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Comparison of normalized gain and Cohen’s d for analyzing gains on concept inventories
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Measuring student learning is a complicated but necessary task for understanding the effectiveness of
instruction and issues of equity in college science, technology, engineering, and mathematics (STEM)
courses. Our investigation focused on the implications on claims about student learning that result from
choosing between one of two commonly used metrics for analyzing shifts in concept inventories. The
metrics are normalized gain (g), which is the most common method used in physics education research and
other discipline based education research fields, and Cohen’s d, which is broadly used in education research
and many other fields. Data for the analyses came from the Learning About STEM Student Outcomes
(LASSO) database and included test scores from 4551 students on physics, chemistry, biology, and math
concept inventories from 89 courses at 17 institutions from across the United States. We compared the two
metrics across all the concept inventories. The results showed that the two metrics lead to different inferences
about student learning and equity due to the finding that g is biased in favor of high pretest populations. We
discuss recommendations for the analysis and reporting of findings on student learning data.
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I. INTRODUCTION

The methods for measuring change or growth and
interpretations of results have been hotly discussed in the
research literature for over 50 years [1]. Indeed, the idea of
simply measuring a single state (let alone change) in an
individual’s understanding of a concept, conceptualized as a
latent construct, is wrought with issues both philosophical
and statistical [2]. Despite these unresolved issues, educa-
tion researchers use measurement of growth for quantifying
the effectiveness of interventions, treatments, and innova-
tions in teaching and learning. Gain scores and change
metrics, often referenced against normative or control data,
serve as a strong basis for judging the efficacy of innova-
tions. As researchers commonly measure change and report
gains and effects, it is incumbent on researchers to do so in
the most accurate and informative manner possible.

In this work, we collected data at scale and compared it
to existing normative data to examine several statistical
issues related to characterizing change or gain in student
understanding. The focus of our analyses in this
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investigation are on student scores on science concept
inventories (CIs). CIs are research-based instruments that
target common student ideas or prior conceptions. These
instruments are most often constrained response (multiple
choice) and include these common ideas as attractive
distractors from the correct response. There exist a multi-
tude of CIs in use across biology, chemistry, and physics
(our target disciplines) and in other fields (e.g., engineering
and math). While CIs are common, the strength of their
validity arguments varies widely and some lack normative
data. All the CIs used in our work have at least some
published research to support their validity and they align
with our proposed uses for the scores.

A principal tool in quantitative research is comparison,
which leads to the frequent need to examine different
instruments and contexts. Complications arise in these cross
contextual comparisons because the instruments used may
have different scales and the scores may greatly vary between
populations. For example, some CIs are designed to measure
learning across one semester while others are designed to
measure learning across several years. Instructors could use
both instruments in the same course but they would, by
design, give very different results. To compare the changes
on the two instruments, researchers need to standardize the
change in the scores, which researchers commonly do by
dividing the change by a standardizing coefficient. Unlike in
physics education research (PER) and other discipline based
education research (DBER) fields, the social science and
education research fields typically use a standardizing coef-
ficient that is a measure of the variance of the scores.
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The most common gain measurement used in PER and
other DBER fields when analyzing CI data is the average
normalized gain, g, shown in Eq. (1) [3]. In this equation,
the standardizing coefficient is the maximum change that
could occur. Hake adopted this standardizing coefficient
because it accounted for the smaller shift in means that
could occur in courses with higher pretest means. He
argued that g was a suitable measure because it was not
correlated with the pretest mean, whereas the post-test
mean and absolute gain were correlated with pretest mean
and were not suitable measures. He also argued that this
normalization allowed for ‘“a consistent analysis over
diverse student populations with widely varying initial
knowledge states” [3] (p. 66) because the courses with
lecture-based instruction all had low g, courses with active-
engagement instruction primarily had medium g, and no
courses had high g. Hake then used this reasoning to define
high g (g > 0.7), medium g (0.7 > g > 0.3), and low g
courses (g < 0.3).

g = e (1)
0 — Xpre

Since Hake published his 1998 paper using g, it has been
widely used, with the article being cited over 3800 times as
this manuscript is being prepared as tracked by Google
Scholar. Accordingly, there exists a large amount of gain
data expressed in terms of g in the research literature, which
serves as normative data for other studies. While the use of
g does not align with the practices of the broader social
science fields, it would be naive to dismiss this metric as
unimportant. However, as noted above and discussed in
more detail below, some issues exist with g.

