest models and, therefore, seems a
robust result. The samples for each minority demographic
group were extremely unbalanced with members of the
group in the minority forming less than 20% of the sample.
Additional research is needed to ensure this imbalance did
not bias the results of the classification algorithms.

V. CONCLUSIONS

Machine learning techniques produced accurate predic-
tions of student course outcomes. Models using institu-
tional data were more accurate before the class began than
models using only in-class variables were in the second
week of class in Physics 1, the fourth week of class in
Physics 2. The accuracy of the models varied between the
two courses studied; however, many of the same variables
were common to the optimal models for the two courses.
By the first examination in both courses, the institutional
variables no longer improved the models. The importance
of CGPA as a measure of preparedness was reinforced in
this study with none of the additional institutional variables
near the level importance of this single measure. Using the
LIME algorithm, it was possible to show which factors
were most important for each student in predicting his or
her most likely course outcome. The combination of these
models and the LIME algorithm produced a highly accurate
and detailed classification of student risk that can be used to
target interventions at the student level in introductory
physics.
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