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We compute nodal centrality measures on the collaboration networks of students enrolled in three upper-
division physics courses, usually taken sequentially, at the Colorado School of Mines. These are complex
networks in which links between students indicate assistance with homework. The courses included in the
study are intermediate classical mechanics, introductory quantum mechanics, and intermediate electro-
magnetism. By correlating these nodal centrality measures with students’ scores on homework and exams,
we find four centrality measures that correlate significantly with students’ homework scores in all three
courses: in-strength, out-strength, closeness centrality, and harmonic centrality. These correlations suggest
that students who not only collaborate often, but also collaborate significantly with many different people
tend to achieve higher grades. Centrality measures between simultaneous collaboration networks
(analytical versus numerical homework collaboration) composed of the same students also correlate with
each other, suggesting that students’ collaboration strategies remain relatively stable when presented with
homework assignments targeting different skills. Additionally, we correlate centrality measures between
collaboration networks from different courses and find that the four centrality measures with the strongest
relationship to students’ homework scores are also the most stable measures across networks involving
different courses. Correlations of centrality measures with exam scores were generally smaller than the
correlations with homework scores, though this finding varied across courses.
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I. INTRODUCTION

Physics education research has enjoyed a great deal
of success in identifying and clarifying students’ difficulties
with physics concepts, developing problem-solving meth-
ods, and structuring the knowledge that is taught to students
[1–5]. Such studies have allowed researchers to make
quantitative statements about the presence and persistence
of students’ difficulties, in contrast to historical physics
education that relied on anecdotal information [2]. In
recent years, physics education researchers have begun
taking advantage of another powerful tool for quantitative
analysis in the social sciences known as complex network
theory [6,7], the use of which is often referred to as social
network analysis (SNA). SNA has a significant history of
use in educational research generally [7–9]; however, the
use of SNA has only recently begun to gain traction within
the physics education research community (see, e.g.,
Refs. [10,11]).

In this paper, we use SNA to study self-reported student
collaboration and its potential relation to student perfor-
mance. We examine how collaboration between students
evolves between semesters and how nodal centrality
measures correlate with homework versus exam grades.
Furthermore, we compute the differences in correlation
strengths between our measures, allowing us to quantify
which measures are most strongly related to student grades.
Finally, we also compare the network centrality of students
between the collaboration networks of different types of
homework assignments within a single course, allowing us
to assess the similarity of roles adopted by students in
response to assignments of differing nature.
Complex network measures provide succinct summaries

of the order present in complex networks. Often such
measures are aggregate summaries of the entire structure
of a network and are useful because the structure of
connectivity can determine the efficiency of processes
taking place in the network as observed in social, neural,
communication, and transportation networks [7,12].
Furthermore, the nodal centrality measures we review in
Sec. IV tell us howwell connected students are in the context
of their homework collaboration networks, as well as how
those connections can serve different purposes within the
network [13,14]. For example, a simple measure of oneway
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a student can be connected to other students in the
network is encapsulated by their out-strength. Out-
strength is simply the number of peers a student helps
with homework and, thus, is one measure of the influence
of a student in a collaboration network. Parallel to out-
strength is in-strength, the number of students that help a
particular student with homework. While out-strength can
be thought of as a coarse measure of the influence of a
student on the collaboration network, in-strength is a
measure of how a student gathers information from
different parts of the network. Other more subtle mea-
sures of a student’s connections within the network
include closeness centrality and the related harmonic
centrality, both of which look at the “distance” between
students (i.e., if information is to pass from student i to
student j, how many other students must it go through
first), as well as betweenness centrality, which looks at
the degree to which a particular student can control the
flow of information between other students. These cen-
trality measures as well as several others are discussed in
detail in Sec. IV. As described in that section, each of
these various network centrality measures provide us
with different perspectives on various roles a student
can play with respect to the flow of information within the
collaboration network. Together, the correlations of these
different centrality measures with student grades provide
insight into how strongly and in what manner different
collaboration patterns are central to the educational
process.
While the application of complex network-based meth-

ods to student networks formed within the physics class-
room are rare, there is a growing body of work in this area.
In particular, network analysis has been consistently
applied to investigations of student persistence [15–18].
The use of network analysis in the context of understanding
student persistence is motivated by the idea that a student’s
decision to persist (or not) within a particular major is
impacted by their integration within, and interaction with,
their academic and social communities [16]. Forsman et al.
reported on students’ in-class social and academic inter-
actions. They showed that these social and academic
networks had distinct connection patterns indicating that
the underlying processes governing the formation of these
networks is different. They then argued that both networks
need to be considered when addressing student persistence.
Zwolak et al. [16] created networks based on students’ in-
class interactions within a highly interactive introductory
course and found that certain network centraility measures
correlated significantly with students’ persistence into the
next course in the sequence. This correlation held even
when controlling for the impact of a student’s grade.
Zwolak et al. [17] later built on this work by incorporating
an additional network based on students’ interactions
outside of class. They found that for middle-performing
students, out-of-class centrality measures dominated in
terms of predicting students’ persistence to the next course
in the sequence.

A. Prior research with social network analysis

Network analysis has also been utilized in investigations
not directly tied to student persistence. Dou et al. [19]
reported correlations between network centrality measures
and changes in students’ self-efficacy over the course of an
introductory physics course taught using modeling instruc-
tion. Brunn and Brewe [11] used network centrality
measures calculated based on students’ interactions in an
introductory physics course to predict their grades in a
future course. The use of network analysis in physics
education research has also been extended beyond social
networks. For example, Bodin [10] applied network analy-
sis to visualize connections between students’ epistemic
ideas when solving physics problems involving simulations
and modeling tasks, and Brewe et al. applied network
analysis to characterize students’ responses to an introduc-
tory conceptual assessment.
The current study is distinct from the work described

above in severalways. Themajority of the priorwork focuses
on students’ in-class interactions in the context of an
introductory physics course utilizing a highly interactive
curriculum. The current work focuses on three upper-
division courses all taught with a mixture of traditional
lecture punctuated by the use of interactive techniques.
Additionally, the current work deals with students’ out-of-
class collaborations on homework assignments; thus, these
interactions are driven almost entirely by the studentswithout
the significant pressure to collaborate usually associatedwith
an interactive classroom environment. Using a wide variety
of complex network measures, we obtain detailed informa-
tion about the role of different collaboration strategies in
different types of problem sets and on exams. This study is a
step towards responding tomultiple calls to take advantage of
the analysis power of complexity science within physics
education research [17,18].
Here, we build off the work described above by

addressing the following set of questions. Do well-
connected students have good grades? That is, does access
to the reasoning of many of their peers (as determined by
their network centrality) better equip students to complete
homework assignments, or does excessive participation in a
collaboration network stifle the ability of a student to
perform well on their own work? Do the benefits of
collaboration extend to exams, where a student does not
have access to their collaborators? How stable are these
measures of collaboration in different contexts? That is, do
students tend to take on different roles in response to
different types of assignments or different subject matters,
or are students’ collaboration strategies static?

II. DATA COLLECTION

The Colorado School of Mines (Mines) is a public
research university in Golden, Colorado. The university,
which has close to six thousand undergraduate and
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graduate students, focuses on engineering and the applied
sciences. Additionally, it is one of very few institutions that
awards more than 50 Physics Bachelors per year, placing it
in the top ten of all Ph.D. granting departments in the U.S.
[20]. The physics department has research focus areas in
condensed matter, subatomic, optical, renewable energy,
theoretical, and computational physics.
The data for our networks were collected over two

semesters: Fall 2012 and Spring 2013. Students in their
junior year in engineering physics at Mines take Cclassical
mechanics during the Fall semester and both quantum
mechanics and electromagnetism during the spring semes-
ter. The course in classical mechanics covers Lagrangian
and Hamiltonian mechanics. The electromagnetism course
is the first course in a two-course sequence, and covers
electrostatics and magnetostatics, including the appropriate
Maxwell equations, boundary conditions, and treatments of
free and bound sources. The course in quantum mechanics
introduces the formalism of quantum mechanics (e.g., the
solutions of a particle in a box, scattering from a potential
well, etc.). We summarize the homework, exam, and
enrollment information for the three courses in Fig. 1.
Note that the longitudinal nature of our data means that
many students in our data set appear in all three courses.
Prior to their junior year at Mines, physics majors are
encouraged to collaborate in a physics studio setting, a
setting inwhich studentswork in groups of three to complete
homeworklike assignments and labs. Additionally, the
summer before their junior year, Mines physics majors
participate in a physics field session in which groups of ten
students move between sections on computing, vacuum
systems, machining, and lasers. In all of these sections,
students are encouraged to collaborate, and in some of
them students are split into groups of three to complete
assignments. Thus, collaboration is an explicit part of
Mines’ lower-division program already, and is strongly
encouraged.
There were two forms of data collection: paper forms

during Fall 2012 and electronic spreadsheets during Spring
2013. In the paper form of data collection, students were

provided with a form for each homework assignment in
which they were to self-report any students they helped or
received help from for each assigned problem when
working on the homework outside of class. In the electronic
form of data collection, students provided the same data by
entering the names of their homework collaborators into
question or answer boxes on the learning management
system Blackboard [21]. In both cases, students were
required to complete the surveys described above in order
to receive credit for the associated homework assignments.
This policy incentivized survey completion and ensured a
nearly complete set of data. Student names were then
replaced with a set of randomly generated three letter codes
to anonymize the data prior to analysis. We note that data
collected on students’ interactions was based purely on
students’ self-reporting on interactions that took place
primarily outside of the classroom environment. As such,
while the dynamics of those interactions with regards to, for
example, collegiality may be an important aspect of the
effectiveness of those interactions, the data collected here
cannot speak to these aspects of students’ interactions.
The data from the surveys above was compared with

student grades in the three courses (Fig. 1). The course in
classical mechanics had two distinct types of homework
assignments—analytical homework assignments (N ¼ 10)
and numerical homework assignments (N ¼ 5)—as well as
three written exams. For numerical assignments, students
were asked to simulate various physical scenarios using
Mathematica. For the course in classical mechanics, we
computed three measures of a students’ performance: the
sum of their analytical homework grades, the sum of their
numerical homework grades, and the sum of their exam
grades. For the courses in quantum mechanics and electro-
magnetism, all homework assignments were analytical (see
Fig. 1), and we measured a students’ performance by the
sum of their homework grades and the sum of their exam
grades. It is important to note that in classical mechanics,
the teaching assistants graded exams with subsequent
review by the instructor. In quantum mechanics and
electromagnetism, the instructors graded all exams them-
selves. Finally, the instructors of quantum mechanics and
classical mechanics both applied curves to exam grades,
whereas the instructor of electromagnetism did not.

III. METHODOLOGY FOR CONVERTING
DATA INTO NETWORKS

From the data collected in the surveys above, we con-
structed directed andweighted networks for each course and
type of homework assignment using the following pro-
cedure. A network is a collection of nodes and links. Nodes
are any object that can be connected to any other object by
some relation and links are the connections between nodes.
In our networks, nodes correspond to students, and a link
corresponds to an interaction between the students consist-
ing of providing or receiving assistance. Note that this is not

FIG. 1. Course information for classical mechanics, quantum
mechanics, and electromagnetism. Lines connecting two courses
indicate the number of students common to both courses. There
were 67 students enrolled in all three courses.
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a symmetric relation; if i helped j, it does not imply that j
helped i. This is the defining feature of a directed network;
its connections are asymmetrical. For directed networks, one
says that a link goes from node i to node j to indicate the
direction of the link. For the kth network a link is placed from
node i to node j if and only if (iff) student i helped student j
with homework assignment k. Summarizing our network in
terms of the entries of an adjacency matrix,

Ak
ij ¼

8
><

>:

1 iff student i helped student j

with homework assignment k

0 otherwise:

ð1Þ

However, we found that it was necessary to resolve
discrepancies in the reports provided by students. For
example, student i may claim that they helped student j,

FIG. 2. Student collaboration networks for three upper level physics courses. Weighted student collaboration networks constructed
from surveys given to students in three upper-division courses: Classical mechanics, quantum mechanics, and electromagnetism. Note
that while these networks were generated from the weighted adjacency matrices, for ease of representation, only the direction of links is
represented here. Nodes correspond to students and the direction of each arrow indicates the direction of assistance on homework
assignments. The color of a node indicates the grade of a student on homework assignments. Although we do not normalize grades in
our analysis we present grades as a percentage here to illustrate multiple courses simultaneously.
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but student j’s survey indicates that they did not receive help
from student i. These discrepancies may be due to forgetful-
ness or conflicting perceptions of interactions [11]. To
resolve the discrepancies in student reports, we employed
a Maximal discrepancy resolving technique [22,23]; every
reported interaction was considered to have happened as
long as one student in the pair reported it (even if the other
student did not report it). This maximal discrepancy resolv-
ing technique was selected because it resulted in richer and
denser adjacencymatrices. Discrepancies can occur in either
direction of an interaction, and Aij is resolved separately
from Aji. Other discrepancy sorting cases were investigated
but yielded quite sparse adjacency matrices [22,23]. For
each course, we then compute a weighted adjacency matrix
by summing the adjacency matrices corresponding to the
homework assignments in that course,

Aij ¼
XNHW

k¼1

Ak
ij; ð2Þ

where NHW is the number of homework assignments in the
relevant course. Thus if two students i and j collaborated
frequently on homework assignments, they will have a
heavily weighted connection in one of the weighted net-
works depicted in Fig. 2. In Fig. 2, nodes are indicated by
circles and the links connecting nodes are indicated by the
arrows between nodes. The direction of the arrow indicates
the direction of assistance. For the course in classical
mechanics, we construct networks for the numerical home-
work assignments and the analytical homework assignments
separately. This procedure results in two networks for the
course in classical mechanics: a network constructed from
the collaboration networks on analytical assignments ACM

A ,
and a network constructed from the collaboration networks
on numerical assignments ACM

N . We denote the network for
the course in quantum mechanics by AQM, and the network
for the course in electromagnetism as AEM.

IV. COMPLEX NETWORK ANALYSIS

Using the NetworkX network analysis software [24], as
well as some of our own independently developed network
analysis code, we study the networks described in the
previous section by computing various nodal centrality
measures and other measures of the structure of a node’s
connections. We then compute the correlation between
these measures and different estimators of student perfor-
mance. Nodal centrality measures are measures of a node’s
importance and role within the structure of the network. As
they are quantitative measures of each student’s role in the
collaboration network, nodal centrality measures are ideal
for our study. We selected eight standard nodal centrality
measures which have been used previously in the context of
complex network analysis [13,14,16–18]—out-strength,
in-strength, net out-strength, out-disparity, in-disparity,

local clustering, closeness centrality, harmonic centrality,
and betweenness centrality. Each of these centrality mea-
sures was selected for both its prevalence in the literature
and our own sense of its potential relevance within our
collaboration networks. Below, we discuss each of these
centrality measures in detail including our motivation for
selecting each.
The out-strength of a node is the sum of its outgoing

connections to other nodes and is defined as

souti ¼
XL

j¼1

Aij; ð3Þ

where L represents the number of nodes (i.e., students) in
the network. A node can have high out-strength if it has
outgoing connections to many other nodes, or if it has
strong connections to only a few other nodes. Stated
simply, students who help many of their peers and students
who frequently help a smaller set of peers both can have a
high out-strength. One might anticipate that students with
high out-strength will have higher grades either because
they are students who already have a strong grasp of the
material or because they have many opportunities to
explain their reasoning to other students.
The in-strength is similarly defined and distinguishes a

node by the number of incoming connections

sini ¼
XL

j¼1

AT
ij; ð4Þ

or the number of instances in which a student received help.
In-strength is included as a comparison to out-strength as
one might expect that students with high in-strength are
students who are already struggling in the course and thus
might achieve lower grades on average.
We also study the net out-strength

sneti ¼ souti − sini : ð5Þ

Students with high net out-strength correspond to students
that help many other students but are not helped by many
students. This measure adds to the comparison of in-
strength and out-strength by distinguishing between stu-
dents who both give and get help an equal amount from
those who either give or get help with more frequency.
Again, we might expect that students with high net out-
strength are stronger students overall and might naturally
achieve better grades.
The out-disparity of a node’s connections is a measure of

the nonuniformity of the outgoing connection strengths. If a
node has a single strong connection in addition to other,
much weaker connections, the node has high out-disparity.
If the connection strengths of a node are all approximately
equal strength, then it has a low out-disparity. Out-disparity
is defined as [25,26]
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Yout
i ≡ 1

ðsouti Þ2
XL

j¼1

ðAijÞ2 ¼
P

L
j¼1 ðAijÞ2

ðPL
j¼1 AijÞ2

: ð6Þ

Nodes with high disparity correspond to students that
collaborate with certain nearest neighbors much more often
than they collaborate with other nearest neighbors. Nodes
with low disparity correspond to students that collaborate
equally with all students that they collaborate with.
Analogously, in-disparity measures the nonuniformity of
the incoming connection strengths. To compute Y in

i one
makes the substitution A → AT in Eq. (6), resulting in

Y in
i ≡ 1

ðsini Þ2
XL

j¼1

ðAT
ijÞ2 ¼

P
L
j¼1 ðAT

ijÞ2
ðPL

j¼1 A
T
ijÞ2

: ð7Þ

Note that out-disparity can only be defined for student’s
with souti > 0; thus students with souti ¼ 0 are not included
in correlations involving out-disparity. The same holds for
in-disparity for student with sini ¼ 0. A student with high
out- and/or in-disparity represents someone who does not
send or receive information broadly from the network. One
might predict that such students would have less access to
the reasoning of their peers and thus potentially achieve
lower scores than more broadly connected students.
The local clustering coefficient is a measure of the

transitivity of connections of individual nodes, that is, the
likelihood that a is connected to c, given that a is connected
to b and b is connected to c. The local clustering coefficient
is only defined on undirected networks. Before computing
the local clustering coefficient via the equation below, we
first convert our directed networks into undirected networks
as such that, Aundirected

ij ¼ max ðAij; AjiÞ:

cLi ≡ TðiÞ
kiðki − 1Þ ; ð8Þ

where TðiÞ is the number of existing triangles in which
node i is a vertex, and ki is the degree of node i. Effectively,
this provides the fraction of all possible triangles through
node i that actually exist. Nodes with low local clustering
correspond to students whose collaborators do not tend to
collaborate with each other. Nodes with high local cluster-
ing correspond to students whose collaborators frequently
collaborate with each other, such as in tight-knit study
groups. Study groups might provide productive stability
and community that could enhance students’ scores but
might also restrict students from broadly collaborating with
many other students.
In a weighted network one can define a distance between

any pair of nearest-neighbor nodes. For our analysis, we
define the distance between nearest neighbors i and j to be
the inverse of the weight connecting them

Dij ¼
1

Aij
: ð9Þ

If nodes i and j are not directly connected by a link then
Dij ¼ ∞. This definition of the distance between nearest-
neighbor nodes is then used to define the shortest-path
distance between any two nodes dij. A path connecting
node i to node j is a sequence of links along which one may
walk to traverse the network from node i to node j when
one walks along links in the direction of the link. The
shortest-path distance between two nodes is the sum of the
nearest-neighbor weights Dij along the shortest path
connecting two nodes, that is,

dij ¼ min
P

X

ðl;kÞ∈P
Dlk; ð10Þ

where P is a path connecting node i to node j. In this way,
the shortest path distance represents a measure of how
easily information can pass between two students in the
network. Shortest path distance is used as a basis for the
remaining three centrality measures.
Closeness centrality is a measure of how close a node is

on average to other nodes when one must travel along
directed links in the direction of the link. Closeness
centrality is defined as

cCi ¼ n − 1

jAj − 1

1P
j≠idij

; ð11Þ

where n is the number of nodes reachable from node i, and
jAj is the number of nodes in the network defined by the
adjacency matrix A [14,24]. Reachable means that one can
travel from node i to node j by walking along links in the
direction of the link. Any nodes that are not reachable from
node i are neglected in the sum of Eq. (11). In the context of
social networks, closeness centrality can be thought of as a
measure of independence as described in Ref. [14]. This is
because a node with a large closeness centrality does not
have to rely on any one or two other nodes to transmit
messages across the network [14]. In the context of
weighted student collaboration networks, closeness central-
ity is a measure of both the frequency with which a student
assists others and how widely a student collaborates.
Students with high closeness centrality have strong con-
nections with many other students and, as a result, access to
much of the information present in the network; thus, these
students might exhibit higher performance.
Harmonic centrality is also a measure of how close a

node is to other nodes in the network when one must travel
along directed links in the direction of the link. Harmonic
centrality is defined as
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cHi ¼
X

j≠i

1

dij
; ð12Þ

where dij is the shortest path distance from node i to j
[24,27]. Harmonic centrality has a similar definition to
closeness centrality, both being defined in terms of the
inverse distances between nodes. The intuition for the two
measures is the same. Nodes that are close to other nodes
are more central as measured by closeness centrality and
harmonic centrality. However, when computing harmonic
centrality, if node j is not reachable from node i, then the
distance between the two nodes is set to dij ¼ ∞. The
corresponding term in the sum is then set to zero,
1=dij ¼ 1=∞≡ 0. This may be preferable to the procedure
used to calculate closeness centrality as this procedure has
been shown to introduce a bias towards nodes in small
components because it does not take into account nodes
that are not reachable by the node of interest [27].
Betweenness centrality is measure of how important a

node is as a go-between for message transmission between
nodes in a network, assuming that information travels along
paths of shortest distance [28]. Betweenness centrality is
defined as

cBi ¼
X

j;k∈V

σðj; kjiÞ
σðj; kÞ ; ð13Þ

where σðj; kjiÞ is the number of shortest paths from node j
to node k that pass through node i and where σðj; kÞ is the
number of shortest paths from node j to node k [13,24].
Nodes with high betweenness centrality correspond to
students with the most control over information transfer
throughout the network. Therefore, the weight of the links
in our networks do not modify betweenness centrality
directly, but do indirectly contribute through the path
lengths. Students with high betweenness centrality re-
present links between different sections of the network
and thus help to move information through the network.
Again, this access to the reasoning of different sections of
the network might result in higher performance.
Together, the nine centrality measures described above

give information about students’ collaboration strategies
and patterns, as well as their role in the movement of
information throughout the network. In the next section, we
correlate these measures with both homework and exam
scores to identify which centrality measures are most
closely linked to students’ performance.

V. RESULTS

We now correlate each of the nodal centrality measure
described in the previous section with students’ homework
assignment or exam scores. In Fig. 3, we display the results
of these calculations. Statistical significance of the corre-
lation coefficients for each course and assignment type was

determined at the p < 0.05 level using Holm-Bonferroni
corrected p values calculated via a bootstrap resampling
with 10 000 resamplings of each correlation coefficient
[29]. The use of bootstrap resampling was motivated by the
fact that centrality measures from complex network analy-
sis are inherently interdependent and, thus, violate the
assumption of independence fundamental to standard para-
metric statistics [15].

A. Do well connected students get good grades?

With respect to our first question of interest—do well
connected students get good grades?—Fig. 3 suggests that
this depends on both the type of centrality measure and the
course in question. Four centrality measures have sta-
tistically significant correlations to homework grades (both
numerical and analytical) for all three courses: closeness
centrality, harmonic centrality, in-strength, and out-
strength. Recall that in- and out-strength measure how
often a student collaborates by receiving or giving help,
respectively, while closeness and harmonic centrality are
both measures of how “far” a student is from other students.
Figure 3 shows that in- and out-disparity have a negative
correlation to homework scores in all classes and that
correlation is statistically significant for at least one type of
homework (analytical or numerical) in two of the three
courses. In- and out-disparity measure a student’s tendency
to collaborate often with only a small number of students.
This result, combined with the significant positive corre-
lations with the four centrality measures above suggest that
students who not only collaborate often, but also collabo-
rate significantly with many different people tend to
achieve higher grades.
Figure 3 also shows three measures that tend to have

smaller, and less often statistically significant, correlations
with homework scores; these are betweenness centrality,
local clustering, and net out-strength. Recall that betwe-
enness centrality measures the extent to which a student can
control the flow of information between other students,
local clustering determines the extent to which a student
may be part of a close knit study group, and net out-strength
determines whether a student helps others more than they
are helped. That these measures are less often significant
suggests that collaborating often and widely has a greater
relation to homework grades than being part of a single
close knit study group or being a link between groups or
students. The small correlation of homework scores with
net out-strength relative to the correlations for both in-
strength and out-strength also suggests that the quantity of
collaborations matters more than the type of collaboration
(i.e., helping others versus being helped). This finding is
perhaps surprising given that one might expect that students
who more often give help than receive it would be the
naturally higher performing students.
Comparing the correlations in Fig. 3 across the three

courses shows similar trends across most of the measures.
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One significant exception to this is the local clustering
coefficient which is larger (and statistically significant) in
both classical mechanics networks than in the networks for
the other two courses. This suggests that for the classical
mechanics course, integration into well-established study
groups had a stronger relation to students’ scores on both
the analytical and numerical homework. To better under-
stand possible sources of this difference, we look at
differences between the courses themselves. classical
mechanics is the first “hard” upper division course most
physics students take; in fact, it is generally considered by
students to be one of the hardest courses in the Mines
physics curriculum. Thus, students may still be modifying
their lower-division study habits to accommodate this
additional challenge. Thus, we may be seeing the effect
of tight knit study groups in a way that dissipates as
students get to know each other in the ensuing upper-
division courses. The numerical component of the classical
mechanics course, which was not present in the other

courses and is unique to the curriculum, also represents a
possible contributing factor.

B. Does the benefit of collaboration extend to exams?

Another question of interest for this study pertains to
whether the benefits of collaboration extend beyond home-
work scores to students’ performance on exams. It may be
that the individual nature of exams suppresses the impact of
collaboration on students’ performance. Here again, Fig. 3
suggests that the answer depends on what course we look
at. For both quantum mechanics and electromagnetism,
correlations between all centrality measures and exam
scores are lower than correlations of the same measure
with homework scores. In fact, only out-strength correlates
significantly with exam scores and then only in quantum
mechanics. This suggests that for these courses, the
potential benefit of centrality within the collaboration
network does not extend to exams. On the other hand,

(a)

(c) (d)

(b)

FIG. 3. Correlation of nodal centrality measures with student grades in three upper level physics courses. Correlation of complex
network measures with student grades for three courses: classical mechanics, quantum mechanics, and electromagnetism. Filled markers
indicate correlation coefficients that are statistically significantly different from a correlation coefficient of 0 (Holm-Bonferroni
corrected p < 0.05). Statistical significance was determined using a bootstrap resampling with 10 000 resamplings of each correlation
coefficient.
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in the classical mechanics course, the correlations of
centrality measures with exam scores is comparable to
the corresponding correlations for homework scores for
nearly all measures. Beyond the inclusion of a fairly
significant conceptual component in the classical mechan-
ics exams (∼1=4 of the questions), it is not obvious why the
classical mechanics networks appear to correlate better
with exam scores. However, these findings suggest that
whether the benefits of collaboration extend to exam scores
as well as homework scores depends on the structure of the
course and/or content of the exams. Application of this
analysis to other courses will be necessary to pinpoint the
course and exam features that best realize the benefits of
students’ collaboration. It is worth noting that, depending
on the instructional goals of the course, exams may not be
designed to realize the benefits of student collaboration.
Moreover, all exams in this study were traditional, indi-
vidual exams; these findings would likely shift if the format
of the exam was less traditional (e.g., group exams).

C. How stable are collaboration strategies across
assignments and contexts?

In our study, we have two simultaneous networks com-
posed of exactly the same students: the analytical and
numerical networks for classical mechanics. This allows
us to investigate another question of interest—how stable are
these centrality measures across different types of assign-
ments? Comparing across the two classical mechanics
networks (analytical and numerical), we see in Fig. 3 nearly
identical patterns in the correlations of the different central-
ity measures with homework scores both in terms of
magnitude of the correlations and which correlations are
statistically significant.We also see very similar correlations
when correlating network centrality measures created using
information from the analytical networks to the scores on the

numerical homework and vice versa. Together these find-
ings suggest that these centrality measures are quite stable
across different types of homework. We can also use these
two simultaneous networks to quantify the stability of the
roles taken by students in response to different types of
homework assignments. To do this, we correlated centrality
measures calculated using the analytical network with those
calculated using the numerical network. We found large
correlations (in this case r > 0.5) for eight of the nine
centrality measures [see Fig. 4(a)]. Only the local clustering
coefficient had only a moderate correlation (r ¼ 0.33)
across networks. All correlations were statistically signifi-
cant (bootstrap resampling and Holm-Bonferroni corrected
p < 0.05). This result suggests that students’ collaboration
strategies remain relatively stable when presented with
different types of homework assignments.
In our study, we also have a large subset of students who

took all three courses (N ¼ 67, see Fig. 1). Focusing
specifically on these students, we can also investigate
the stability of network centrality measures across time
as the students advance from classical mechanics to
quantum mechanics and electromagnetism. Since all of
these courses are upper-division (typically junior-level)
courses, these students have already had much of their
undergraduate career to develop collaboration strategies
that they believe work for them; thus, we might anticipate
that their strategies would be relatively stable over time and
across courses. In Fig. 4(b), we correlate each centrality
measure, student by student, between classical mechanics
and quantum mechanics and also between classical
mechanics and electromagnetism. Since neither quantum
mechanics nor electromagnetism included numerical
homework, we utilize the classical mechanics analytical
network for the purposes of investigating stability between
these courses. Of the nine network centrality measures,

(a) (b)

FIG. 4. Correlation of nodal centrality measures from the classical mechanics analytical network with (a) the corresponding nodal
centrality measure from the classical mechanics numerical network, and (b) the corresponding nodal centrality measure from the other
two courses: quantum mechanics, and electromagnetism. Filled markers indicate correlation coefficients that are statistically
significantly different from a correlation coefficient of 0 (Holm-Bonferroni corrected p < 0.05). Statistical significance was determined
using bootstrap resampling with 10 000 resamplings of each correlation coefficient.
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four showed large correlations [in this case r > 0.6, see
Fig. 4(b)] between the classical mechanics network and
both the networks of the other two courses. Interestingly,
these are the same four measures with consistent significant
correlations with the grades in all three courses (i.e.,
closeness centrality, harmonic centrality, in-strength, and
out-strength). The remaining centralitymeasures in Fig. 4(b)
show smaller correlations suggesting less stability in stu-
dents’ network positions between different course networks.
The local clustering coefficient once again highlights as
having a particularly small correlation, which in this case is
not statistically significant. Thus, the network centrality
measures that have the strongest relationship to students’
homework scores are also the network centrality measures
that appear to be the most stable across networks involving
different courses or assignment types.

VI. SUMMARY AND CONCLUSIONS

We utilized the tools of complex network analysis to
form social networks based on students’ self-reported
collaborations when completing regular homework assign-
ments outside of class in three upper-division physics
courses. From these networks, we then calculated multiple
network centrality measures which provide information on
the collaboration strategies and role of each student with
respect to the flow of information within the network. By
correlating these nodal centrality measures with students’
scores on both homework and exams, we were able to
investigate the relationship between students’ centrality
within the network with their performance in the course to
investigate whether particular modes of centrality were
more (or less) strongly linked with student performance.
With respect to our first research question—do well

connected students achieve higher grades?—we found that
four of the nine centrality measures (closeness centrality,
harmonic centrality, in-strength, and out-strength) corre-
lated significantly with students’ homework scores in all
three classes. Moreover, we found two centrality measures
(in-disparity and out-disparity) that consistently (though
not always significantly) showed negative correlations with
students homework scores. Together, the significance of the
first four measures, along with the negative correlation
from the second two, suggest that students who not only
collaborate often but also collaborate significantly with
many different people tend to achieve higher homework
grades. Additionally, the lack of significance associated
with the centrality measure net out-strength suggests that
helping others more that one receives help does not have a
significant association with performance; in other words,
helping others in the network does not appear to be more
valuable than being helped with respect to performance. We
note that this finding depended on interpreting that all of the
centrality measures wholistically; focusing on only one of
the measures (e.g., out-strength) could have led to the
erroneous conclusions about the importance of helping

versus being helped, as well as the importance of broad as
opposed to localized collaboration.
With respect to our second research question—do the

benefits of collaboration extend to course exams?—we
found that correlations of centrality measures with exam
scores were generally smaller than the correlations with
homework scores, though this finding varied across courses.
Note that this finding does not necessarily suggest that
exams more accurately represent a student’s individual
understanding; while the correlation with collaboration is
generally smaller, the high stakes nature of exams introduces
a number of factors besides ability that can impact a
student’s exam scores (e.g., stereotype threat).
With respect to our final research question—how stable

are collaboration strategies across assignments and
contexts?—we also found that students’ collaboration
strategies are relatively stablewhen presented with different
types of homework assignments (e.g., analytical versus
numerical) within the same class. We also found that while
some centrality measures appear to shift significantly
when students move into a different course, the four
centrality measures most strongly related to students’
homework scores (closeness centrality, harmonic centrality,
in-strength, and out-strength) are also the most stable
between networks from different courses.
This work helps provide insight into whether and how

students’ collaboration impacts their success in the course
as measured by course exam and homework grades. It also
contributes to a growing body of research utilizing complex
network theory to better understand the role of social
networks within the undergraduate classroom. However,
there are several important limitations to the study. The
findings reported here are correlational, and thus, cannot
clearly establish that broad collaboration improves students’
performance, only that students whose nodal centrality
indicates that they collaborate broadly tend to have higher
scores. Additionally, these data come from a single institu-
tion and have relatively lowN (N < 100). Replicating these
analyses in additional courses at additional institutions will
be important for establishing the generalizability of these
findings.
For instructors, these results suggest that encouraging

students not only to collaborate, but to collaborate with
multiple other students may be an effective strategy towards
improving students’ homework scores. Moreover, they
suggest that the benefits of collaboration are not automati-
cally transferred to exam performance, but rather the
structure of the course and exams can enhance or suppress
the relation between student collaboration and exam scores.
Future work could include implementing a similar analysis
on collaborations amongst researchers at the graduate level
and beyond, using not only in-class studies in graduate
school analogous to those considered here, but also
collaboration networks on the arXiv. A general hypothesis
to be examined is whether an overall broader collaboration
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strategy leads to higher outcomes, in, for example, h index,
total number of citations, and grant funding.
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