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We have developed, implemented, and assessed a teaching-learning sequence that aims to enhance
students’ understanding of the divergence and curl of electromagnetic fields. We designed guided-inquiry
worksheets based on student difficulties we identified during semiquantitative and qualitative studies and
discussions in the literature. A multiple representation approach was adopted to strengthen the link between
graphical representations of vector fields, calculations involving divergence and curl, and Maxwell’s
equations in differential form. We used the Design, Functions, Tasks framework to optimize learning with
the multiple external representations exhibited in our learning materials. These guided-inquiry worksheets
used in small-group tutorials comprise short open-ended questions that encourage discussions in
small groups of students. They were implemented in three consecutive years in a second-year
electrodynamics course at KU Leuven. The intervention was assessed using the same pretest and post-
test design adopted to evaluate learning in the original instruction. In addition, we gauged our students’
opinions on the intervention. We observed that our intervention positively affected our students’ structural
understanding of the vector operators, their ability to interpret divergence and curl in graphical
representations of vector fields, and their conceptual understanding of Maxwell’s equations in differential
form. In addition, our students indicated that they enjoyed the teaching approach, felt they learned
something from the worksheets, agreed with the difficulty level of the materials, and would like similar
tutorials on different subjects.
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I. INTRODUCTION

Five mathematical expressions form the foundations of
the theory of electromagnetic phenomena: the Lorentz
force law and Maxwell’s equations. The latter comprise
four fundamental laws, which in differential form read as
follows:

∇ ·E¼ ρ
ϵ0

Gauss’s law

∇ ·B¼ 0 namelesslaw

∇×E¼−∂B
∂t Faraday’s law

∇×B¼ μ0Jþμ0ϵ0
∂E
∂t Maxwell-Ampère’s law

In introductory physics courses, Maxwell’s equations are
typically formulated in terms of line and surface integrals.
In intermediate and advanced courses the differential form
is often more convenient. Writing the four laws in terms of
divergence and curl not only increases the aesthetic beauty
of the mathematical expressions, but also allows, e.g.,
straightforward derivation of the electromagnetic wave
equations. In addition, Maxwell’s equations in differential
form are the starting point for gauge theory and Einstein’s
theory of special relativity, both historically and in many
physics curricula. However, a correct interpretation of these
equations is a challenging task, since it requires the use of
advanced mathematical knowledge in a physics context.
The use of mathematics in physics is an important topic

in physics education research [1–8]. Various studies report
that students struggle to incorporate their mathematical
knowledge into physics, because they focus on equations
and calculations rather than on the underlying concepts
[9–11]. As a result students generally develop a decent
operational understanding, since they are acquainted with
the mathematical processes, algorithms, and actions, but
lack structural understanding of the meaning of the

*Laurens.Bollen@kuleuven.be
†Paul.van.Kampen@dcu.ie
‡Mieke.DeCock@kuleuven.be

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 14, 020115 (2018)

2469-9896=18=14(2)=020115(18) 020115-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.14.020115&domain=pdf&date_stamp=2018-11-09
https://doi.org/10.1103/PhysRevPhysEducRes.14.020115
https://doi.org/10.1103/PhysRevPhysEducRes.14.020115
https://doi.org/10.1103/PhysRevPhysEducRes.14.020115
https://doi.org/10.1103/PhysRevPhysEducRes.14.020115
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


mathematical entities used in physics [12,13]. For
example, students who see divergence and curl merely
as the process of adding or subtracting partial derivatives of
a vector function have an operational understanding of the
concepts; students who see divergence as an object repre-
senting the source of a volume flux density, or curl as an
infinitesimal rotation, that can be compared at various
points and represented in various ways, have a structural
understanding.
To enhance students’ understanding of the use of vector

calculus in electrodynamics, we have adopted the research-
based course transformation procedure patterned after
Chasteen et al. [14] shown in Fig. 1. In answer to the
question “What should students learn?”, we established a
set of learning goals based on results from earlier studies,
teaching and learning experiences, course textbooks, and
aims of electrodynamics modules. We distinguish four
skills or competencies that our students need to acquire
regarding the use of vector calculus in electrodynamics:
(i) structural understanding [12,13] of the vector operators,
(ii) calculation of divergence and curl, (iii) graphical
interpretation of vector fields in terms of divergence and
curl, and (iv) conceptual understanding of Maxwell’s
equations in differential form.
In order to formulate an answer to the question “What are

students learning?”, we conducted multiple qualitative and
semiquantitative studies. Based on the list of learning goals,
we developed and administered written questionnaires to
probe students’ use of the vector operators in mathematics
and electromagnetism contexts. The pretests and post-tests
were given before and after instruction, and were com-
pleted individually without recourse to textbooks or other
resources. This pretest and post-test design allowed us to
evaluate students’ knowledge before and after the original
instruction at KU Leuven and St Andrews, and document
student difficulties with divergence and curl in mathemati-
cal and electromagnetic contexts at KU Leuven, St
Andrews, and Dublin City University (DCU) [15,16]. By
conducting eight semistructured student interviews, we
gained a better understanding of our students’ reasoning
processes and were able to identify the elements that cue

correct application of the vector operators and Maxwell’s
equations in differential form [17]. A follow-up study
probed students’ abilities to interpret, construct, and switch
between different representations of vector fields [18].
In this article, we intend to answer the question “How

can we improve student learning?” The research aims of
this study may be summarized as follows:
(1) develop a research-based teaching-learning sequence

on divergence and curl in mathematics and physics
contexts that uses amultiple representation approach;

(2) implement the materials developed in small-group
tutorials that engage students and evoke student
discussions in the electrodynamics course;

(3) assess the intervention in both a semiquantitative
and qualitative way:
(a) evaluate the effectiveness of the intervention by

comparing post-test results with pretest results
and findings after the original instruction;

(b) determine student opinions on the tutorials.
In Sec. II, we discuss how we developed guided-inquiry

worksheets based on the student difficulties with vector
calculus in mathematics and physics identified in the
literature and in our own studies. The implementation of
the tutorials at KU Leuven is described in Sec. III. In
Sec. IV the effectiveness of the intervention and results
from informal evaluation by the participating students are
presented. In Sec. V we summarize the most important
conclusions, discuss the significance of these results, and
discuss implications for instruction.

II. DEVELOPMENT OF RESEARCH-BASED
LEARNING MATERIALS

In this section we discuss the empirical and theoretical
foundations we used to develop learning materials that help
students improve their understanding of divergence and
curl in electrodynamics. In Sec. II A, results regarding
student difficulties with vector calculus in mathematics and
physics from literature and our own studies are discussed in
detail. In Sec. II B, we use the DeFT framework [19–21] to
explain aspects that optimize learning with multiple rep-
resentations. The key content selection is discussed in
Sec. II C. The main principles on which the research-based
worksheets were designed are exemplified in Sec. II D.

A. Summary of results from investigations
into student difficulties

As the learning materials are based on the student
difficulties identified in our earlier studies [15–18] and
in the literature, we first describe the most important
findings regarding students’ understanding of vector fields
and vector calculus in mathematical and electromagnetic
contexts. We discuss student difficulties with vector field
representations (Sec. II A 1), their structural understanding
of the vector operators (Sec. II A 2), their ability to perform
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FIG. 1. A model of research-based course transformation.
Adapted from Ref. [14].
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calculations with divergence and curl (Sec. II A 3), their
skillfulness to interpret graphical representations of vector
fields in terms of divergence and curl (Sec. II A 4), and their
conceptual understanding of Maxwell’s equations in differ-
ential form (Sec. II A 5).

1. Difficulties with vector field representations

A vector field may be expressed symbolically, or
visualized as a field line diagram or field vector plot. By
conducting a research study at four European universities
[18], we established an overview of the difficulties students
encounter when switching between algebraic and graphical
representations of vector fields. Gire and Price [22,23] also
reported on a variety of errors students make when
sketching graphical representations of vector fields, and
argued that instructors should be aware that some repre-
sentational features may have two potential meanings (e.g.,
length meaning both distance between points and strength
of a field) or do not directly correspond to what is being
represented (e.g., smaller spacing of field line diagrams
corresponds to a greater magnitude of the field). Likewise
Fredlund et al. [24] deemed it important that instructors
take time to explain the intended meaning of all the features
of a representation. We share the view that students may
benefit from instruction that focuses on teaching students
how to construct, interpret, and switch between symbolic
expressions of vector fields, field line diagrams, and field
vector plots.

2. Difficulties with the conceptual meaning
of the vector operators

A limited amount of research deals with students’
understanding of vector operators. Manogue and Dray
[25] pointed out that in mathematics courses gradient,
divergence, and curl are used in a general and abstract way,
while in physics courses they are mostly used in certain
symmetries (Cartesian, cylindrical, or spherical). They
called this the “vector calculus gap,” and argued that it
is important to eliminate the gap as such differences in
teaching approaches between mathematics and physics
courses confuse students.
We have conducted studies [15,16] at KU Leuven, St

Andrews, and DCU in which we probed second-year
physics and mathematics students’ concept images of
divergence and curl. The concept image is defined as a
unique collection of all the mental processes activated when
a person encounters a certain concept [26]. An open-ended
pretest question asked students to “interpret (i.e., write
down everything you think of when you see) the following
operations: ∇ ·A and ∇ ×A.” When answering this ques-
tion, about half of our students wrote a symbolic expression
for divergence and curl, but fewer than 20% gave a
conceptual explanation. In addition, students’ descriptions
of what divergence and curl represent were mostly inaccu-
rate or incorrect. In individual interviews [17], these

findings were confirmed: many students described diver-
gence as “a measure for the spreading of the field” and curl
as “a measure of bending or rotation of the field.” Such
descriptions resemble nonscientific dictionary definitions
of both words rather than the mathematical concepts. In a
refined version of the pre- and post-test, correct and
incorrect statements about divergence and curl were gath-
ered and students were asked to indicate with which
statements they agreed. We found that difficulties with
the concepts of divergence and curl were common in
various educational contexts. Students mostly relied on
operational understanding and showed little or no structural
understanding of the vector operators. To enhance students’
structural understanding, an intervention should clarify the
meaning of divergence and curl.

3. Difficulties with performing calculations using
divergence and curl

About 60% of the KU Leuven students could calculate
the divergence or curl of a given vector field on the pretest,
which is a high percentage compared to the success rate on
questions related to the other skills and competencies. This
shows students had been well trained in mathematical
techniques in mathematics courses. Since their perfor-
mance in the post-test was even better, we decided that
no further intervention was needed regarding the ability to
perform calculations with divergence and curl.

4. Difficulties with interpreting divergence and curl in
graphical representations

In Sec. II A 1 we discussed students’ difficulties with
vector field representations. Singh and Maries [27] dis-
cussed how graduate students struggle with the interpre-
tation of divergence and curl in field vector plots. They
argued that course materials often focus strongly on solving
mathematically challenging problems rather than on clar-
ifying the underlying concepts. Similar findings were
reported by Ambrose [28], when he asked students to
decide whether curl was zero or nonzero in several field
vector plots. These findings were confirmed and extended
in our studies, in which we asked our students to discuss
where the divergence or curl vanished in certain field vector
plots. [15] Both before and after instruction, less than half
of them gave a correct response. Students were often
inconsistent in their problem-solving strategies and tended
to rely on their intuitive ideas about divergence and curl that
often contradicted mathematical definitions. During the
interviews it became clear that many students tackle
problems that involve vector fields by initially making a
field line diagram or field vector plot of the situation [17].
Since sketching a situation is an important heuristic in
physics problem solving, we decided that our learning
materials would focus on how to switch between various
graphical and symbolical representations of vector fields
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and how to interpret divergence and curl in field vector
plots and field line diagrams.

5. Difficulties with interpreting Maxwell’s
equations in differential form

When using divergence and curl in an electromagnetism
context, it is appropriate to apply Maxwell’s equations in
differential form. However, it is also possible to visualize
the field or set up an algebraic expression of the vector
field and then determine the divergence or curl. A research
project at the University of Colorado [29] included a
question where students are asked to determine where
the divergence of an electric field vanishes for a thin,
nonconductive uniformly charged spherical shell. This type
of question can be solved with the differential form of
Gauss’s law in a straightforward way. However, the authors
reported that only 26% of their students gave a correct
answer. This was in stark contrast to their calculational
success, as students scored 90% on average when asked to
compute the divergence and curl of a vector field given in
Cartesian coordinates. Baily et al. [30,31] also showed that
students in an intermediate electromagnetism course strug-
gle with the concept divergence, and added that learning
about divergence in the context of Gauss’s law does not
necessarily translate to students’ understanding in other
contexts like the continuity equation.
These results are in line with our findings from analyzing

written questionnaires [15] and conducting individual
student interviews [17]. In both studies, we asked students
to interpret situations involving electromagnetic fields in
terms of divergence and curl. This type of question can be
solved using Maxwell’s equations in differential form.
However, as stated before, many students initially made
a sketch of the situation. Both the semiquantitative and
qualitative study showed that students struggled to apply all
four laws correctly and lacked conceptual understanding of
Maxwell’s equations. Their difficulties were often related
to the local character of the laws. For example, many
students stated that the divergence is nonzero everywhere in
space when there is a charge distribution somewhere in
space. The final goal of our intervention is therefore to
improve students’ understanding of Maxwell’s equations in
differential form and enhance their ability to apply those
laws in situations involving electromagnetic fields.
One of the most interesting findings of the qualitative

part of our study was that many students gave different
responses depending on the approach they used: a
calculation, the interpretation of a graphical representa-
tion, or applying Maxwell’s equations. Moreover, the
interviewees were unsure which result was correct and
struggled to argue how all three approaches could lead to
the same response. As a result, our learning materials
strongly rely on using multiple representations and aim to
clarify the link between the different problem-solving
strategies. In the next sections, we discuss in detail on

which elements we focus in the tutorials and give some
excerpts from the worksheets.

B. A multiple representation approach:
The DeFT framework

The information presented in the previous section
suggests that our students experienced difficulties with
linking calculations, field vector plots, field line diagrams,
and Maxwell’s equations in differential form. In addition,
they struggled to use multiple symbolic and graphical
representations in electrodynamics. However, being able
to interpret various representations and being able to switch
between formats of concepts and problems are important
skills that correlate with a deep understanding of the topic
[32,33]. Others have reported that learners similarly did not
exploit the advantages related to the use of multiple
representations in contexts different from ours [34–36],
or struggled to switch between different representations.
[18,33,37] Since using multiple representations is generally
accepted to be an effective instructional approach when
aiming to improve students’ understanding of a certain
concept or operation, [38–46] the materials we developed
strongly focus on students learning to link calculations,
graphical representations, and Maxwell’s equations.
In literature about multiple representations, one often

distinguishes between internal and external representations.
Zhang and Norman [47,48] explained that internal repre-
sentations are mental meanings that have to be retrieved
from memory, like the numerical value of the symbol 7.
External representations can be perceptually inspected
from the environment, like spatial relations between
symbols. Internal and external representations can be
transformed into each other by externalization and inter-
nalization, respectively. Zhang and Norman pointed out
that it is important to be aware of the differences and
dynamics between internal and external representations,
even though most studies only consider one of them.
The majority of research in physics education concerns

external representations. Ainsworth [34,36] discussed
the importance of using multiple external representations
(MER), and described how they can support learning and
problem solving. In other papers, Ainsworth and colleagues
[19–21] developed and discussed the DeFT framework,
which can be used to characterize multirepresentational
learning environments. The Design, Functions, Tasks
(DeFT) framework sets out a number of questions that
designers and teachers should ask in order to provide
effective learning experiences for their students.
To benefit from MERs, students should understand how

every representation presents information, how different
representations relate to each other, and how the most
appropriate representation would be chosen in a specific
context. Three functions of MERs may be distinguished:
to complement, constrain, and construct [34–36]. MERs
can be used in complementary roles, where each of the
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representations may contribute to the information or
process, like when velocity is represented by both an
equation and a v, t graph. The second function of MERs
is to improve students’ understanding of a domain by using
one representation that constrains their interpretation of a
second representation. For example, when students make
the common error of thinking that an object is at rest when
the v, t graph is a horizontal line, a teacher might employ
the constraining, more familiar representation of enacting
motion at constant speed while showing a real-time graph
to support the students’ interpretation of the less familiar
graphical representation. Finally, MERs can help students
to develop a structural understanding (“reification” in the
parlance of Ainsworth), which is the function that is most
appropriate for our project.
The various possible functions of MERs leave many

ways to designmultiple representation approaches that vary
in terms of content, target users, and teaching strategies.
While the choice of approach may influence learning
outcomes, Ainsworth and colleagues [19–21] argued that
there is a set of five design parameters that uniquely applies
to MER approaches: (a) the number of representations,
(b) the form of each representation, (c) the way information
is distributed, (d) the sequence of representations, and
(e) the support for switching between representations.
Taking into account the various functions and design

parameters, theDeFT framework then arrives at the develop-
ment of cognitive tasks. To successfully learn with MERs,
the student should understand (i) how every representation
presents information, (ii) the relation between the different
representations, and (iii) how to choose themost appropriate
representation in a specific context.

C. Design of the materials: Content selection

The learning materials in the teaching-learning sequence
we designed are supplementary to Griffiths’s textbook
[49] and use multiple graphical and symbolic representa-
tions. Many researchers argue that instruction on vector
calculus should use methods that facilitate linking symbolic
expressions and visualizations [30,31,50–54]; our studies
[15,17,18] confirm these statements. By adopting a MERs
approach within the DeFT framework we aimed to improve
students’ abilities to interpret, construct, and switch
between different representations of vector fields, and help
them make sense of the characteristics of divergence and
curl in visualizations of vector fields. As our studies
revealed that vector fields with spherical and cylindrical
symmetry are very challenging for students, and such fields
are very common in physics, the worksheets address such
fields repeatedly.
In individual student interviews [17], we helped students

gain insight into the divergence and curl of electric and
magnetic fields. When answering questions on these topics
students would often spontaneously draw field lines and
use this representation in their reasoning. However, more

often than not this approach led students to erroneous
conclusions: they associated diverging field lines with
nonzero divergence of the electric field, and bending field
lines with nonzero curl of a magnetic field. Most students
were able to revise their reasoning after they had been
prompted to use symbolic representations and had been
given a vector field plot representation. We illustrate in
Sec. II D how these findings influenced the design of two
worksheets.
There are various teaching approaches that could be

used when intervening in a physics course (examples can
be found in Ref. [55]). We opted for an approach based on
guided-inquiry worksheets, each consisting of a set of
structured questions that guide students to reconstruct their
concept images, learn various solution strategies, learn to
switch between different representations, and link math-
ematical entities to physical phenomena. Many studies
[56–66] have confirmed that such an actively engaging
approach is generally more effective than traditional
instruction.
Using the results of the studies mentioned above, we

established that the contents of the worksheets should focus
on helping students to do the following:

• obtain a structural understanding of the mathematical
entities “divergence” and “curl”;

• interpret visualizations of vector fields in terms of
divergence and curl using conceptual approaches:
for example, a box mechanism to decide where the
divergence is nonzero [67] or a paddle wheel approach
to determine where the curl is nonzero [68];

• interpret, construct, and switch between field vector
plots, field line diagrams, and algebraic expressions of
vector fields;

• determine the divergence and curl in vector fields with
1=r2 (spherical) and 1=s (cylindrical) symmetry,
which are exceptional from a mathematical point of
view, but very common in electromagnetism;

• develop a conceptual understanding of Maxwell’s
equations in differential form, with a focus on the
local character of the equations;

• enhance their understanding of the link between
different strategies to determine the divergence and
curl, in both mathematics and physics contexts:
— interpreting graphical representations of vector

fields in terms of divergence and curl;
— calculating and interpreting mathematical expres-

sions involving vector operators;
— applyingMaxwell’s equations in differential form.

We designed five sets of worksheets that can be
implemented in an electrodynamics course. Although they
can be used independently, we think learning will be
optimal if all parts are used. The first two worksheets
concern divergence and curl, respectively, from a mainly
mathematical point of view. Therefore, these tutorials could
also be useful for mathematics instruction. The remaining
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three tutorials link these mathematical concepts to a physics
context, and concern the differential forms of Gauss’s law,
Faraday’s law, and ∇ ·B ¼ 0 and Maxwell-Ampère’s law,
respectively. All sets of worksheets comprise between two
and five pages.
The guided-inquiry questions on the worksheets vary in

terms of format, including but not limited to questions that
should be answered in a few short sentences, computational
problems, questions in which students are asked to con-
struct a sketch or diagram, questions in which students are
asked to discuss student statements, hypothetical debate
problems [69], and questions which ask for an opinion that
requires a deep understanding of a concept or solution
strategy. Typically, the questions try to provoke common
student difficulties and then confront students with a
situation that is not in line with the incorrect ideas.
Some examples are given in Sec. II D. By using the
worksheets in a tutorial format, students are encouraged
to engage in discussions, and many questions include
statements that may evoke such conversations.
Since the tutorials were implemented during multiple

years, we were able to make extensive field notes about the
use of the worksheets and the issues that students encoun-
tered when discussing the questions and their responses.
After each year, we improved or reformulated some of the
questions by taking experiences from tutoring and the post-
test results into account. Consequently, the worksheets
were developed using an iterative approach. The final
version of all five sets of worksheets can be found online
[70]. An instructor’s guide is available upon request.
In the next section we discuss a few typical excerpts from

the worksheets that show how the aforementioned focus
points are brought into practice.

D. Examples of tutorial worksheet design

To give our students every opportunity to benefit from
MERs, we carefully took into account all five design
dimensions that are distinguished in the DeFT framework
when developing the tutorials. The choice of the number of
representations—dimension (a)—was informed both by the
aims of our instruction and our students’ prior attainment
and dispositions. We decided to include three representa-
tions in our tutorials: field line diagrams, field vector plots,
and symbolic expressions. The three representations each
provide important information about the vector fields in
different forms—dimension (b). Each representation con-
veys somewhat different information in different ways and
to a different extent—dimension (c). Symbolic expressions
are precise, analytical, mathematical expressions that
define a vector field or represent Maxwell’s equations
point by point for all space. This representation allows for
precise manipulation and calculation, and contains all
information about the vector field in an abstract way with
explicit use of coordinate systems, some of which may be
unfamiliar to students. Only in situations of extremely high

symmetry are global properties of the field easily gleaned
from this representation. The field line diagram represen-
tation, on the other extreme, provides qualitative informa-
tion about the variation of the field strength and direction in
a region of space, and does so in a way many students have
come to find intuitive. While field line diagrams allow for
easy identification of the location of sources and sinks, they
indicate strength and direction of fields only qualitatively,
do not allow for precise manipulations, and are correlated
with incorrect notions of divergence (see Sec. II A 2). In
between these two extremes lies the field vector plot
representation, which is the least familiar to our students.
While not as precise or easily manipulable as the symbolic
representation, relative field strength and direction are
displayed on grid points in a way that provides easy access
to both point-by-point and global information.
All information is distributed between these three

representations, of which two are graphical and one is
symbolic. Thus our MERs are partly homogeneous and
partly heterogeneous. We chose not to include textual,
pictorial, or audiovisual resources, since we believed that
the three representations chosen afforded our students
a sufficient number of productive vantage points. A
general description of sequencing and switching between
representations—dimensions (d) and (e)—is probably not
fruitful; instead, we will illustrate them in a discussion of
three excerpts from the tasks—the tutorials. We will also
use these excerpts to give specific instances of the functions
of MERs: to complement, constrain, and construct.
An excerpt from the first set of worksheets, the diver-

gence tutorial, is shown in Fig. 2. Here we opted to use just
the two representations that had proven fruitful for the
students we interviewed: a vector field plot and a symbolic
representation. Since students had spontaneously used a
(different) graphical representation, we started with the
vector field plot representation. We asked students to make
a prediction based on this representation and only then
introduced the symbolic representation which allowed
them to calculate the divergence at any position. Thus
dimensions (a)–(d) are easily recognized.
Dimension (e), switching, is where the function of the

MERs comes to the fore and the MER approach becomes
more than the sum of its parts. Here we used a deeper
exploration of the symbolic expression to eventually
constrain possible interpretations of the vector field plot
representation. The calculation of divergence is straightfor-
ward away from the source of this field. Only at the location
of the source the divergence of the field is nonzero. We
chose to give the students a hint that they may need the
delta distribution to describe the nonzero divergence
mathematically. For many students the calculations chal-
lenge their intuitive ideas about divergence being nonzero
everywhere in a 1=sŝ cylindrical field. While the worksheet
leaves it open to students to reconcile their ideas in any way
they want, the tutors are primed to encourage them to
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qualitatively investigate the net flow per volume in the
vector field plot representation and then to apply the
divergence theorem in symbolic representation. Finally,
in preparation for the next tutorial students are asked to
think of a physical field that behaves in this manner.
In Fig. 3, an excerpt of the Gauss’s law tutorial is

presented. It follows the divergence and curl tutorials,
and we feel that our students are now likely to be ready
to use all three representations. Our sequencing mimics that
adopted by our students during the interviews. In the
Gauss’s law tutorial, the switching dimension (e) takes
place at two levels. Students first draw their own field line
diagram, remember or derive an expression for the field in
cylindrical coordinates, and then use the knowledge
acquired in the divergence tutorial to comment on a
hypothetical student’s statement (obtained from the inter-
views) that diverging field lines indicate nonzero diver-
gence. Many students are sufficiently certain about where
divergence is zero and nonzero that they can now use these
MERs without help from the tutors to construct the under-
standing that the start and end of field lines show where
divergence is nonzero in this representation, and that field
lines spreading or coming together is irrelevant. The last two
parts of the excerpt encourage students to strengthen their
understanding of the relation between the vector field plot
representation and the symbolic representation of vector
fields.
Finally, we note that not all aspects were or must be

tackled using MERs. For example, distinguishing the value

FIG. 2. Excerpt of a worksheet used in the divergence tutorial.
In the original format, some blank space was left after every
subquestion for the students to formulate their responses.

FIG. 3. Excerpt of a worksheet used in the Gauss’s law tutorial
in differential form. In the original format, some blank space was
left after every subquestion for the students to formulate their
responses.

FIG. 4. Excerpt of a worksheet used in the Maxwell-Ampère’s
law tutorial in differential form.
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of a field from its derivative proved a persistent difficulty
and recurrent theme in our tutorials. As shown in the
excerpt from the Maxwell-Ampère’s law tutorial (Fig. 4),
students must decide whether the magnetic field, its
divergence, and its curl are zero or nonzero; thus the
notion that the derivative of a function at a point generally
differs from the value of the function at that point is
reinforced. The students also get to consider the two
possible sources of magnetic fields in a single situation:
a current density and a time-varying electric field. Finally,
students are asked to check their solutions for consistency
with Maxwell’s equations.

III. IMPLEMENTATION OF TUTORIALS IN AN
INTERMEDIATE ELECTRODYNAMICS COURSE

The students enrolled in the second-year undergraduate
electrodynamics course at KU Leuven are mainly physics
and mathematics majors. All have completed an introduc-
tory electricity and magnetism course that uses the textbook
by Giancoli [71] leading up to Maxwell’s equations in
integral form, and at least one calculus course with a
chapter on vector calculus, following the textbook by
Adams and Essex [72]. There are 13 weeks to a semester,
and attendance is not compulsory. The course content was
based on Griffiths’s textbook [49]. Before the intervention,
the electrodynamics course comprised one 2 h lecture
session and one 1.5 h problem-solving session per week.
The final exam was based mostly on exercises from the
problem-solving session.
The intervention at KU Leuven was implemented in

three consecutive academic years. The tutorials replaced
parts of lectures and problem-solving sessions on diver-
gence, curl, and Maxwell’s equations in differential form,
but also required about two additional hours being spent on
these subjects [73]. In total, about 5 h were spent on the
tutorials in a small-group setting [74].
As explained in Sec. II, we developed five sets of

worksheets. At the start of the course, a pretest was given
to the students and the divergence and curl tutorials were
implemented. The Gauss’s law, Faraday’s law, and
Maxwell-Ampère’s law tutorials were implemented after
the corresponding chapters in Griffiths’s textbook [49]
were discussed during the lectures. Some time after the
last tutorial, the post-test was given to the students. At KU
Leuven, about 30–40 students are enrolled in the electro-
dynamics course every year. However, since attendance
usually drops during the course of a semester, only about
15–25 students per year completed the post-test.
During the tutorials, the students were greatly encour-

aged to work in small groups of two or three students and
discuss the contents of the worksheets, using teaching
approaches adopted at the University of Washington [58]
and the University of Colorado Boulder [60,65,75]. Not all
students attended all tutorials; there were no alternative
sessions for those who did not. These discussions were

supported by the teaching assistants [76], who provided
guidance for students with the tutorial questions if needed
and asked challenging follow-up questions. They were also
responsible for answering questions about the correctness
of students’ responses, since no written solutions were
given to the students at any point. Student groups worked at
their own pace and were in charge of how much time was
spent on each part of a tutorial. Post-tests were adminis-
tered at the end of the tutorial, so only those who attended a
particular tutorial gave responses to the corresponding
post-test.
While tutorial attendance was not mandatory, the instruc-

tor in charge of the course [77] strongly encouraged the
students to take part. The tutorial content was officially
recognized as examinablematerial in the course description.
Over the years, the context of both the electrodynamics

course and the intervention varied somewhat: the emphasis
during the lectures was modified, the exercises during
the problem-solving session were replaced, the worksheets
in the tutorials were adapted, and the teaching assistants
changed.

IV. ASSESSMENT OF THE INTERVENTION

In this section we discuss the effectiveness of the
intervention and explain to what extent students perceived
the tutorials as being useful and enjoyable. We are con-
vinced that evaluating learning materials is an important
part of the research process that yields valuable informa-
tion about optimizing learning in an intermediate physics
course, and that is why we include this section. However,
the numbers must be interpreted with care. First, the
number of participants was small, especially preinterven-
tion. This is not uncommon for the postintroductory
physics level. Second, we cannot determine with certainty
whether self-selection effects play a role, but we can say
that comparing results preintervention and postintervention
has ecological validity. In both cases, the students were free
to attend lectures and tutorials, or not; and in both cases, the
examinable materials reflected the content of the tutorials.
It cannot be ruled out that some students who did not attend
some or all of our tutorials would have attended the more
regular tutorials, or vice versa, as we have only interviewed
students who attended.
In Sec. IVA, we discuss the post-test results at KU

Leuven in the years the intervention took place, and
compare these to data obtained after both the original
instruction and the pretest results. In all cases, the pretest
took place before tutorial instruction, and the post-test after
all instruction on the topics on hand. We assessed the
effectiveness of the tutorials at KU Leuven with regard to
students’ structural understanding of divergence and curl
(Sec. IVA 1), their ability to interpret the vector operators
in visualizations of vector fields (Sec. IVA 2), and their
conceptual understanding of Maxwell’s equations in differ-
ential form (Sec. IVA 3). In Sec. IV B we explain how our
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students perceived the tutorials and discuss their informal
evaluation of the intervention.

A. Semiquantitative assessment of the
effectiveness of tutorials

To assess the effectiveness of the tutorials we used
the same pretest and post-test design we used to
evaluate learning after traditional instruction. The analy-
sis includes a comparison of the post-test results
(N ¼ 19) after all the original instruction discussed in
our earlier work [15] with post-test results after the three
years in which the tutorials were implemented (N ¼ 60),
where possible. In cases where we refined some of the
post-test questions we limit ourselves to comparing pre-
and post-test results.
For brevity and readability we have chosen to minimize

the numerical information on statistical significance.
However, it is important that we show that the pretest
and post-test data for all three intervention years are
equivalent and may therefore be added together. Since
we use categorical data, Pearson’s chi-squared test provides
a suitable means of discussing whether or not the overall
results were independent of each other. We found that the
post-test data after intervention were statistically the same
in the three years (all p values found by χ2 testing were
larger than 0.05), which allowed us to aggregate them, even
though some conditions like the prior instruction, the
teaching approach during the lectures, the exercises dis-
cussed during the problem-solving sessions, and the ques-
tions asked on the final exam changed in small ways over
the years. We interpret our findings as confirmation that the
tweaks to the lectures and tutorials were indeed “small,”
and that we do not need to take these into account in this
discussion.
For the individual test items the error bars represent the

standard error on the proportion, calculated using the
expression σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − pÞ=np

. We have used the only test
applicable to unpaired proportional data, a two-tailed two-
proportion z test, to put our conclusions on somewhat surer
footing. Only for products of np or nð1 − pÞ below five is
the test likely not valid; we have indicated where this may
be problematic in the text below.

1. Structural understanding of divergence and curl

The first pretest and post-test questions were designed to
gain insight into our students’ concept images of diver-
gence and curl. The concept image is defined as a unique
collection of all the mental processes activated when a
person encounters a certain concept [26]. The questions
comprised prevalent student statements from open-ended
questions and individual interviews. In three student inter-
views we verified that students interpreted the last version
of the questions, shown in Fig. 5, as intended. They were
exactly the same on the pre- and post-test. Since this

question was not on the preintervention post-test, we can
only compare responses before and after the intervention.
Figure 6 shows the proportion of students who indicated

that each statement in the pretest and the post-test is correct.
Only students who took both tests were taken into account.
The error bars represent the standard error of the propor-
tion. It is clear that students generally improved their ideas
of the concepts divergence and curl after the tutorials.
Significantly fewer students indicated that C2 [The curl is a
measure for how much field lines bend (incorrect)] and C5
[The curl is nonzero if and only if the direction of the field
changes (incorrect)] were correct, while more students
checked the boxes of statements D1 [The divergence
measures the source or sink of the field (correct)] and
D6 [The divergence indicates where field lines start or end
(correct)]. However, no such improvements were seen in
the most important distractor D2 [The divergence is a
measure for how much field lines spread apart (incorrect)].
This may in part be due to a potentially confusing statement
in the textbook [49]: “is a measure of how much the vector

FIG. 5. Questions designed to assess students’ correct and
incorrect conceptions of curl and divergence. The correct state-
ments are C4, C6, C8, D1, D6, and D9.
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v spreads out (diverges) from the point in question.” In
addition, responses to statements about the vector or scalar
character of both operators improved significantly (C4,
C8=9 and D4, D8=9), and students rarely confused
divergence and gradient anymore (D3).
To put these results into perspective, on the pretest 21%

of the students answered all questions pertaining to curl
correctly, compared to 56% on the post-test. For diver-
gence, 7% of the students answered all questions correctly
on the pretest compared to 32% on the post-test. This shows
that there is a significant increase in the number of correct
answers, and students improved their understanding of the
concepts divergence and curl. However, since we lack data
about the situation after the original instruction at KU
Leuven, we cannot rule out that these results are partly due
to influences other than the tutorials.

2. Interpretation of graphical representations in
terms of divergence and curl

As stated in Sec. II A 4, it is of great importance that
students learn to interpret field vector plots, and in the
tutorials we strongly focus on approaches that may help
them to decide whether the divergence or curl is nonzero at
a certain location in a visualized vector field. On both
pretest and post-test we assessed our students’ ability to
interpret field vector plots in a mathematical context in

terms of divergence and curl. The fields on the pretest are
similar to those on the post-test, as can be seen in Fig. 7.
Figure 8 shows the results of the pretest and post-test, for
students who took part in the original instruction and for
those who participated in the tutorials.
Pretest field (c) and post-test field (I) both have zero

divergence and nonzero curl everywhere. Figure 8 shows
that students benefited from doing the tutorials, as they
responded significantly better on the post-test question
after the intervention than after the original instruction.
However, this trend cannot be seen when comparing results
for pretest field (a) and post-test field (II), which have a
nonzero divergence and zero curl everywhere. This can be
explained by looking at the most prevalent error, which is
stating that the divergence or curl vanishes at a location
where the magnitude of the vector field is zero. Such
difficulties, related to confusing the derivative with its
value, were more often exhibited in field (c) and field (II)
than in field (a) and field (I). Even though the worksheets
specifically addressed these issues, these difficulties were
not resolved for some students.
The tutorials also affected the students’ approach to

solving the questions in Fig. 7. In our earlier work, we
discussed how we distinguish between concept-based,

FIG. 6. The proportion of KU Leuven students (N ¼ 57) who
indicated that a statement presented in the questions in Fig. 5 is
correct on the post-test, compared to the pretest. Only the students
who took both the pre- and post-test were taken into account.
Correct statements are in bold and underlined.

FIG. 7. Question on the pre- and post-test that were given to the
students in order to determine to what extent they can decide
where the divergence or curl is nonzero in a field vector plot.
Fields (c) and (I) are similar and yield the same solution, as is the
case for fields (a) and (II).
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formula-based, and description-based strategies when inter-
preting field vector plots in terms of divergence and curl
[15]. A description-based strategy refers to explanations
similar to “the divergence vanishes where the field is zero”
or “the curl is nonzero where the field changes direction.”
Students who employ a formula-based strategy use the
mathematical expression for the vector operators, and may
even set up an equation for the vector field to calculate
divergence and curl. In the worksheet, we strongly focused
on concept-based strategies, like determining the net flux
through a box to find out where the divergence is nonzero,
or using the paddle wheel trick to decide where the curl is
nonzero. This involved both demonstrating how these
conceptual approaches work and giving the opportunity
to apply this strategy in several exercises. Students who
participated in the tutorials used such approaches in 40%
(divergence) to 70% (curl) of the cases, whereas only about
20% of the students did so after the original instruction.
Since such conceptual approaches correlate with a high
success rate, it can explain why results after the tutorials
were generally better than after the original instruction.
The post-test questions in Fig. 9 aimed to evaluate to

what extent students correctly determine where the diver-
gence or curl vanish in electric and magnetic fields. These
are rather tricky questions, since from a mathematical point
of view the divergence and curl behave exceptionally in
vector fields that fall off as 1=s (cylindrical coordinates) or
1=r2 (spherical coordinates). While such examples were
explicitly addressed in the divergence and curl tutorials, an
answer can also be found by applying Maxwell’s equations
in differential form.
Figure 10 compares the success rate of students who

took part in the original instruction with students who

participated in the tutorials. It seems clear that the pro-
portion of correct responses is significantly higher for the
latter cohort for field (III); the z test is not reliable enough to
make definitive statements for field (IV), where in any case
the gains would be smaller. We also found that the students
who participated in our tutorials more frequently used
approaches that are generally more successful, like the
conceptual approaches described above or applying
Maxwell’s equations in differential form, and gave descrip-
tive answers less often. This suggests that the tutorials
positively affected our students’ approach and ability to
determine the divergence and curl in graphical representa-
tions of electromagnetic fields.
To evaluate our students’ calculational skills and their

ability to construct field line diagrams, we developed the

FIG. 9. Post-test question to determine whether students can
decide where divergence and curl are nonzero in field vector plots
of electromagnetic fields.

FIG. 10. The proportion of students who determined correctly
where the divergence and curl are nonzero in a field vector plot of
an electromagnetic field on the post-test (Fig. 9), after the original
instruction (N ¼ 19) and after the intervention (N ¼ 57).

FIG. 8. The proportion of KU Leuven students who determined
correctly where the divergence or curl is nonzero in a field vector
plot on the pretest [field (c) and (a) in Fig. 7] versus the post-test
[field (I) and (II) in Fig. 7], after the original instruction (N ¼ 19)
and the intervention (N ¼ 57). Only the students who took both
the pre- and post-test are taken into account.
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post-test question in Fig. 11. The majority of the students
solved parts (a) and (b) by imposing the conditions
∇ ×E ¼ 0 and ∇ ·B ¼ 0, respectively. Over the years,
the percentage of correct answers increased from 70% to
90%. This confirms that students’ operational conceptions
were developed relatively well.
Students struggled to sketch field line diagrams of vector

fields with a nonzero divergence at every location. In
Fig. 12, some typical responses are shown: a correct field
line diagram [Fig. 12(a)], a correct field line diagram
without an indication of the direction [Fig. 12(b)], an
incorrect field line diagram which resembles the electric

field of a point charge [Fig. 12(c)], and a correct field vector
plot [Fig. 12(d)].
In the first year of implementation, 60% (N ¼ 15) of our

students sketched a field line diagram and only a single
student did so correctly. Two others made a sketch similar
to Fig. 12(b), making a total of 20% correct answers. Most
other students constructed a field line diagram similar to
Fig. 12(c) or sketched (correct or incorrect) field vector
plots. Because of these poor success rates, we adapted the
tutorial worksheets, and this was reflected in the results. In
the final two years (N ¼ 45), about 25% of the students
constructed a correct field line diagram and another 15%
sketched a correct diagram but did not indicate the direction
of the field. However, about 30% of the students still
constructed an incorrect field line diagram, and one out of
four students sketched a field vector plot. Therefore, giving
students additional exercises regarding vector fields with a
nonzero divergence does seem to positively influence their
understanding of how to construct field line diagrams of
such fields but leaves room for improvement.

3. Understanding of Maxwell’s equations in
differential form

To assess to what extent our students conceptually
understood Maxwell’s equations in differential form, we
asked them to determine whether the divergence or curl
vanishes in ten situations involving electromagnetic fields.
The post-test questions describing these situations are
shown in Fig. 13.
When Maxwell’s equations in differential form are

applied correctly in every situation of Fig. 13, one obtains
the answers: ∇ ·E ¼ 0 always except for E1; ∇ ×E ¼ 0 in
situation E1, E3, and E5; ∇ ·B ¼ 0 always; and ∇ ×B ¼ 0
in M4 and M5. We did not give the students a list of
Maxwell’s equations to avoid pointing students in a
particular direction.
The fraction of students who indicated that the diver-

gence or curl of the electromagnetic fields is zero, after the
original instruction and after the tutorials respectively, is
shown in Fig. 14. It is clear from Fig. 14(a) that students
score significantly better after the intervention when
determining the divergence in situations E2 and E3.
Figure 14(b) shows that students also more often evaluate
the curl in situation E2 correctly. However, even after the
tutorials, only 20% of the students showed a good under-
standing of Gauss’s law by evaluating the divergence
correctly in all five situations, and 50% seemed to con-
ceptually understand Faraday’s law as they correctly
determined the curl in every situation. While the tutorials
generally had a positive effect, there is room for further
improvement.
Figure 14(c) shows that there was no significant differ-

ence in how often students indicated that the divergence of
a magnetic field vanishes between the original instruction
and the intervention, for all five situations individually.

FIG. 11. Post-test question that evaluates students’ computa-
tional skills and their ability to construct a field line diagram.

FIG. 12. Examples of student sketches in response to post-test
question 5(c) (Fig. 11).
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However, while fewer than half of the students correctly
checked the box of every situation on the post-test after the
original instruction, more than three out of four did so after
the tutorials. This suggests that considerably more students
know that the divergence of themagnetic field is always zero
after the intervention. No significant differences were seen
when students had to decide in which of these situations the
curl is zero [Fig. 14(d)]. Both after the original instruction
and after the intervention, only about 20% appliedMaxwell-
Ampère’s law correctly in all five situations.
The results show that even after explicitly discussing all

four of Maxwell’s equations in differential form during the
tutorials, students still exhibit serious difficulties with
applying the laws in situations where an electromagnetic
field is described. This seems to indicate that they still
struggle with the conceptual meaning and local character of
the equations. In Sec. V, we will further discuss the
significance of these results.

B. Informal evaluation

On multiple occasions we asked students to formulate
their opinion of the tutorials: in informal talk, after a one-
on-one discussion about the correct post-test answers, and
by inviting them to anonymously write positive and
negative remarks about the intervention on a piece of
paper. The most prevalent opinions from the first two years
were used in eight 5-point Likert scale questions, and after
the tutorial sessions in 2017 students were asked to indicate
to what extent they agreed with those statements anony-
mously. The results are shown in Fig. 15.
In general, the students were very positive about the

tutorials. They agreed that the tutorials were enjoyable and
that they learned something from them. While some
students told us that the tutorials were too long or that
there were too many sessions, the last cohort of students
generally seemed happy with the number of tutorials, and
the majority was open for additional tutorials on other

FIG. 13. Post-test question on Maxwell’s equations.

FIG. 14. Proportion of students who indicated the divergence or curl is zero in each situation on the post-test (Fig. 13) after the original
instruction (N ¼ 19) and the intervention (N ¼ 59). Correct answers are in bold and underlined. We omitted the data after the original
instruction for situation E4, since this situation was described ambiguously at that time.
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topics. However, for some students the tutorials were not
challenging enough. While the post-test results seem to
suggest that we should not make considerable changes after
these comments, it is important that the teaching assistants
make sure to challenge all students during the tutorials.
When asked for (other) things that students liked about

the tutorials, many acknowledged that the questions on the
worksheets were intuitive and forced them to think about
the concepts rather than mathematical expressions. Some
students explicitly stated that visualizing divergence and
curl had improved their understanding of both vector
calculus and Maxwell’s equations in differential form.
Many students also stated the tutorials helped them to
understand the fundamentals of the electrodynamics course
better.
The most prevalent negative comments were complaints

about not getting any solution manuals for the worksheets.
While we tried to discuss some important or difficult
exercises on the blackboard, students felt that they should
have access to all the correct answers. We believe this is
unnecessary and even potentially detrimental to student
engagement during the tutorials.
While many students indicated that the tutorials were

useful, others stated they missed a close link to the lectures
and felt there was a great contrast between the post-test
questions and the type of questions that are typically asked
on the final exam. We agree with the students that the
integration of the tutorials in the electrodynamics course is
an important issue. After each year, we discussed the results

with the responsible instructor, and together we tried to
improve the link between the contents on the worksheets
and the subjects of the course. This is an ongoing process,
and we acknowledge that further efforts are needed to
improve the integration of the tutorials.
Understanding Maxwell’s equations in differential form

is one of the learning goals of the electrodynamics course
the tutorials focus on. It is important that questions on this
topic are asked on the final exam. In the first year of
implementation, many students complained about the lack
of relevance of these tutorials as it would not influence their
final grades. Since students work toward succeeding on the
final exam, this is an understandable reaction. Thankfully
the responsible instructor was convinced of the importance
of assessing conceptual understanding and communicated
this to the students. As he adjusted some of the exam
questions, students explicitly stated in the two subsequent
years that they could use ideas from the tutorials during the
exam. This indicates how relevant evaluation may improve
students’ engagement during the tutorials, and change their
impression of the contents of the worksheets.

V. DISCUSSION AND CONCLUSIONS

Based on the difficulties identified by evaluating stu-
dents’ understanding of divergence and curl in mathematics
and electromagnetism before and after the original instruc-
tion, conducting individual interviews, and assessing stu-
dents’ use of vector field representations, we designed a

FIG. 15. Student (N ¼ 29) responses to eight 5-point Likert scale questions, evaluating their experiences with the tutorials.
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teaching-learning sequence that aims to help students with
the use of vector calculus in electrodynamics. The guided-
inquiry worksheets we developed aim to improve students’
reasoning processes by provoking common errors based on
intuitive reasoning and showing them how these incorrect
responses contradict mathematical and physical principles.
In addition, they demonstrate and rehearse strategies that
are based on conceptual understanding and clarify the link
between the divergence and curl in visualizations of vector
fields, calculations, and Maxwell’s equations in differential
form. The worksheets were designed using a multiple
representation approach, and we have discussed how the
aspects that influence the effectiveness of learning with
multiple representations, which are identified by the DeFT
framework, are exhibited in our learning materials.
There are several ways to implement the worksheets, but

for practical reasons we opted for a tutorial approach where
students discuss the questions in small groups. The
intervention took place in an intermediate electrodynamics
course in three consecutive years (2015–2017). While no
solutions were given to the students, teaching assistants
were present to help students and check their responses,
including for correctness.
To assess the effectiveness of the tutorials, we used the

same pretest post-test design that was adopted to evaluate
learning after the original instruction. The results show that
our students gained insight into the mathematical concepts
divergence and curl, were more successful when interpret-
ing field vector plots in terms of divergence and curl, and
generally improved their understanding of Maxwell’s
equations in differential form. However, the differences
in post-test results between the original instruction and the
tutorials were not always significant. Therefore, it is
important to make some side notes when interpreting these
results, which may be helpful for future instructors that plan
to use (part of) our developed learning materials.
The most obvious reason for the disappointing signifi-

cance of the results is the relatively small sample size.
Ideally, the type of research that we discussed is conducted
in large groups of students. This may be achievable for
interventions in introductory courses [60,78,79], but in
intermediate and advanced courses, student numbers are
almost always lower, which makes it difficult to justify
statements on a strong statistical basis [61,62,65,80]. Such
issues can be resolved in part by repeating the experiment
over a couple of years, as we did in this study. Nevertheless,
since other conditions, like the textbook used, the teaching
staff, prior courses, and other factors may also change over
the years, results should always be interpreted with care.
A second issue that may have affected the significance of

the results is the timing of the tutorials and the post-test.
Many students tend only to study in the weeks before the

final exam, but the post-test was typically given to the
students halfway in the semester. In addition, further
alignment of tutorials and lecture may also improve the
post-test results, but we do not have sufficient data to verify
such a statement. Nevertheless, our students’ comments
indicate that a solid link between lectures and tutorials
should be one of the main points of attention in the
implementation process.
A third comment is related to the type of questions on

the pretest and post-test. Some questions can be answered
by simply checking a box, others demand a relatively
short response. This allows us to easily compare pre- and
post-test results and analyze how responses change over
the years. However, it also gives students the opportunity
to guess, and it is impossible to track such actions.
Therefore, it is likely that in some cases results tended to
converge to 50%, making differences appear less signifi-
cant than they actually are. This effect may be quite
strong for the questions in Sec. IVA 3, since those were
generally perceived as being difficult. Additional quali-
tative research might give a better idea of the size of this
effect. It would be interesting, for example, to video tape
students while solving questions on the worksheets, and
to analyze how their reasoning processes change over
time. This may also help to further improve the learning
materials.
With all these provisos our results do seem to indicate

that many students benefit from the tutorials we developed
with a stronger focus on conceptual understanding and the
ability to interpret graphical representations. This is in
agreement with the literature about the use of multiple
representations [38–46]. Students generally enjoyed work-
ing through the worksheets. In addition, the majority also
felt they were challenged, indicated they learned some-
thing, and seemed interested to take additional tutorials.
This shows that our approach engaged and motivated
students. Therefore, we encourage instructors to either
use the worksheets discussed in this paper or design their
own learning materials based on the information we
presented.
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