The broader field of education research primarily uses
the effect size metric as the preferred method for measuring
change. The most commonly used effect size metric is
Cohen’s d [4]. In effect size metrics, a measure of the
variance in the distribution of scores is the standardizing
coefficient rather than the maximum possible gain, which g
uses. An example of Cohen’s d is given by Eq. (2), where
the standardizing coefficient s is the pooled standard
deviation of the pre- and post-tests (discussed further
below).

)_Coe _)_Cre
d=—P= P (2)

Researchers have extensively investigated the utility and
limitations of d, while the research investigating g is
limited. In contrast to Hake’s [3] earlier finding, Coletta
and Phillips [5] found that g was correlated with pretest
means. Willoughby and Metz [6] found that inferences
based on g suggested gender inequities existed in
college science, technology, engineering, and mathematics
(STEM) courses even though several other measures

indicated that there were no gender inequities in those
courses. Furthermore, researchers use several different
methods for calculating g, which can lead to discrepant
findings [7,8]. Researchers have also identified issues for d.
For example, d exaggerates the size of effects when
measuring changes in small samples [9]. Cohen’s d is
based on the ¢ statistic and the assumptions of normality
and homoscedasticity in the test scores used to generate it
[9]. CI data frequently fail to meet the assumptions of
normality and homoscedasticity because of floor and
ceiling effects and outliers. We expect that any problems
that this creates for d are also applicable to g. However, we
are not aware of any research on these assumptions
pertaining to g.

II. PURPOSE

Both d and g have limitations. Our purpose in this
investigation was to empirically compare concept inventory
gains using both g and d to investigate the extent to which
they lead to different inferences about student learning. In
particular, our concern was that g favors high pretest
populations, which leads to skewed measures of student
learning and equity. This particularly concerned us because
researchers use g as the de facto measure of student
learning in PER and other DBER researchers have used
it despite there being few investigations of the validity of g
and known problems with its efficacy. We compared g to d
since d is gaining use in DBER and is the comparable de
facto measure in the much larger fields of sociology,
psychology, and education research where researchers have
extensively studied its validity, utility, and limitations.

III. BACKGROUND ON MEASURING CHANGE

In this section, we provide a foundation for our moti-
vations and work. First, we discuss the development and
use of Cls in undergraduate science education research. We
then discuss statistical issues related to measuring change
before reviewing the uses of the average normalized gain in
analyzing scores from ClIs. Finally, we discuss Cohen’s d
and its use in the context of best practices for presenting
data and findings.

A. Rise in the use of CIs to measure
student knowledge

CIs provide “data for evaluating and comparing the
effectiveness of instruction at all levels” [10]. They typi-
cally consist of banks of multiple-choice items written to
assess student understanding of canonical concepts in the
sciences, mathematics, and engineering. Researchers gen-
erally develop CIs through an iterative process. They
identify core concepts with expert feedback and use student
interviews to identify common preconceptions and provide
wording for distractors. CIs exist for core concepts in most
STEM fields, see Ref. [11] for a thorough review and
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discussion. Though it is unclear exactly how many CIs
exist, one of the most widely used ClIs, the Force Concept
Inventory [10], has been cited more than 2900 times as this
manuscript is being prepared as tracked by Google Scholar.
Researchers often use CIs as the outcome measures for
evaluative studies to find out if an instructional intervention
has an effect on learning relative to a control condition. To
facilitate this use, researchers administer CIs pre- and post-
instruction, and they compare gains observed in treatment
groups to gains observed in a control condition. CIs tend to
measure conceptual understanding at a big picture level.
This means that if students conceive of science learning as a
matter of primarily memorizing definitions and formulas
(consistent with a more traditional conception of teaching
and learning), they are unlikely to do well on most ClIs.
Several studies have used ClIs to compare the impact of
research-based pedagogies to more traditional pedagogies
[3,12,13] and to investigate equity in STEM courses by
comparing the knowledge and learning of majority and
underrepresented minority students [14—17]. These types of
investigations motivate instructors to adopt active learning
in courses throughout the STEM disciplines [18].
Because researchers often compare scores for different
CIs administered to different populations, they often use
a change metric that is standardized and free from the
original scale of the measurement. This change metric is
often g for DBER studies, but some DBER studies have
used d. One particular case that focused our current
investigation on comparing g and d, was the use of g
and test means to conclude “In the most interactively taught
courses, the pre-instruction gender gap was gone by the end
of the semester,” [17] (p. 1). A finding that Rodriguez et al.
[16] later called into question when their “analysis of effect
sizes showed gender still impacted FCI scores and that the
effect was never completely eliminated” [16] (p. 6).

B. Some issues in measuring change

Discussions in the measurement literature on quantifying
change can be sobering. A classical and often cited work in
this area is that of Cronbach and Furby [2], which raised
issues of both the reliability and validity of gain scores.
Based on classical test theory, they argue that the
prime issue of reliability has to do with the systematic
relationship between error components of true scores
derived from independent, but “linked” observations.
Consider a common situation in CI use in which the same
test is given as both a pre- and post-test. One could argue
that the observations (pre and post) are independent
measurements since they are taken at different time points,
but they are actually linked since the measurements are
from the same group of students. Because those students
had responded to the same instrument at the pretest
administration, their post-test scores are likely correlated
with their pretest scores due to a shared error component
between the two scores. One can correct for this (often

overstated) correlation due to the shared error components,
but the correction is not always straightforward. Bereiter
[1] calls this the “over correction under correction
dilemma.” Cronbach and Furby discuss this dilemma at
length and offer various methods to dissattenuate the
correlation. However, they seem to see these correction
methods as a work around for the real issue of linked
observations. In their summary discussion, Cronbach and
Furby actually state that “investigators who ask questions
regarding gain scores would ordinarily be better advised to
frame their questions in other ways” (p. 80). Despite their
persistent statistical issues, gain measurements are widely
used in education research due to their great utility.
Acknowledging these issues while leveraging the utility
requires researchers to be diligent and transparent in their
methods and presentation.

Another issue with gain scores has to do with the actual
scale of the scores, which Bereiter refers to as the
“physicalism-subjectivism dilemma.” The issue here is
related to the assumption of an interval scale on the
construct of interest when using raw scores, or when using
gain scores that are normalized on that same scale (as in
using g). In other words, the gain metric (g) is scaled in
terms of the measure itself (e.g., Newtonian thinking as
measured by a CI) and is assumed to be measured on an
interval scale. A potential solution here is to change the
scaling to something that “seems to conform to some
underlying psychological units,” [1] (p. 5). In this case, the
scaling factor (or “standardization coefficient”) is not based
on the scale of the measure (e.g., raw scores on a CI, or
Newtonian thinking) but rather in a standard unit such as
the variance of the score distribution. In this way, the gain
metric is transformed out of the scale of the measure (e.g.,
Newtonian thinking) and into a construct independent,
standardized scale (e.g., based on variance). Transforming
the scale can make cross-scale comparisons possible, and
also may highlight potential inequities brought on by
remaining in the scale of the measure itself. This latter
approach is how the dilemma is addressed when using the
effect size metric (discussed further below). For a more
detailed discussion of these issues related to measuring
change in classical test theory, see Ref. [19].

C. The average normalized gain

Hake [3] developed the average normalized gain (g) as a
way to normalize average gain scores in terms of how much
gain could have been realized. Hake interpreted g from pre-
post testing “as a rough measure of the effectiveness of a
course in promoting conceptual understanding” (p. 5). His
work was seminal in PER and led to the broad use of g
throughout DBER. The breadth of its uptake led to at least
three different methods for calculating g to be in common
use. The original method proposed by Hake calculates g
from the group means and is shown in Eq. (1). A second
method that is more commonly used [13] is to calculate
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the normalized gain for each individual student (g;) to
characterize that student’s growth, and to then average the
normalized gains for all the individuals to calculate g for
the group. Bao [7] provides an in depth discussion of the
affordances of these two methods, but Bao and Hake both
state that in almost all cases the two values are within 5% of
one another.

Marx and Cummings [8] proposed a third method,
normalized change (c¢), in response to several shortcomings
of (g;). These shortcomings included a bias towards low
pretest scores, a nonsymmetric range of scores (—oo to 1),
and a value of —oo for any post-test score when the student
achieves a perfect pretest score. These limitations inhibit
the ability to calculate the average normalized gain for a
class by averaging the individual student normalized gains.
Instead, they offer a set of rules for determining ¢ based on
whether the student gains from pre- to post-test, worsens, or
remains at the same score. Their metric results in values of
c ranging from —1 to +1. However, c is still sensitive to the
distribution of pre- and post-test scores in a way that might
be “related to certain features of the population” [7], as it is
still normalized on the same scale as the measure itself, an
issue raised by Bereiter [1] and discussed above.

One particular concern with gain metrics, and with g
specifically, has to do with the possibility that these metrics
can be biased for or against different groups of students.
As Rodriguez et al. [16] point out, researchers can define
equity in several ways. This choice combined with poten-
tial bias in the gain metrics leaves open the possibility that
results may not represent the actual status of equity in the
classroom, for which gain metrics serve as a simple but
incomplete indicator. For example, Willoughby and Metz
[6] (p. 1) found that “males had higher learning gains than
female students only when the normalized gain measure
was utilized. No differences were found with any other
measures, including other gain calculations, overall course
grades, or individual exams.” One might expect this to be
the case when the pretest score is part of the standardization
coefficient, since the pretest is likely correlated with
previous education, and therefore opportunity and even
socioeconomic status. Indeed, Coletta and Phillips [5] (p. 1)
“found a significant, positive correlation between class
average normalized FCI gains and class average prein-
struction scores.” This finding is aligned with Marx and
Cummings [8] conclusion that g is biased by pretest scores,
however, they found it was biased in the opposite direction.

D. The effect size metric

One of the most widely used standardized effect size
metrics is Cohen’s d. Cohen’s d normalizes (i.e., scales) the
difference in scores in terms of the standard deviation of
the observed measurements. In essence, it is the difference
between Z (standard) scores. This results in a “pure”
number free from the original scale of measurement [4].
As a result, d meets the need for “... a measure of effect

size that places different dependent variable measures on
the same scale so that results from studies that use different
measures can be compared or combined,” Grissom and
Kim [9].

As a consequence of using the standard deviation, d
assumes that the populations being compared are normally
distributed and have equal variances. Accordingly, the
standard deviation used to calculate d is that of either
sample from the population since they are assumed to be
equal. However, in practical applications the pooled stan-
dard deviation, Eq. (3), of the two samples is used since the
standard deviations of the two samples often differ. The
pooled standard deviation (sp001eq) i @ Weighted average of
the standard deviations of the two samples using the size of
the samples (n) to weight the respective standard devia-
tions. In the case of dependent data such as matched pre-
and post-tests the sample size (n) for both samples is the
same and can be factored out of the following:

(‘ll l)s% (‘12 l)s%
spooled \/ : 5 2 ( )

Xpost — X
_ post pre
ddep = *

2 2
Spre + Spost — zrsprespost

Using either the equal pre- and post-test standard
deviations or the pooled standard deviations assumes that
the samples (pre- and post-test) are independent and
therefore does not take into account or correct for the
correlation between measurements made at pre and post
(the “dilemma” discussed above from Bereiter). The
calculation for d accounting for the dependence between
pre- and post-test [20] is shown in Eq. (4). Equation (4) is
similar to Eq. (2) in that it represents the difference in the
means divided by the standard deviation (in this case,
Spooled)> NOting that there are no sample sizes (n’s) in Eq. (4)
because they factor out of the equation since they are equal.
Equation (4) differs in that it includes a correction factor to
dissattenuate the effect size based on the correlation (r)
between the pretests and post-tests. When the standard
deviations are equal then the dependent and independent
forms of Cohen’s d are equal. If the two are not equal, then
the dependent form of Cohen’s d is always larger because
the correlation accounts for some of the variance in the data
and thereby reduces the standard deviation. Cohen’s d
can also be calculated from the #-test statistic and this can
serve to further elucidate the dependent-independent issue.
Dunlap et al. [21] present an example of calculating a ¢
statistic between two means when assuming the samples
are independent, and again when assuming dependence for
the same sample means. When running dependent analyses
the “...correlation between the measures reduces the
standard error between the means, making the differences
across the conditions more identifiable” [21] (p. 171).
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Thus, taking into account the dependence between the data
results in a larger ¢ statistic because the difference in the
means is divided by a smaller standard error. Cohen’s d can
be directly calculated from the dependent or independent ¢
statistic. This is why the dependent form of d is always
larger than the independent form. In practice, many
researchers use the independent form of d given in
Eq. (2) and do not account for correlations between the
pre- and post-test. For example, Rodriguez et al. [16] used
the dependent samples Cohen’s d in their reanalysis of
earlier pre-post data that did not provide the correlations
between pretest and post-test scores. Dunlap et al. [21]
recommend this practice, arguing that correlation does not
change the size of the difference between the means but
only makes the difference more noticeable by reducing the
standard error. Morris and DeShon [22] agree that using
the independent calculation for d with dependent data is an
acceptable practice so long as all researchers are aware of
the issue and any effect sizes being compared are calculated
in the same way.

IV. RESEARCH QUESTIONS

Given our purpose of comparing g and d, our specific

research questions were as follows:

(1) To what extent did the relationships between g and d
and their relationships to the descriptive statistics
used to calculate them indicate that they were biased
toward different populations of students?

(2) To what extent did disagreements between g and d
about the learning for groups of students with
different pretest scores confirm any biases identified
while investigating the first research question?

Based on previous research we expected differences in the
degree to which d and g indicated that a phenomenon (e.g.,
learning gains or equity) was present. We expected the gain
characterized by each metric to vary by student population
due to differences in pretest scores across populations. This
variation across pretest scores motivated our research
because it could bias investigations of equity in college
STEM learning. We used the second research question to
test any biases we identified in a context (gender gaps) that
is frequently investigated in the PER literature and to
illustrate how bias in the measures used could skew the
results of investigations.

V. METHODS

To answer these research questions, we used a large data
set of student responses to nine different research-based
CIs. This data set was large enough to provide useful and
reliable comparisons of effect size measures and to re-
present CI data in general. We processed the data to remove
spurious and unreliable data points and used multiple
imputations (MI) to replace missing data. To simplify
our analysis, we first investigated the similarity of the

measures resulting from the three ways to calculate Hake’s
normalized gain, course averages (g), averaged individual
gains (gy), and normalized change (c), to determine if
they were similar enough we could conduct our further
analyses using only one of those approaches. We then made
several comparisons of the effect size measures for g and d
to inform our research questions. We compared the effect
size measures to one another and investigated the relation-
ships of the effect size measures with pretest and post-test
means and standard deviations to identify any potential
biases in the effect size measures. To test any biases
we found and to inform the effects of those biases, we
compared the effect size measures for subpopulations
within each course that have historically different pretest
and post-test means.

A. Data collection and processing

Our general approach to data collection and processing
was to collect the pre and post data with an online platform.
We then applied filters to the data to remove pretests
or post-tests that were spurious. Instead of only analyzing
the data from students who provided both a pretest
and a post-test, we used MI to include all the data in the
analyses. Online data collection enabled collecting
a large data set and filtering removed spurious and outlier
data that was unreliable; using MI maximized the size
of the sample analyzed and the statistical power of the
analyses.

We used data from the Learning About STEM Student
Outcomes (LASSO) platform that was collected as part of a
project to assess the impact of learning assistants (LAs) on
student learning [23,24]. LAs are talented undergraduates
hired by university and two-year college faculty to help
transform courses [25]. LASSO is a free platform hosted on
the LA Alliance website [26] and allows faculty (LA using
or not) to easily administer research-based concept inven-
tories as pre- and post-tests to their students online. To use
LASSO, faculty provide course-level information, select
their assessment(s), and upload a list of student names and
Email addresses. When faculty launch an assessment, their
students receive Emails with unique links to complete their
tests online at the beginning and end of instruction. Faculty
can track students’ participation and send reminder Emails.
As part of completing the instrument, students answer a set
of demographic questions. Faculty can download all of
their students’ responses and a summary report that
includes a plot of their students’ pre- and post-test scores
and the course’s normalized learning gains (g), and effect
sizes (Cohen’s d).

We processed the data from the LASSO database to
remove spurious data points and ensure that courses had
sufficient data for reliable measurements. We filtered our
data with a set of filters similar to those used by Adams
et al. [27] to ensure that the data they used to validate
the Colorado Learning Attitudes about Science Survey
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(CLASS) were reliable. Their filters included number of
items completed, duration of online surveys, and a filter
question that directed participants to mark a specific
answer. In our experience, Adams and colleagues discus-
sion of filtering the data is unique for physics education
researchers. Just as Von Korff et al. [13] found that few
researchers explicitly state which g they used, we found
that few researchers explicitly address how they filtered
their data. For example, authors in several studies [28-30]
that used the CLASS made no mention if they did or did
not use the filter question to filter their data, nor do they
discuss any other filters they may have applied. The lack of
discussion of filtering in these three studies is not a unique
choice by these authors. Rather, their choice represents the
common practices in the physics education literature.

We included courses that had partial data for at least
10 participants to meet the need for a reliable measure of
means without excluding small courses from our analyses.
We removed spurious and unreliable data at the student and
course level if any of the following conditions were met.

e A student took less than 5 minutes to complete that
test. We reasoned that this was a minimum amount of
time required to read and respond to the test questions.

* A student answered less than 80% of the questions on
that test. We reasoned that these exams did not reflect
student’s actual knowledge.

* A student’s absolute gain (post-test mean minus
pretest mean) was 2 standard deviations below the
mean absolute gain for that test. In these cases, we
removed the post-test scores because we reasoned that
it was improbable for students to complete a course
and unlearn the material to that extent.

e A course had greater than 60% missing data. Low
response rates may have indicated abnormal barriers
to participating in the data collection that could have
influenced the representativeness of the data from
those courses.

Filter 1, taking less than 5 minutes, removed 364
students from the data set. Filter 2, completing less than
80% of the questions, removed 10 students from the data
set. Filter 3, a negative absolute gain 2 standard deviations
below the mean, removed O students but did remove 43
post-tests. Removing the courses with more than 60%
missing data removed 27 courses and 1116 students from
the analysis.

To address missing data, we performed multiple impu-
tations (MI) with the Amelia II package in R [31]. The most
common method for addressing missing data in PER is to
use listwise deletion to only analyze the complete cases,
discarding data from any student who did not provide both
the pretest and post-test; though, we know of at least one
study in PER that used MI [32]. We used MI because it has
the same basic assumptions of listwise deletion but it
reduces the rate of type I error by using all the available
information to better account for missing data [33]. This

leads to much better analytics than traditional methods such
as listwise deletion [34] that, while they “...have provided
relatively simple solutions, they likely have also contrib-
uted to biased statistical estimates and misleading or false
findings of statistical significance,” [35] (p. 400). Extensive
research indicates that in almost all cases MI produces
superior results to listwise deletion [36,37].

MI addresses missing data by (i) imputing the missing
data m times to create m complete data sets, (ii) analyzing
each data set independently, and (iii) combining the m
results using standardized methods [37]. The purpose of MI
is not to produce specific values for missing data but rather
to use all the available data to produce valid statistical
inferences [36].

Our MI model included variables for CI used, pretest,
and post-test scores and durations, first time taking the
course, and belonging to an underrepresented group for
both race or ethnicity and for gender. The data collection
platform (LASSO) provided complete data sets for the CI
variables and the student demographics. As detailed in
Table I, either the pretest score and duration or the post-test
score and duration was missing for 42% of the students.
To check if this rate of missing data was exceptional,
we identified 23 studies published in the American Journal
of Physics or Physical Review that used pre-post tests. Of
these 23 studies, 4 reported sufficient information to
calculate participation rates [28—30,38]. The rate of missing
data in these 4 studies varied from 20% to 51% with an
average of 37%. The 42% rate of missing data in this study
was within the normal range for PER studies using pre-
post tests.

Based on the 42% rate of missing data we conducted 42
imputations because this is a conservative number that will
provide better results than a smaller number of imputations
[39]. We analyzed all 42 imputed data sets and combined
the results by averaging the test statistics (e.g., means,
correlations, and regression coefficients) and using Rubin’s
rules to combine the standard errors for these test statistics
[40]. Rubin’s rules combines the standard errors for the
analyses of the MI data sets using both the within-
imputation variance and the between-imputation variance
with a weighting factor for the number of imputations used.
For readers interested in further seeking more information
on MI, Schafer [40] and Manly and Wells [36] are useful
overviews of MI. All assumptions were satisfactorily met
for all analyses.

TABLE I. Data after each filter was applied.

None Time Completion Gain >60% missing
Courses 119 116 116 116 89
Students 6041 5677 5667 5667 4551
Pretests 5339 4922 4899 4899 3842
Post-tests 4204 3693 3685 3642 3335
Matched 3502 2973 2917 2874 2626
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TABLE II. Correlations between the three forms of normalized
gain for each course. *** indicates p < 0.001
C g
g 0.99%#*%*
g1 0.93%*%* 0.93%#**

B. Investigating the effect size measures

To identify and investigate differences between the effect
size measures, we used correlations and multiple linear
regressions (MLR) to investigate the relationships between
the effect size measures and the test means and standard
deviations. Correlations informed the variables we included
in the MLR models.

We calculated Cohen’s d for each course using the
independent samples equation, Eq. (2). We used this
measure because it is the most commonly used in the
physics education research literature and because we
expected it to have little to no impact on the analyses
[22], which we discussed in Sec. III.D.

To test biases in the effect sizes and their effects on CI
data, we used the male and female effect size measures in
the aggregated data set. We separated these two groups
because male students tend to have higher pretest and post-
test means on science concept inventories than female
students [14,41]. Thus, gender provided a straightforward
method of forming populations with different test means
and standard deviations. