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[This paper is part of the Focused Collection on Quantitative Methods in PER: A Critical Examination.]
A relevant aim of research in education is to find and study the reasoning lines that students deploy when
dealing with problematic situations. This can be done through an analysis of the answers students give to a
questionnaire. In this paper, we discuss some methodological aspects involved in the quantitative analysis
of a questionnaire by means of two different clustering methods, a hierarchical one and a nonhierarchical
one. We start from the coding procedures needed to obtain analyzable data from the questionnaire and from
a definition of a correlation coefficient suitable for measuring student similarity in the case of binary coding
of student answers. Then, criteria to choose the optimal number of clusters are discussed, and for the same
purpose a new coefficient is introduced that measures the total amount of information we can obtain from a
clustering solution. We show that each cluster can be characterized by its centroid that summarizes the
answers most frequently given by the cluster students to the questionnaire. Finally, an example of the
application of these procedures to a student sample is given, and a comparison between the two clustering
methods is discussed.
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I. INTRODUCTION

Many quantitative research studies in various fields of
mathematics and physics discuss the use of student answers
to questionnaires to obtain information about the reasoning
lines1 student deploy when dealing with problematic
situations and to investigate students’ conceptual under-
standing [6–9].
Other studies [10–12] identify student reasoning profiles

with the aim of making explicit the possible different ways
conceptual understanding is activated in students by ana-
lyzing the answers mostly frequently given by students to
questions, and their relationships. These studies find groups

of students that are homogeneous, or “similar,”with respect
to the ways in which they respond to the questionnaire.
However, to clearly separate a sample of students into
groups so that the elements of each group are similar to
each other while being substantially different from ele-
ments in other groups can be a complex operation,
especially for samples composed of many students.
Cluster analysis (CLA) is one of the methodologies used
for this purpose.
CLA techniques [13] are common in many fields of

research, such as information technology, biology, medi-
cine, archeology, econophysics, and market research
[14–17]. These techniques allow the researcher to locate
subsets, or clusters, within a set of objects of any nature,
that have a tendency to be homogeneous “in some sense,”
without any prior knowledge of what forms those groups
take (unsupervised classification [18–20]). The results of
the analysis can reveal a high homogeneity within each
group (intracluster) and high heterogeneity between groups
(intercluster), in line with the chosen criteria.
CLA, introduced in psychology by Tyron in 1939 [21],

saw its first systematic use by Sokal and Sneath [22] in
1963. Some studies using CLA methods can be found in
the literature concerning research in education. They group
and characterize students’ responses by using open-ended
questionnaires [10–11,23] or multiple-choice tests [12,23].

*onofriorosario.battaglia@unipa.it
1People’s reasoning is often described as the “running” of the

procedures present in their mental models [1–4]. Gilbert and
Boulter [5] define expressed models as the external representa-
tions expressed by an individual through actions, speech, or
writing. We understand “path, or line of reasoning” as the
external representation of the mental models used by an indi-
vidual when they try to describe, predict, or explain the physical
world.
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All these papers show that the use of cluster analysis
leads to identifiable groups of students that make sense to
researchers and are consistent with previous results
obtained using more traditional methods. Particularly,
Fazio et al. [10,11] and Pizzolato et al. [12] analyze
students’ responses to specially designed written question-
naires using researcher-generated categories of reasoning,
based on the physics education research literature on
student understanding of relevant physics content.
Through cluster analysis methods, groups of students
showing remarkable similarity in their reasoning categories
are identified, and the consistency of their deployed mental
models is validated by comparison with researcher-built
ideal profiles of student behavior known from previous
research. Springuel et al. [23] identify groups of responses
in open-ended questions about two-dimensional kinematics
by means of cluster analysis. These groups show striking
similarity to response patterns previously reported in the
literature and also provide additional information about
unexpected differences between groups.
Ding and Beichner [24] study five commonly used

approaches to analyzing multiple-choice test data (classic
test theory, factor analysis, cluster analysis, item response
theory, and model analysis) and show that cluster analysis
is a good method for showing how student response
patterns differ so as to classify students.
CLA can be carried out using various algorithms and

techniques that differ significantly in their notion of what
constitutes a cluster and how to effectively find them.
However, the various techniques have seldom been closely
explored and compared when applied on the same student
sample, to reveal their mutual coherence and points of
strength and weakness. Moreover, the criteria to find the
best clustering solution among all possible ones as well as
the choice of criteria of similarity between students, the
choice of clustering algorithms, the individuation of the
groups to be obtained and the evaluation of the solution
found have been under-explored, especially in the educa-
tional field, and require further study.
For this reason, in this paper we start from an analysis

of the data setup needed by CLA. Then, two methods
commonly used in CLA are described and the variables
and parameters involved are outlined and criticized.
Section VIII deals with an example of the application of
these methods to the analysis of data from the answers to an
open-ended questionnaire administered to a sample of high
school students, and discusses the significance of informa-
tion that can be obtained by using the two different
clustering methods. Finally, a comparison of the results
is done in order to reveal and discuss their coherence.

II. CLASSIFICATION OF STUDENT ANSWERS
AND DATA CODING

A cluster analysis of student answers to a questionnaire
requires, as a first step, a classification of the answers.

While in a closed-ended questionnaire the answers them-
selves can be considered as categories, the analysis of an
open-ended questionnaire should start from the categori-
zation of answers into a limited number of the “typical”
ways students tackle each question. However, it is well
known that there are inherent difficulties in the classifica-
tion and coding of student responses. Hammer and Berland
[25] point out that researchers “should not treat coding
results as data but rather as tabulations of claims about
data and that it is important to discuss the rates and
substance of disagreements among coders” and proposes
guidelines for the presentation of research that “quantifies”
individual student answers. Among such guidelines, they
focus on the need to make explicit that “developing a
coding scheme requires researchers to articulate defini-
tions of categories well enough that others could interpret
them and recognize them in the data”. Chi [26] describes
the process of developing a coding scheme in the context
of verbal data such as explanations, interviews, problem-
solving protocols and retrospective reports. The method of
verbal analyses is deeply discussed with the objective of
formulating an understanding of the representation of the
knowledge used in cognitive performances.
Following the approach previously described [25,26],

the logical steps that should be used to process data coming
from student answers to an open-ended questionnaire can
be synthesized by the flow chart represented in Fig. 1.
The first and second steps (categorization and compari-

son by the k researchers involved in the study) involve
the analysis of the records representing student answers

CATEGORIZATION 1

SET OF STUDENT’S 
ANSWERS

CODING

SET OF ANSWERING 
STRATEGIES

BINARY  MATRIX 

COMPARISON &
DISCUSSION

CATEGORIZATION K

ANSWER CATEGORIES
1

ANSWER CATEGORIES
K

CATEGORIZATION 2

ANSWER CATEGORIES
2

FIG. 1. Flow chart of the steps that can be followed by k
researchers when processing data coming from student answers
to an open-ended questionnaire.
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(the data), in order to reveal patterns and trends, and to find
common themes emerging from them. Through compari-
son and discussion among researchers, these themes are
then developed and grouped in a number of categories
whose definition takes into account as much as possible the
words, the phrases, the wording used by students [26]. Such
categories can be considered the typical answers of the N
students to the questionnaire. The researchers involved in
the study independently [27,28] read the students’ answers
in order to empirically identify the main characteristics of
the different student records (the raw data). Each researcher
constructs a coding scheme consisting in the identification
of keywords, which characterize the student answers.
During a first meeting, the selected keywords are compared
and contrasted, and then grouped into “categories” (i.e., the
typical answers given by students to the questions) based
on epistemological and linguistic similarities.2 These cat-
egories (e.g., see Appendix) are also re-analyzed through
the researchers’ interactions with the data, and take into
account the existing educational research literature on the
questionnaire topics.
At the end of this answer categorization phase, the

whole set of answers given by students to the open-ended
questionnaire is grouped into a limited numberM of typical
answers, which we call the “answering strategies.” that the
students deploy when tackling the questionnaire. M is
obtained by combining all the answering strategies used
by N students when answering each question.
The following phase is the same for both closed-ended

and open-ended questionnaires, and involves the binary
coding of student answers3 according to the defined
answering strategies, generating a binary matrix (as shown
in Table I). So, through categorization (if needed) and
coding, each student i can be identified by an array ai
composed ofM components 1 or 0, where 1 means that the
student used a given answering strategy or answer option to
respond to a question and 0 means that they did not use it.
Then, an M × N binary matrix (the “matrix of answering
strategies”), modeled on the one shown in Table I, is built.
Its columns show the N student arrays ai and the rows
represent the M components of each array, i.e., the M
answering strategies or answer options.
For example, let us say that student S1 used answering

strategies AS2, AS3, and AS5 to respond to the question-
naire questions. Therefore, column S1 in Table I will

contain the binary digit 1 in the three cells corresponding
to these strategies, while all the other cells will be filled
with 0.
It is worth noting that, independently of the open- or

closed-ended nature of a questionnaire, actions like altering
which questions are included in the analysis, or the weight
of the question in the metric can, in principle, have a large
impact on the clustering. Both the best partition of the
sample (i.e., the optimal number of clusters found by the
clustering procedure) and sizes, shapes, and population of
clusters can be strongly influenced by simply adding or
removing a question from the analysis. For example, let us
consider a questionnaire in which different groups of
questions are aimed at investigating different aspects of
a given theme [e.g., the force concept in the well-known
Force Concept Inventory (FCI) questionnaire]. In order to
study only one of these aspects there are two options: (i) to
do a cluster analysis of the whole questionnaire and then
study only the answers related to the aspect one wants to
investigate, or (ii) to do only a cluster analysis of the
answers to the questions strictly related to that aspect.
However, the results of the two clustering procedures will
in principle be different, as we observed in another
research [29].

III. CORRELATION COEFFICIENT FOR BINARY
DATA AND SIMILARITY INDEX

The matrix in Table I contains all the information needed
to describe the sample behavior according to the previously
described categorization. However, it needs some elabora-
tion to be used for CLA. Particularly, CLA requires the
definition of new quantities that are used to build the
grouping, such as “similarity” or “distance” indexes. These
indexes are defined by starting from the M × N binary
matrix discussed above.
In the literature [13,16,21], the similarity between two

students i and j of the sample is often expressed by taking
into account the distance dij between them (which actually
expresses their “dissimilarity,” in the sense that a higher
value of distance involves a lower similarity).

TABLE I. Matrix of the data: the N students and the M
answering strategies are denoted as S1; S2;…; SN ., and as
AS1;AS2;…;ASM, respectively.

Answering strategy Student

S1 S2 … SN
AS1 0 0 … 0
AS2 1 0 … 1
AS3 1 … … …
AS4 0 … … …
AS5 1 … … …
… 0 … … …
ASM 0 1 … 0

2For example, in the analysis of the answers to six open-ended
questions on the concept of models and modeling discussed in
Sec. VIII as an application, students that defined models as
simple phenomena or experiments or reproductions of an object
on a small scale have been put on the same category since the
three definitions have been intended as giving an ontological
reality to models.

3For simplicity here we refer to the use of a two-level coding,
where 1 means that a given answering strategy or answer option
was used, and 0 means that strategy was not used.
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A distance index can be defined by starting from
Pearson’s correlation coefficient. This allows the researcher
to study the correlation between students i and j if the
related variables describing them are numeric. If these
variables are non-numeric (as in our case, where we are
dealing with arrays ai and aj containing a binary symbolic
coding of the answers of students i and j, respectively), we
must use a modified form of Pearson’s correlation coef-
ficient Rbinðai; ajÞ, similar to that defined by Tumminello
et al. [30]. We define it as4

Rbinðai; ajÞ ¼
Cðai; ajÞ − pðaiÞpðajÞ=Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaiÞpðajÞ

�
M−pðaiÞ

M

��
M−pðajÞ

M

�r ; ð1Þ

where pðaiÞ, pðajÞ are the numbers of 1’s in the arrays ai
and aj, M is the total number the answering strategies,
and Cðai; ajÞ is obtained by counting how many times
the symbol 1 is present in the same position in the
arrays ai, and aj. ½pðaiÞpðajÞ�=M is the expected value5

of Cðai; ajÞ.
By following Eq. (1) it is possible to find for each student

i the N − 1 correlation coefficients Rbinðai; ajÞ between
them and the other students (and the correlation coefficient
with themselves, which is clearly 1). All these correlation
coefficients can be placed in an N × N matrix that contains
the information we need to consider the mutual relation-
ships between our students.
The similarity between students i and j can be defined

by choosing a metric to calculate the distance dij. Such a
choice is often complex and depends on many factors. If
we want two students, represented by arrays ai and aj and
negatively correlated, to be more dissimilar than two
uncorrelated students, a possible definition of the distance
between ai and aj, making use of the modified correlation
coefficient Rbinðai; ajÞ is

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1 − Rbinðai; ajÞ�

q
: ð2Þ

This function defines a Euclidean metric [32] that is
required for further calculations. A distance dij between
two students equal to zero means that they are completely
similar [Rbinðai; ajÞ ¼ 1], while a distance dij ¼ 2 shows
that the students are completely dissimilar [Rbinðai; ajÞ ¼
−1]. When the correlation between two students is 0, their
distance is dij ¼

ffiffiffi
2

p
.

By following Eq. (2) it is then possible to build a new
N × N matrix, D (the distance matrix), containing all the
mutual distances between the students. The main diagonal
ofD is composed of 0’s (the distance between a student and
themself is zero). Moreover, D is symmetrical with respect
to the main diagonal.

IV. K-MEANS ALGORITHM

Nonhierarchical clustering (NH-CLA) methods parti-
tion the data space into a number of nonoverlapping
subsets (clusters) containing data similar to each other
according to given criteria. Among the currently used
NH-CLA algorithms, we will consider the k-means one
[15], proposed by MacQueen in 1967 [33], as it is well
known, easy to implement in computer code, and com-
putationally efficient.
The starting point is the choice of the number q clusters

one wants to populate and of an equal number of “seed
points.” The data (students) are then grouped on the basis of
the minimum distance between them and the seed points.
Starting from an initial classification, students are itera-
tively attributed from one cluster to another one, until no
further improvement can be made. The students belonging
to a given cluster are used to find a new point representing
the average position of their spatial distribution. This is
done for each cluster Clk (k ¼ 1; 2;…; q), and the resulting
points are called the cluster centroids Ck. This process is
repeated and ends when the new centroids coincide with
the old ones.
It is worth noting that the data input of the k-means

algorithm could be the M × N binary matrix. However, a
formally correct application of this algorithm strictly
requires the use of a Euclidean metric, that cannot be used
for binary data [34]. For this reason, it is necessary to
transform the initial binary data. For this purpose, a
procedure well known in the specialized literature as
multidimensional scaling [34] can be used. For each
student i we know the N distances dij between such a
student and all the students of the sample (dii ¼ 0). The
multidimensional scaling procedure is applied to each
student and starts from these N distances. It consists in
a linear transformation between two vector spaces (from an
N-dimensional vector space to a two-dimensional one).
In summary, this procedure allows us to associate to each

4Equation (1) is formally similar to the similarity index used
in Refs. [10–12]. However, our equation is a version of
Pearson’s correlation coefficient adapted to the case of non-
numerical variables while the other is an index, defined by
Lerman [31], that defines the similarity between two elements
in a probabilistic form and can be directly used to partition a
data sample.

5If we assume that each component of the array can be 1 with
equal probability, the probability that two arrays have a 1 in
common in the same component is given by 1 over the number of
possible answers. So, the greater the number of possible answers,
the smaller the probability will be. Moreover, if we consider more
questions simultaneously, the number of possible answers in
common between two students increases with the number of
questions.
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M-dimensional binary vector a two-dimensional vector
composed of real numbers. The k-means algorithm is,
therefore, applied on two-dimensional data.6

We remark here that many types of metrics are known in
the literature, and the choice of a specific one to use with a
given type of clustering algorithm depends strongly on both
the type of data and the type of clustering algorithm itself.
Different metrics may affect the size and members of a
cluster as they imply the use of different approaches to find
the distance between the data objects, which is the most
important step of creation of clusters [35]. So, the k-means
algorithm can be applied independently of the dimension
of the space in which the data are represented, but an
appropriate metrics is to be chosen wisely and according to
the dataset.
Euclidean metrics are those most commonly used by

nonhierarchical clustering methods, as the k-means one, as
we said, cannot be directly used on binary data. The use of
different, more appropriate metrics, such as, for instance,
the correlation, Jaccard, or Hamming [36] ones, with a
given clustering algorithm can lead to results that can be
significantly different from each other even if the same
algorithm is used. For example, metrics such as the
Hamming or Jaccard ones, that can only be used with
binary data, give inconsistent results when used with the
k-means algorithm, like the inclusion of members with
very different characteristics in the same cluster [37].7

We can conclude that using a k-means-like algorithm
with a non-Euclidean metric (i.e., choosing the seed point
in the M-dimensional space) likely introduces inconsisten-
cies in the clustering results. This does not happen with the
correlation metric, but unfortunately it does with Hamming
or Jaccard ones.
Finally, the k-means results can be plotted in a two-

dimensional Cartesian space (see Fig. 1), similar to a
Voronoi diagram [38], containing points that represent
the students of the sample placed in the plane according

to their mutual distances. A cluster centroid can, therefore,
be considered, from a geometrical viewpoint, as the average
position of all the points (the students) in the cluster.
The x and y axes of the Cartesian plot simply report the
values needed to place the points according to their mutual
distance.
We want now to show that the centroid possesses another

relevant property. We start by defining a “virtual student”
for each of the q cluster centroids. Since each student is
characterized by an array ai composed by the 0 and 1
values for each of the M answering strategies, the array for
the virtual student āk should also containM entries with 0’s
for strategies that are not used by “him or her” and 1 for
strategies that are used. It is possible to demonstrate that āk
contains 1 values exactly in correspondence to the answer-
ing strategies most frequently used by students belonging
to Clk (k ¼ 1; 2; ..; q). In fact, since a centroid is defined as
the geometric point that minimizes the sum of the distances
between it and all the cluster elements, by minimizing this
sum, the correlation coefficients between the cluster ele-
ments and the virtual student are maximized, and this
happens when each virtual student has the greatest number
of common strategies with all the students that are part of
its cluster. This is a remarkable feature of the centroid that
makes it able to characterize the cluster also from a
pedagogical point of view.
Therefore, in order to find the array that describes the

centroid, we can simply search for the answering strategies
most frequently used by the students in cluster Clk. Another
way to demonstrate that the centroid array is actually
composed as previously described is to start from the
coordinates of the centroid in the two-dimensional
Cartesian space reporting the results of the k-means
algorithm. We repeat the k-means procedure in reverse,
by using the iterative method described as follows. For each
cluster Clk we define a random array ā0k (composed of
values 1 and 0, randomly distributed) and we calculate the
following value:

η ¼
X
i

jdik − d0ikj; ð3Þ

where d0ik is the distance between the random array and
the student i (belonging to the same cluster Clk) and dik
is the distance between the centroid and the same student.
The iterative procedure permutes the values of the
random array ā0k, minimizes the η value, and finds the
closest array representation8 āk of the real centroid of Ck.
The final results confirm that āk is made up of the

6In order to verify that this procedure does not lead to wrong
results, a check is to be made, e.g., applying a k-means-like
algorithm directly to the initial binary matrix, defined in the
M-dimensional space (using a metrics appropriate to the data, like
the correlation one). We did so on the data that are discussed in
Sec. VIII and we obtained exactly the same clusters found
applying the k-means to two-dimensional data, showing that
no errors are introduced in our procedure.

7For example, in the analysis of data discussed in Sec. VIII,
when metrics such as Hamming or Jaccard were used in the
application of the k means on M-dimensional data, the results
obtained differed significantly from those obtained by using the
k-means algorithm on two-dimensional data, i.e., after the
multidimensional scaling process. In fact, some of the clusters
found with Hamming or Jaccard metrics have been found to be
inconsistent, because a detailed analysis performed a posteriori
closely analyzing the responses of each student showed that
students giving clearly different types of answers were included
in the same cluster by the k-means-like algorithm performed
directly on the binary matrix.

8As usual in a procedure to minimize an objective function
(in our case, η), the result may not be unique. In order to be sure
to obtain an absolute minimum of η, the procedure can be
repeated several times, each time changing the initial conditions,
i.e., array ā0k.
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answering strategies most frequently used by the students
in cluster Clk.
The k-means algorithm has some points of weakness,

and here we will describe how it is possible to overcome
them. The first involves the a priori choice of the initial
positions of the centroids. This is usually resolved [36,39]
by repeating the clustering procedure for several values of
the initial conditions and selecting those that lead to the
minimum values of the distances between each centroid
and the cluster elements. Furthermore, at the beginning
of the procedure, it is necessary to arbitrarily define the
number q of clusters. A method widely used to select this
number q, initially used to start the calculations, as the one
that best fits the sample element distribution is the
calculation of the so-called silhouette function, S [40,41].

A. The silhouette function

In order to choose the number q of clusters to be initially
used to perform the calculations, the silhouette function,
S [40,41] is defined. This function allows us to decide if the
partition of our sample into q clusters is adequate.9

For each selected number of clusters q and for each
sample student i assigned to a cluster k, with k ¼
1; 2;…; q, the value of the silhouette function SiðqÞ is
calculated as

SiðqÞ¼
minp;p≠k½

PN−nk
l¼1 dil=ðN−nkÞ�−Pnk

j¼1dij=nk

maxfPnk
j¼1dij=nk;minp;p≠k½

PN−nk
l¼1 dil=ðN−nkÞ�g

;

ð4Þ

where the first term of the numerator is the average distance
of the ith student in cluster k to the lth student placed in a

different cluster p (p ¼ 1;…; q), minimized over clusters.
The second term is the average distance between the ith
student and another student j placed in the same cluster k.
SiðqÞ gives a measure of how similar student i is to

the other students in its own cluster, when compared to
students in other clusters. It ranges from −1 to þ1: a value
near þ1 indicates that student i is well matched to its own
cluster and poorly matched to neighboring clusters. If most
students have a high silhouette value, then the clustering
solution is appropriate. If many students have a low or
negative silhouette value, then the clustering solution could
have either too many or too few clusters (i.e., the chosen
number q of clusters should be modified).
Subsequently, the values SiðqÞ can be averaged over

each cluster k finding the values hSðqÞik, and on the whole
sample finding the total average silhouette value hSðqÞi for
the chosen clustering solution. Large values of hSðqÞik
mean that (on average) cluster k elements are tightly
arranged in the cluster and/or are clearly distinct with
respect to elements of the other clusters [40,41]. Similarly,
large values of hSðqÞi relate to the existence of well-defined
cluster solutions [40,41]. It is, therefore, possible to
perform several repetitions of the cluster calculations
(with different values of q) and to choose the number of
clusters q that give the maximum value of hSðqÞi. It has
been shown [42] that for values of hSðqÞi < 0.50, reason-
able cluster structures cannot be identified in the data. If
0.51 < hSðqÞi < 0.70, the data set can be reasonably
partitioned into clusters, and values of hSðqÞi greater than
0.70 show a strong cluster structure of the data. Figure 2
shows a partition of a hypothetical data set made up of 150
elements into two [Fig. 2)] and into three [Fig. 2)] clusters.
It is easy to see that in both cases, a partition into clusters
is not easily found, and this is confirmed by the low values
of hSðqÞi in each of the two partition attempts.
Figure 3 shows an example of the spatial distribution of

the results of a k-means analysis on another hypothetical set

FIG. 2. A set of 150 hypothetical data partitioned into two (a) and three (b) clusters. The mean values of the silhouette function are 0.47
and 0.45, respectively. The x and y axes simply report the values needed to place the points according to their mutual distance.

9By “adequate partition” here we mean a partition in which
clusters are clearly distinct from each other and compact. We will
better address this point in the following.
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of data, represented in a two-dimensional Cartesian
space.10 First three clusters [q ¼ 3 in Fig. 3)], and then
four [q ¼ 4 in Fig. 3)] have been chosen to start the
calculations. The average silhouette values [hSð3Þi >
hSð4Þi, as shown in Table II] indicate that in the three-
cluster solution the clusters are more defined, i.e., they
are more compact and distinct from each other than in the
four-cluster case.
It is interesting to study how well a centroid geometri-

cally characterizes its cluster. Two parameters affect this:
both the cluster density and the number of its elements.11

For this purpose, we propose a coefficient rk defined as the
centroid reliability. It is calculated as follows:

rk ¼
hSðqÞik

1 − hSðqÞik
1

nk
; ð5Þ

where nk is the number of students contained in cluster Clk
and hSðqÞik is the average value of the S function on the
same cluster that, as we pointed out, gives information on
the cluster density.12 High values of rk indicate that the
centroid characterizes the cluster well. This also means that
the characteristics of all cluster elements are not differ-
entiated very strongly from each other and with respect to
those of the centroid.

V. AGGLOMERATIVE HIERARCHICAL
CLUSTERING ALGORITHM

In the hierarchical clustering algorithm (H-CLA), each
student is initially considered as a separate cluster. Then
the two “closest” students are linked as a cluster and this
process is continued (in a stepwise manner) to join one
student with another, a student with a cluster, or a cluster
with another cluster, until all the students are combined
into one single cluster as one moves up the hierarchy
(agglomerative hierarchical clustering) [13].
The results of hierarchical clustering are graphically

displayed as a tree, referred to as the hierarchical tree or
dendrogram. The term closest is identified by a specific
rule in each of the linkage algorithms [13] used in H-CLA.
Hence, in different linkage algorithms the corresponding
distance matrix after each merger is differently computed.

A. Linkage algorithms

The choice of a linkage algorithms is one of the most
relevant aspects of H-CLA, because different algorithms
can generate different dendrograms and, so, different
results.
Among the many linkage algorithms described in the

literature, the following have been taken into account in
education studies: single, complete, average, and weighted
average. Each algorithm differs in how it measures the
distance between two clusters r and s by means of the
definition of a new metric (an “ultrametric”), and, con-
sequently, influences the interpretation of the word closest.
Single linkage, also called nearest neighbor linkage, links r
and s by using the smallest distance between the students
in r and those in s. Complete linkage, also called farthest
neighbor linkage, uses the largest distance between the
students in r and the ones in s. Average linkage uses the
average distance between the students in the two clusters.
Weighted average linkage uses a recursive definition for the
distance between two clusters. If cluster r was created by

(a) (b)

FIG. 3. Clustering of N ¼ 64 hypothetical data using the k-means method for (a) q ¼ 3 clusters and (b) q ¼ 4 clusters.

10Other examples, based on real data, can be found in the
literature. See, for example, the recent works of Di Paola et al.
[43] and Battaglia et al. [44,45].

11For example, two clusters with similar density but different
student numbers (i.e., with different variability of student proper-
ties) are differently characterized by their centroids: the more
populated cluster being less well characterized by its centroid
than the other one.

12The term 1 − hSðqÞik in Eq. (4) is needed to differently
weight hSðqÞik and nk because when hSðqÞik → 1, the rk value
should be independent of the value of nk.
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combining clusters p and q, the distance between r and
another cluster s is defined as the average of the distance
between p and s and the distance between q and s.
Several conditions can determine the choice of a specific

linkage algorithm. For instance, when the source data are
in binary form (as in our case), the single and complete
linkage algorithms do not give a smooth progression of the
distances [20]. For this reason, when the source data are in
binary form, the viable linkage algorithms actually reduce
to the average or weighted average ones.
In the specialized literature, it is easy to find numeric

indexes driving the choice of a specific linkage algorithm,
such as the “cophenetic correlation coefficient” [48,49].
The cophenetic correlation coefficient, ccoph, gives a

measure of the concordance between two matrices: D, the
matrix of the distances and Δ, the matrix of the ultrametric
distances. It is defined as

ccoph ¼
P

i<jðdij − hDiÞðδij − hΔiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i<y ðdij − hDiÞ2 Pi<j ðδij − hΔiÞ2

q ; ð6Þ

where dij is the distance between elements i and j in D, δij
is the ultrametric distance between elements i and j in Δ;
i.e., the height of the link at which the two elements i and j
are first joined together, and hDi and hΔi are the average
of D and Δ, respectively.
The higher the ccoph values, the more the matrix Δ is

actually representative of matrix D and, consequently, the
more the ultrametric distances δij are representative of
distances dij.
The ccoph value is based on the correlation (similar to the

Pearson one [50]) between the original distances13 inD and
the ultrametric distances given by the linkage type (con-
tained in a new matrix, Δ) and it evaluates how much the
latter are actually representative of the former. More
precisely, the cophenetic coefficient is a measure of how

faithfully a dendrogram preserves the pairwise distances
between the original unmodeled data points.
Although useful in helping to choose the optimal linkage

(in the sense of a linkage that does not distort the distance
matrix excessively), the cophenetic coefficient is not free of
critical issues.
In fact, as a Pearson-like correlation coefficient, it tries to

quantify the “goodness” of a possible linear relationship
between D and Δ under the hypothesis that these two
matrices are statistically independent. However, this
hypothesis is not generally verified, and in many cases
the relationship between D and Δ may not be monotonic.
Moreover, even in the case of a linear relationship between
the corresponding values of the two matrices (and therefore
a high value of the cophenetic coefficient), the difference
between these may not be small.
These critical issues can be overcome by the methodology

proposed by Merigot et al. [51]. They discuss a method
based on measuring the distance between the two matricesD
and Δ. In this way the goodness of the linkage to be used is
quantified in terms of a distance. However, the metric
proposed by the authors is, in many cases, not effective
because it returns the same distance values for different types
of linkages, thus failing to discriminate between them. So,
we here propose the following definition of distance between
two corresponding elements of D and Δ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

X
j

ðdij − δijÞ2
s

; ð7Þ

which is inspired by the well-known Frobenius norm [52]
and is a matrix 2-norm. The smaller the value of this
expression, the smaller the distance between the two
matrices will be, minimizing the distortion introduced by
the type of linkage. As we will show later, the values
obtained are better differentiated with respect to the values
obtained through the cophenetic coefficient, and therefore
the results obtained by using Eq. (7) seem to be useful to
select the optimal linkage.
Finally, we note here that the use of a matrix norm does

not need any hypothesis on the relationship between the

TABLE II. Silhouette values for clusters depicted in Fig. 3. The confidence intervals are reported according to a significance level (CI)
of 95%.11

Number
of clusters(q)

Silhouette average value
hSðqÞi (CI)

Silhouette average value
for cluster hSðqÞik, k ¼ 1;…; q (CI)

3 0.795 (0.780–0.805) k
1 2 3

0.953 (0.951–0.956)) 0.79 (0.78–0.81) 0.66 (0.63–0.68)

4 0.729 (0.711–0.744) k
1 2 3 4

0.953 (0.951–0.956) 0.67 (0.64–0.69) 0.77 (0.74–0.79) 0.44 (0.40–0.47)

13It is worth noting here that hierarchical clustering methods are
much less influenced by the type of metric chosen than non-
hierarchical clustering methods.
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distance and the ultrametric distance. So, this method can
be more efficient and flexible than the one based on
cophenetic correlation, because it can be indifferently used
for each linkage algorithm.

B. Stopping criteria

Reading a dendrogram and finding clusters in it can be a
rather arbitrary process. There is not a widely accepted
criterion that can be applied to determine the distance
values to be chosen for identifying the clusters. Different
criteria, named stopping criteria, aimed at finding the
optimal14 clustering solution are discussed in the literature
(see, for example, Springuel [50]). Many of these cannot be
applied to non-numeric data, as is our case, and no one
criterion is recognized as the ultimate way to decide what
the best clustering solution to a specific situation should be.
Here we discuss some of these criteria, and we will jointly
use them to find a solution that is based on an agreement
among them. The first one involves the calculation of the
inconsistency coefficient (Ik) [53]. The second is known as
the variation ratio criterion (VRC) [54]. The third one is
proposed here by us and will be called the cluster differ-
entiation coefficient (CDC).
One way to find the largest number of clusters that can be

considered distinct from each other in a cluster tree is to
compare the height of each link with the heights of
neighboring links below it in the tree. A link that is
approximately the same height as the links below it
indicates that there are no distinct divisions between the
objects joined at this level of the hierarchy. These links are
said to exhibit a high level of consistency because the
distance between the objects being joined is approximately
the same as the distances between the objects they contain.
On the other hand, a link whose height differs noticeably
from the height of the links below it indicates that the
objects joined at this level in the cluster tree are much
farther apart from each other than their components were
when they were joined. This link is said to be inconsistent
with the links below it.
The relative consistency of each link in a hierarchical

cluster tree can be quantified through Ik. This coefficient
compares the height of each link in a cluster tree made of N
elements with the heights of neighboring links above it in
the tree. The calculations of inconsistency coefficients are
performed on the matrix of the ultrametric distances Δ
generated by the chosen linkage method.
We consider two clusters, s and t, whose distance value

is reported in matrix Δ and that converge in a new link
k (with k ¼ 1; 2;…; N − 1). If we indicate by δðkÞ the
height in the dendrogram of such a link, its inconsistency
coefficient is calculated as follows:

Ik ¼
δðkÞ − hδðkÞin

σn(δðkÞ)
; ð8Þ

where δðkÞ is the height of the link k, hδðkÞin is the mean
of the heights of n links below the link k (usually n ¼ 3
links are taken into account), and σn(δðkÞ) is the standard
deviation of the heights of these n links.
Equation (8) shows that a link whose height differs

noticeably from the height of the n links below it indicates
that the objects joined at this level in the cluster tree are
much farther apart from each other than their n compo-
nents. Such a link has a high value of Ik. On the contrary, if
the link k is approximately the same height as the links
below it, no distinct divisions between the objects joined at
this level of the hierarchy can be identified. Such a link has
a low value of Ik.
The higher the value of this coefficient, the less con-

sistent is the link connecting the students. A link that joins
distinct clusters has a high inconsistency coefficient; a
link that joins clusters that should be indistinct has a low
inconsistency coefficient.
In the specialized literature [48], the Ik value of a given

link is considered by also taking into account the ultra-
metric distance of the link, in order to avoid a too low or
too high fragmentation15 of the sample clusters.
Once Ik has been used to find the highest number t

of clusters that can be identified, we must consider that
they could still be merged together in different ways or
“configurations” of q clusters ðq ≤ tÞ to obtain the optimal
clustering solution, which in our case can mean to obtain
the maximum information on the sample we are studying.
Cowgill et al. [55] obtain the best clustering solution to a

given problem by using the VRC (without specifying what
this “best” solution actually means). This coefficient relates
the best clustering solution to two factors: high cluster
separation and/or high cluster compactness. For a given
configuration of N elements in q clusters, this value is
defined as

VRC ¼ BGSS
q − 1

=
WGSS
N − q

: ð9Þ

Here within group squared sum (WGSS) represents the
sum of squares of the distances between the elements
belonging to a same cluster. A low WGSS value is related
to the cluster elements being tightly packed, i.e., to the
cluster compactness. Between group squared sum (BGSS),
on the other hand, defines the sum of squares of the
distances between elements of a given cluster group and the

14The meaning of the “optimal” clustering solution will be
clarified below.

15A “too low” fragmentation is here to be intended as a situation
where one or two big clusters are produced, which do not allow
us to effectively describe the sample behavior. A “too high”
fragmentation means that many small clusters, containing only a
few students, are produced.
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external ones. A high value of BGSS corresponds to clearly
distinct clusters.
According to Calinski and Harabasz [54], the larger the

VRC value, the better the clustering solution. On the other
hand, it is easy to see that when the number of clusters
q increases, the WGSS markedly decreases, making the
VRC an increasing function of q independent of the cluster
separation. As a consequence, VRC alone may not be
sufficient to choose the best clustering solution for the
problem analyzed [56].
Generally speaking, we are interested in obtaining

information about the sample we are studying that depends
on both the cluster separation and their number.16 In fact,
when we obtain many clusters, we can characterize the
sample by means of many typical student behaviors, one
for each cluster. However, this leads to a characterization
that is significant for the researcher in physics education
only if the clusters are also clearly distinct from each other.
For this reason, in order to quantitatively study information
about the sample, we take into account two parameters:
the number of clusters and their distinctness,17 and define
the product between them. Taking into account our data, the
cluster distinctness tends to increase as the number of
clusters increases, reaching a maximum value and then
starting to decrease again, at least within a certain range of
clusters.18 Therefore, the product between the number of
clusters and the cluster distinctness will have a nonmono-
tonic behavior with respect to the number of clusters. Its
maximum value will give us the maximum information
about the sample. It is worth noting here that for our
purposes it is not sufficient to consider the number of
clusters corresponding to the maximum distinctness, as we
are interested in finding as many as possible, still clearly
distinct, clusters and not just the maximum of distinctness.
For example, a solution with three clearly distinct clusters is
more significant than a two-cluster solution with greater
distinctness as the former allows us to find a higher number
of typical behaviors in the sample.
Following the above discussion, we define the CDC as

follows:

CDC ¼ 4q

N2l
� q

2

� X
i¼1…q

X
j¼1…q

ninjΘij ð10Þ

where ni and nj are the number of elements in clusters i and
j, respectively, Θ is the “distinctness” of clusters i and j,
defined as the number of components of cluster i and j

centroids19 that are different from each other, l is the total
number of centroid components, and ðq

2
Þ is the number of

combinations of q elements taken two at a time. The factor

4

N2l
� q

2

�

is needed to normalize the CDC value with respect to the
total number of clusters.
According to this definition, the higher the CDC value

for a given cluster configuration, the greater the amount of
information we obtain from it.
Finally, we note that the maximum of cluster distinctness

we obtain is a relative maximum. Nothing permits us to
think that in another range of values, for example, for a
much higher number of clusters, distinction may start to
increase again. However, too many small clusters could
make the sample analysis less interesting for the researcher,
as many “microbehaviors” related to the various clusters
are found and must be explained.
In conclusion, we suggest that the optimal clustering

solution for our problem may be the one for which both
VRC and CDC have their maximum values.
It is worth noting that both VRC and CDC criteria can

also be used when we want to obtain the best clustering
solution by using the k-means algorithm, as they are
independent of the specific clustering method used.

VI. A BRIEF COMPARISON OF THE TWO
CLUSTERING METHODS

A strong point of the k-means method is certainly the
greater ease of computer implementation and of reading
the results with respect to the H-CLA method. In fact, the
two-dimensional graph immediately allows the reader to
have an overall view of the partition of the sample under
examination. Reading dendrograms is much more difficult
and less intuitive. However, dendrograms can provide more
detailed information, but above all a greater robustness
of the variable used to measure the similarity between the
cluster elements. In particular, in the case of k means, we
are obliged to use a distance that is Euclidean, while in the
case of dendrograms there is no need to use Euclidean
metrics, and similarity and/or dissimilarity can be used.
The only constraint in hierarchical clustering consists in

having a function that is monotonic. From this point of
view, the dendrogram appears to be more flexible and less
tied to the particular methodology used to estimate the
similarity between elements. Furthermore, in the case of
dendrograms it is not necessary to know a priori the

16Many well distinct clusters give better information about the
sample than a few clusters, not well distinct from each other.

17The distinctness of two clusters i and j can be measured as
the number of components of cluster i and j centroids that are
different from each other.

18We studied the cluster distinctness as a function of the cluster
number ranging from two to ten clusters.

19For centroid, we here understand an array whose components
are the answers most frequently given to the questions by the
cluster students as in the NH-CLA case.
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number of clusters into which the dataset is to be parti-
tioned. On the other hand, the determination of the optimal
cluster number, as we have shown, is more complex than in
the k-means method.

VII. CHARACTERIZATION OF CLUSTERS

Once the appropriate partitioning of data has been found
(for both nonhierarchical and hierarchical clustering), the
educational researcher is interested in characterizing each
cluster, in order to make sense of what the partition means
in pedagogical terms. A possible way to do this is to study
the answering strategies most frequently used by the
students in each cluster. According to Springuel et al.
[23], only strategies that are used by at least 75% of the
cluster students can be considered cluster “prominent
characteristics” and are to be used to characterize the
cluster. Another possibility is to consider, for each cluster,
the centroid array and say that it “well characterizes” its
cluster if a high percentage (let us say at least 60%) of the
components of each cluster student array are equal to the
components of the centroid array. When this percentage is
lower, we cannot say that the cluster is well characterized
by its centroid, but we can still talk about “emerging
behaviors” in the cluster. In other words, when the
percentage of each cluster student’s answers in common
with those of the cluster centroid is lower than 60%, it may
still be possible to identify in the cluster specific behaviors,
but the centroid cannot be considered as truly representative
of the whole cluster.
In the following sections we will present an application of

the two CLA procedures we described above to the analysis
of real data from the administration of an open-ended
questionnaire to a group of high school students. We aim
to show how CLA procedures can be useful to characterize
student groups according to the typical ways they tackle the
problems and situations proposed in the questionnaire,
without any prior researcher knowledge of what form those
groups would take. We will also briefly discuss the meaning
of the characterization in terms of the answers given by the
students to the questionnaire, However, we will not elaborate
the pedagogical implications of the characterization results,
as our main aim is to show the raw results that the two CLA
procedures provide to the researcher, comparing them and
searching for mutual coherence.

VIII. AN EXAMPLE APPLICATION

Our sample consists of 117 Italian students (aged 18–19)
attending the last year of their 5-year secondary school
course. They have completed a questionnaire made up of
six open-ended questions on the concept of models and
modeling. The questionnaire is a revised and shortened
version of the one we used in previous research [10] with
university students, modified in order to adapt it to a
younger sample. It is summarized as follows:

1. Models are widely used in the sciences, but what is,
in your opinion, a model in physics?

2. What is a mathematical model?
3. Are models human creations or do they already exist

in nature?
4. What are the main characteristics of a model?
5. Can any natural phenomena be described or ex-

plained by a model? Explain your answer.
6. Can a natural phenomenon always be expressed by

mathematical formulas? Explain your answer.
A list of 43 typical students’ answering strategies has

been prepared according to the coding procedure described
in Sec. II.20 So, we analyze a binary matrix (modeled on the
basis of the one in Table I) composed of 43 rows and 117
columns. All the clustering calculations are made using
custom software, written in the C language, for the k-means
algorithm as well as for the agglomerative hierarchical
clustering. The graphical representations of clusters in
both cases are produced using the well-known software
MATLAB [57].

A. Nonhierarchical clustering analysis (NH-CLA)

In order to define the number q of clusters that best
partitions our sample, the mean value of the S function
hSðqÞi is calculated for different numbers of clusters, from
2 to 8 (see Fig. 4).21 The figure shows that the best partition
of our sample should be achieved by choosing the three-
cluster solution, as the hSðqÞi value has its maximum for
q ¼ 3. Particularly, hSð3Þi is 0.69, with CI ¼ ð0.65; 0.73Þ.
This indicates that a reasonable cluster structure is found
with q ¼ 3. However, we note that hSð4Þi ¼ 0.63, with
CI ¼ ð0.58; 0.67Þ. So, hSð3Þi and hSð4Þi 95% confidence
intervals intersect, and the four-cluster solution cannot be
easily discarded.22 Therefore, a comparison between the
two solutions is to be done.
Figure 5 shows the representation of the 3-cluster

partition in a two-dimensional graph. The three clusters
show a partition of our sample into groups made up of
different numbers of students (see Table III).
The three clusters Clkðk ¼ 1;…; 3Þ are identified by

their related centroids, Ck. As we have seen, they are the
three points in the graph whose arrays āk contain the

20In the following, 1A, 1B, …, 1E represent the five identified
answering strategies used by students to tackle question 1, 2A,
2B, …, 2H are the eight answering strategies for question 2, and
so on. The complete list is reported in the Appendix.

21As discussed in Sec. IV. A, for each value of q the clustering
procedure was repeated for several values of the initial conditions.
In each case, we selected the cluster solution that leads to the
minimum values of the distances between each centroid and the
cluster elements.

22We should also consider that the confidence intervals of
clustering solutions with q ¼ 7 and 8 also intersect with the
q ¼ 3 solution. However, an excessive fragmentation of the
clustering solution would not be very useful because we would
have many small clusters each with only a few students.
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answering strategies most frequently applied by students
in the related clusters (see Table III). The codes used refer
to the answering strategies for the six questions, as
discussed here. The table also shows the number of
students in each cluster, the mean values of the S function
hSð3Þik (k ¼ 1; ..; 3) for the three clusters, and the reli-
ability index rk of their centroids.
hSð3Þik values indicate that cluster Cl3 is more compact

than the others and more distinct from them, and Cl2 is the
most spread out. Furthermore, the values of rk show that
centroid C3 best characterizes its cluster, whereas C1 is the
centroid that the least characterizes its cluster.
Figure 6 shows the representation of the four-cluster

partition in a two-dimensional graph. Again, the four
clusters Clkðk ¼ 1;…; 4Þ can be characterized by their
related centroids, Ck. Table IV summarizes all the relevant
information as in the previous case.
An inspection of Tables III and IV reveals that the four-

cluster solution, while not being completely distinct from
the three-cluster one in terms of silhouette value, gives
average S values on clusters, hSð4Þik (k ¼ 1;…; 4) gen-
erally lower than in the three-cluster one. Moreover, cluster
C0
3 has an average S value lower than C3, despite being

exactly the same as it, as can be easily verified from the two
clustering solution values. Finally, the CDC values for the
two clustering solutions [CDCð3Þ ¼ 1, CDCð4Þ ¼ 0.8]
help us to conclude that the three-cluster solution is to
be considered the better one from a methodological
point view.

1. Discussion of the three-cluster solution results

The interpretation of ClA results mainly involves the
identification of the typical features characterizing stu-
dents’ answers belonging to the same cluster as well as
differences and similarities in answering strategies of
students belonging to different clusters. The results
reported in the figures and tables shown are clearly global,
as they are related to the answering strategies most
frequently deployed by the students when tackling the
questionnaire. For this reason, we have compared each
student array with the centroid array of the cluster in which
the student is placed, finding that for clusters Cl2 and Cl3
there is at least a 67% accordance. On the other hand, the
student arrays of cluster Cl1 highlight a 50% accordance
with the components of the cluster centroid array.
These results, which are coherent with the rk values

reported in Table III, allow us to conclude that, as discussed
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FIG. 5. K-means graph of the 3-cluster partition of our data.
Each point in this Cartesian plane represents a student. Points
labeled C1, C2, and C3 are the centroids. The x and y axes simply
report the values needed to place the points according to their
mutual distance.
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FIG. 4. Average silhouette values and related 95% CI for
different cluster partitions of our sample. The highest values
are obtained for partitions in q ¼ 3 clusters hSð3Þi ¼ 0.69,
CI ¼ ð0.65; 0.73Þ.

TABLE III. An overview of results obtained by the NH-CLA method: 3-cluster solution.

Cluster centroid C1 C2 C3

āk (Most frequently given answers) 1C, 2B, 3B, 4F, 5E, 6G 1A, 2C, 3B-C-D, 4A, 5A, 6B 1E, 2H, 3F, 4H, 5G, 6H
Number of students 67 37 13
hSð3Þik 0.72, CI ¼ ð0.67; 0.75Þ 0.62, CI ¼ ð0.54; 0.69Þ 0.78, CI ¼ ð0.65; 0.84Þ
rk 0.038 0.044 0.27
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in Sec. VI, the student profiles sketched by the answers in
Cl2 and Cl3 centroid arrays sufficiently characterize the
behavior of the students in those specific centroids. The
centroid array of cluster Cl1, on the other hand, can only
give us information about the “emerging behavior” of
students in that cluster.
We will now describe the answers most frequently given

by the students in each cluster. We will then comment on
the student profiles that can be inferred from these answers,
without going into in-depth pedagogical considerations
about their meaning, as this is not the main aim of
this paper.
Cluster 1
Students in cluster 1 seem to understand the idea of

model in mathematical terms (1C and 2B), and to see a
model as something real and inspired by bigger models that
really exist in nature (3B). They think that it is important
that a model clearly highlights the physical variables found

relevant for a description of the real phenomenon and again
evidence the importance of mathematics in the need to find
the relationships between these variables (4F). For Cl1
students, not all phenomena have been explained, yet,
but they are sure that they will all be, in the future (5E).
Finally, they say that mathematics is the language the
human brain uses to quantitatively describe or explain a real
situation (6G).
Cluster 2
Students in cluster 2 say that a model is something

physically constructed to be a copy of a real object (1A) and
that a mathematical model is a quantitative, basic repro-
duction of a phenomenon that retains its main aspects (2C).
They think that models really exist in nature, and are used
to reflect real situations, or to understand objects (3B-3C).
Some of them, instead, think that models are abstract
constructions and are described by formulas (3D). They are
convinced that a model must represent and describe all the
features of the object it represents (4A) and that there can
exist phenomena that are not described or explained by
models, as it is not always possible to describe a phe-
nomenon by means of physical quantities (5A). Finally,
they say that a real phenomenon cannot always be
expressed by mathematical formulas, as mathematics is
an abstract construction (6B).
Cluster 3
Students in cluster 3 say that a model represents a

phenomenon and its functioning at different levels (1E) and
that a mathematical model represents a phenomenon and
can be used for descriptive or predictive aims (2H). They
think that models are human creations and help us to
understand the world (3F) and that a model should mainly
be expressed by using mathematics and/or accepted by
the scientific community (4H). All natural phenomena can
be described or explained by a model, depending on the
scientists’ skills (5G), and a mathematical formula can
always be used to describe a phenomenon as it is a way to
express relationships between variables (6H)
As it is easy to see, students in cluster 3 are the ones that

best understand the idea of a model, both in physical and in
mathematical terms. Students in cluster 1 show an under-
standing of the model concept and functions more related
to its mathematical aspects. Students in cluster 2 appear to
be the ones with the lowest understanding of the model
concept and functions, as they often identify models with
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FIG. 6. K-means graph of the 4-cluster partition of our data.
Each point in this Cartesian plane represents a student. Points
labeled C1, C2, C3, and C4 are the centroids. The x and y axes
simply report the values needed to place the points according to
their mutual distance.

TABLE IV. An overview of results obtained by the NH-CLA method: 4-cluster solution.

Cluster centroid C0
1 C0

2 C0
3 C0

4

āk (Most frequently
given answers)

1C, 2D-E,
3D-E, 4F, 5E-F, 6G

1A, 2C, 3A-B-C,
4A, 5D-C, 6B

1D, 2H, 3F,
4H, 5G, 6H

1C, 2B-C, 3B,
4E, 5A, 6B-C-D

Number of students 39 22 13 43
hSð4Þik 0.54, CI ¼ ð0.44; 0.62Þ 0.55, CI ¼ ð0.41; 0.65Þ 0.68, CI ¼ ð0.44; 0.79Þ 0.73, CI ¼ ð0.68; 0.77Þ
rk 0.030 0.056 0.16 0.064
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real objects and do not think that mathematics can describe
real phenomena as it is an abstract construction.

B. Hierarchical clustering analysis (H-CLA)

In order to apply the agglomerative hierarchical
clustering to our data, we first have to choose the kind
of linkage to use in order to minimize the distortion
due to ultrametric distance. We calculate the cophenetic
correlation coefficient and the 2-normdistance for the
linkages, as reported in Table V.

We choose to use the average linkage since the highest
values for the cophenetic coefficient and the smallest value
for the 2-norm are obtained in this case. It is worth noting
that the larger variability of the 2-norm criterion values
allows us to choose the best linkage with more confidence.
Figure 7 shows the resulting dendrogram of the nested
cluster structure.
In Fig. 7, the vertical axis represents the ultrametric

distance between two clusters when they are joined; the
horizontal axis is divided in 117 ticks, each representing a
student. Furthermore, vertical lines represent students or
groups of students and horizontal lines represent the joining
of two clusters. Vertical lines are always placed in the
center of the group of students in a cluster, and horizontal
lines are placed at the height that corresponds to the
distance between the two clusters that they join.
By describing the cluster tree from the top down, as if

clusters are splitting apart, we can see that all the students
come together into a single cluster, located at the top of
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FIG. 7. Dendrogram of our data. Horizontal and vertical axes represent students and ultrametric distances, respectively.

TABLE V. Cophenetic correlation coefficient values and 2-
norm distance values for different linkage methods.

Type of linkage Ccoph value 2-norm distance value

Single 0.76 5603
Complete 0.69 3528
Average 0.83 1793
Weighted average 0.81 1889
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FIG. 8. Dendrogram of our data. Horizontal and vertical axes represent students and ultrametric distances, respectively. The
inconsistency coefficients are reported and seven clusters (α1, α2, β1, β2, γ, δ, ε) are taken into account.
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the figure. The problem is to identify the “best” clustering
solution.
We start by using the inconsistency coefficient, Ik (see

Sec. V B) in order to see which links could be neglected
because they are inconsistent. It is interesting to note
that the links we neglect due to their high Ik values should
be limited to a range of ultrametric distances that does
not produce too high a fragmentation of the clustering
solution [52].
Figure 8 shows that by neglecting all the cut off (in red)

links (that have high Ik), we can identify in the dendrogram
not more than seven clusters:α1, α2, β1, β2, γ, δ, ε. By
neglecting the links at smaller distances, the clustering
solution would be too fragmented, complicating the search
for significant information to the researcher.
However, in order to best extract information from the

dendrogram, we must identify, by means of the VRC and
CDC criteria, the most significant cluster configuration. It
could be the one with seven clusters, or another composed
of a smaller number of clusters.
Table VI reports the possible cluster configurations that

can be obtained by merging together the seven clusters
found by means of Ik evaluation.

Figure 9 shows the VRC values for the different cluster
configurations. The maximum value is obtained for q ¼ 6,
with configuration C. However, configuration 4A has a
VRC value not so different from 6-C, so it could also be
considered in order to decide which is the best cluster
configuration for the dendrogram of our data.
Figure 10 shows the CDC values for the different cluster

configurations. The maximum value is obtained for con-
figuration 3A, and configuration 4A is next highest. Note
that the CDC value for configuration 6C is markedly lower
than these two. As in Sec. V B we suggested choosing an
H-CLA clustering solution supported by both VRC and
CDC criteria, we can conclude that the best one is 4-A.
Figure 11 shows the 4-A clustering solution. It can be

studied and characterized by analyzing the most frequent
answers to each of the six questions in the questionnaire
and giving them a meaning. Table VII provides significant
information concerning this cluster configuration.

1. Discussion of the four-cluster solution results

As we have already done in the section regarding
NH-CLA, we will now describe the answers most fre-
quently given by the students in the four clusters α, β, γ, and

TABLE VI. Possible cluster configurations obtained by merging together the seven clusters found by means of Ik evaluation.
α ¼ α1 ∪ α2; β ¼ β1 ∪ β2.

Configurations

No. of clusters A B C D

2 α ∪ β ∪ γ; δ ∪ ε � � �
3 α; β ∪ γ; δ ∪ ε α ∪ β ∪ γ; δ; ε
4 α; β; γ; δ ∪ ε α; β ∪ γ; δ; ε α1; α2; β ∪ γ; δ ∪ ε
5 α; β1; β2; γ; δ ∪ ε α; β; γ; δ; ε α1; α2; β; γ; δ ∪ ε α1; α2; β ∪ γ; δ; ε
6 α; β1; β2; γ; δ; ε α1; α2; β; γ; δ; ε α1; α2; β1; β2; γ; δ ∪ ε
7 α1; α2; β1; β2γ; δ; ε � � �
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FIG. 9. VRC values for the different cluster configurations
obtained by means of H-CLA methods.
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FIG. 10. CDC values for the different cluster configurations
obtained by means of H-CLA methods.
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δ ∪ ε. Then, we will briefly comment on the student
profiles that can be inferred from these answers
Cluster α
Students in cluster α see a model as something physically

constructed to be a copy of a real object (1A) and that a
mathematical model is a quantitative reproduction of a
phenomenon that retains its main aspects (2C). They think
that models are described by formulas (3D) and that a
model must represent and describe all the features of the
object it represents (4A). Moreover, they think that there
can exist phenomena that are not described or explained by
models, and some that cannot be described by means of
physical quantities (5A). Finally, they say that a natural
phenomenon cannot always be expressed by mathematical
formulas, as mathematics is an abstract construction (6B).
Cluster β
Students in cluster β see a model as simply a formula to

be used to describe a physical phenomenon (1C) and a
mathematical model as a symbolic representation of a
phenomenon (2D). For them a model is a real object that
is inspired by preexisting real natural models (3B), and it
must be able to account for the features of reality that are
of practical interest (4E). Moreover, they seem to confuse
nature with the descriptions or explanations physics gives
of it (5B) and think that a natural phenomenon can always
be described in mathematical language because a math-
ematical demonstration is always possible (6E). In
summary answers to the questions by students in β
highlight an approach to the idea of model that is strictly
mathematics inspired and linked to the idea of model as a
real object.

Cluster γ
Students in cluster γ see a model as simply a formula, to

be used to describe a physical phenomenon (1C) and a
mathematical model as a formula aimed at solving prob-
lems (2E) or as a way to construct argumentations or
demonstrate hypotheses (2G). According to them, models
are abstract constructions, described by mathematical
formulas (3D) or used to build theories of the world
(3E), and they must highlight the physical quantities that
are useful for the description of the phenomenon and its
mathematical relationships (4F). They say that not all
phenomena have been explained, yet, but they will be in
the future (5E), and think that a natural phenomenon can
always be expressed by mathematical formulas because
mathematics is the language we use to this aim (6G).
Students in γ see models as abstract constructions that, by
using mathematics, can describe natural phenomena, now
or in the future.
Cluster δ ∪ ε
Students in cluster δ ∪ ε say that a model represents a

phenomenon and its functioning at different levels (1E) and
that a mathematical model represents a phenomenon and
can be used for descriptive or predictive aims (2H). They
think that models are human creations and help us to
understand the world (3F) and that a model should mainly
be expressed by using mathematics and/or accepted by the
scientific community (4H). All natural phenomena can be
described or explained by a model, depending on the
scientists’ skills (5G), and a mathematical formula can
always be used to describe a phenomenon as it is a way to
express relationships between variables (6H)

FIG. 11. Dendrogram plot of our sample in which four clusters (α1 ∪ α2, β1 ∪ β2, γ, δ ∪ ε) are clearly highlighted.

TABLE VII. An overview of results obtained by the H-CLA method: 4-cluster solution.

Cluster α ¼ α1 ∪ α2 β ¼ β1 ∪ β2 γ δ ∪ ε

Most frequently
given answers

1A, 2C, 3D,
4A, 5A, 6B

1C, 2D, 3B,
4E, 5B, 6E

1C, 2E-G, 3D-E,
4F, 5E, 6G

1E, 2H, 3F,
4H, 5G, 6H

Number of students 36 37 28 16
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Some more considerations about students in clusters β
and γ, which appear to highlight different levels of under-
standing with respect to the model concept, will be made at
the end of the following section.

IX. A COMPARISON BETWEEN NH-CLA
AND H-CLA RESULTS

We now discuss how the results we obtained by using
hierarchical and nonhierarchical analysis methods can be
compared in order to study their differences and possible
coherence aspects, trying to see if one of the two methods
allows the researcher to obtain a finer grain detail of the
student’s ways of answering the proposed questions. As
Meila et al. [58] point out: “Just as one cannot define a
best clustering method out of context, one cannot define a
criterion for comparing clusters that fits every problem.”
Many coefficients have been identified to compare two
partitions of the same data set obtained with different
methods, but the majority of them are not applicable to our
data as they are in binary form. However, a criterion called
variation of information (VI) can be applied in our case. It
measures the difference in information shared between two
particular partitions of data and the total information
content of the two partitions. In this sense, the smaller
the distance between the two clustering solutions, the
more these are coherent with each other, and vice versa.
VI values can be normalized to the 0–1 range: a value
equal to 0 indicates very similar clustering results, and
a value equal to 1 corresponds to very different ones.

Meila et al. [58] supply all the details for VI calculation as
well as examples of its application.
We calculated the value of VI to compare the 3-cluster

results of the k-means method with the 2-cluster, 3-cluster,
4-cluster, 5-cluster, and 6-cluster results of the H-CLA
method (summarized in Table VI) and obtained the values
shown in Fig. 12.
We conclude that the best agreement can be found

between the 3-cluster solution of the k-means method
and the 4A clustering results of the H-CLA method, as
the VI value between these solutions is the lowest. We note
that this result somehow supports our previous decision to
consider solution 4A as the best H-CLA one, considering
the higher value of VI obtained for solution 6-C (that, we
recall, gave the higher VRC value, as shown in Table VI
and Fig. 9).
Therefore, although the two partitions of our student

sample obtained by applying the NH-CLA and H-CLA
methods are different, they are similar in terms of infor-
mation conveyed. It is worth noting that the characteriza-
tion via the dendrogram should also allow us to obtain more
detail. In fact, as is detailed below, students in NH-Cl
cluster Cl1, which turns out to be very extensive with a
large number of students and a low value of rk, are basically
redistributed into three clusters of the H-CLA solution.
By individually looking at each student placed in the

clusters found by means of the two methods (see
Table VIII), we can see that in the H-CLA 4-cluster
configuration, we have a redistribution of the students
originally assigned by NH-CLA to the three clusters shown
in Fig. 5 and Table III. Particularly, students in clusters Cl1
and Cl2 are mainly assigned by H-CLA to clusters α, β,
and γ. Students assigned by NH-CLA to cluster Cl3, on the
other hand, stay in a single cluster, i.e., δ ∪ ε. Going into
more detail, we also note that cluster α contains five
students assigned by NH-CLA to cluster Cl1; cluster β
also contains four students assigned by NH-CLA to cluster
Cl2; and cluster δ ∪ ε contains two students placed in Cl2
and one placed in Cl1. These students are 12 in all and are
labeled in Fig. 13, from where it is clear that they mainly
stay in the borderlands of Cl1 and Cl2.
Finally, some observations can be made about the

improvement in the information that can be gained by
considering the results obtained by means of H-CLA. In
fact, as described at the end of Sec. VIII, the main
difference between the results of NH-CLA and H-CLA
is that the big NH-CLA cluster Cl1 is split by H-CLA into
two smaller ones, β and γ. Cluster β mainly contains
students that understand the model idea and functions in

2 3 4 5 6 7
q (No. of clusters)

0.1

0.15

0.2

0.25

0.3

0.35

V
I

Conf 6-B

Conf 6-A

Conf 2-A

Conf 3-B

Conf 3-A
Conf 4-C

Conf 4-B

Conf 4-A

Conf 5-D

Conf 5-B

Conf 5-A

Conf 5-C

Conf 6-C

Conf 7-A

FIG. 12. VI values calculated between the 3-cluster results of
the k-means method and each of the clustering results of the
H-CLA method, as summarized in Table VI. The x axis reports
the number of clusters in the various H-CLA results.

TABLE VIII. Redistribution of students placed in NH-CLA clusters into H-CLA clusters.

Cluster α ¼ α1 ∪ α2 β ¼ β1 ∪ β2 γ δ ∪ ε

Students in cluster obtained by the k-means method ð31ÞCl2 þ ð5ÞCl1 ð33ÞCl1 þ ð4ÞCl2 ð28ÞCl1 ð13ÞCl3 þ ð2ÞCl2 þ ð1ÞCl1
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mathematical terms (but also think that a model is a
concrete, real object) and think that physics is nature itself.
Students in cluster γ, on the other hand, seem to have a
more advanced understanding of the model idea and
functions, as they see a model as an abstract construction
that can explain natural phenomena. However, students in γ
still see a model in mathematical terms, thinking that it is a
formula used to highlight the relationships between vari-
ables measured in experiments.

X. CONCLUSIONS

The use of cluster analysis techniques is common in
many fields of research such as, for example, information
technology, biology, medicine, archeology, econophysics,
and market research. In the field of education, only a
limited number of examples of the application of CLA are
available, and many aspects of the use of the various
available techniques have been little studied to reveal their
strength and weakness points.
In this paper we described a nonhierarchical clustering

method, k-means, which allows the educational researcher
to separate students into groups that can be recognized and
characterized by common traits in their answers to a
questionnaire. It is also possible to represent these groups
in a two-dimensional Cartesian graph containing points that
represent the students of the sample on the basis of their
mutual distances, related to the mutual correlation among
students answering the questionnaire. Each of the clusters
found by the analysis can be characterized by a point, the

“centroid,” represented by the answers most frequently
given by the students comprising the cluster.
Following this, we described a different method of

analysis, based on hierarchical clustering. This method
allows the researcher to visualize the clustering results in a
graphical tree, called a “dendrogram,” which shows the
links between pairs and/or groups of students on the basis
of their mutual ultrametric distances. Each cluster can be
characterized on the basis of the answers most frequently
given by the students in it. Again, functions and parameters
useful to evaluating the reliability of the results have been
discussed.
An application of these two methods to the analysis of

the answers to a real questionnaire has been given, in order
to clearly show the choices that the researcher must make
and what parameters they must use in order to obtain the
best partitions of the whole student group and to check the
reliability of the result. In order to study the coherence of
the results obtained by using hierarchical and nonhierarch-
ical clustering methods, we compare the results to each
other. We found that two of the three clusters found by
NH-CLA are also present in H-CLA, yet the other is
further split, and can thus be better characterized, by means
of H-CLA. In fact, the NH-CLA cluster Cl1, which is the
one worst characterized by its centroid (see the rk value in
Table III), is split by H-CLA into two smaller clusters.
The answering strategies most frequently used by the
students in these two new clusters allow us to isolate
student behaviors that were not completely highlighted in
the analysis of the student profile emerging from the
NH-CLA cluster Cl1.
We can conclude that theNH-CLAmethod we discussed

here allows the researcher to easily obtain and visualize
in a 2D graph a global view of student behavior with
respect to the answers to a questionnaire and to obtain a
first characterization of student behavior in terms of their
most frequently used answering strategies. The H-CLA
method, on the other hand, although producing a graph that
is not as easy to read as the one produced with the other
method (dendrogram vs Voronoi diagram), allows the
researcher to obtain results coherent with the NH-CLA
ones and that may offer a finer grain detail of student
behavior.

APPENDIX: QUESTIONNAIRE AND RELATED
ANSWERING STRATEGIES USED BY STUDENTS

FOR EACH QUESTION

1. Models are widely used in science and mathematics,
but what, in your opinion, is a model in physics?

1A. It is a constructed copy of a real object that we use to
study it.

1B. It is a scale or life-size copy of a real object, aimed at
helping us to interact with it and/or describe it.

1C. It is a formula that we use to describe a physical
phenomenon.

FIG. 13. K-means graph of the 3-cluster partition of our data.
The numerically labeled points represent 12 students that in the
4-cluster H-CLA configuration 4A are placed into clusters α, β,
and δ ∪ ε. The x and y axes simply report the values needed to
place the points according to their mutual distance.
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1D. It is an algorithm that we build to describe a specific
real situation or physical phenomenon.

1E. It is a representation of a phenomenon, which
accounts more or less accurately for its functioning.

2. And what is a mathematical model?
2A. It is a reproduction of an object by means of a

geometrical shape.
2B. It is a way to mathematically describe objects.
2C. It is a quantitative, but basic reproduction of a

phenomenon.
2D. It is a symbolic representation of a situation or

phenomenon.
2E. It is a mathematical formula aimed at solving

problems.
2F. It is a quantitative representation of a system, whose

basic elements (variables, sources and contexts) are
connected by relationships (a set of rules).

2G. It is away to express an argumentation or to
demonstrate a hypothesis.

2H. It is a mathematical representation of a phenomenon
that can be used to describe it or predict its evolution.

3. Are models human creations or do they already exist
in nature?

3A. Models really exist in nature and are real life
situations that we use to describe other, more
complex, ones.

3B. Models are real objects and are inspired by preex-
isting real natural models that summarize other real
situations.

3C. Models really exist in nature and are used to
understand other objects, sometimes only imper-
fectly.

3D. Models are abstract constructions and are described
by mathematical formulas.

3E. Many models are creations of the human mind and
are used to build theories of the world.

3F. Models are created by our mind and they allow us to
make sense of natural phenomena. They come from
a continuous interaction with the world.

4. What are the main characteristics of a model?
4A. A model must describe all the features of the object

it represents.
4B. A model must be able to account for all the features

of the phenomenon it represents.
4C. The main model aims is to well describe real life

situations.
4D. A model should be carefully built, so as to describe

a phenomenon well and not be easily substituted by
alternative ones.

4E. It should be able to account for the features of reality
that are of practical interest.

4F. It must highlight the physical quantities that are
useful for the description of the phenomenon, and
their mathematical relationships.

4G. It can be qualitative, semi quantitative or quanti-
tative.

4H. It should be expressed in mathematical language
and/or accepted by the scientific community.

4I. It must be used to make predictions about the future
behavior of physical systems

5. Can all natural phenomena be described or explained
by a model? Explain your answer.

5A. No, some phenomena cannot be described or ex-
plained by models, as there are some that cannot be
described by means of physical quantities.

5B. Yes. A natural phenomenon can always be described
by a physical model, as physics is nature itself.

5C. Yes. It just depends on the scientist’s ability to
carefully reproduce the features of the phenomenon.

5D. Not always. Even the ablest scientist will not be able
to reproduce particularly complex systems (like
weather, or human behavior…).

5E. Not always. Some phenomena still have not been
explained, but they will be in the future.

5F. Yes. A model is simply a way to describe a
phenomenon.

5G. Yes, if the scientist is able to isolate all the variables
that characterize the phenomenon.

6. Can a natural phenomenon always be expressed by
mathematical formulas? Explain your answer.

6A. Yes, but only if it quantitatively describes the entire
real situation.

6B. No, as mathematics is an abstract science.
6C. No, because reality is so complex that it cannot

always be expressed by means of mathematics.
6D. No, because not all phenomena can be quantitatively

described.
6E. Yes, because a mathematical demonstration can

always be performed, so mathematics can always
explain the quantities measured during an ex-
periment.

6F. No, as a real phenomenon can have characteristics
that cannot easily be expressed in mathematical
language.

6G. Yes, because mathematics is the language we use to
quantitatively describe or explain a real situation.

6H. Yes, as mathematical formulas are a way to express
relationships between variables.
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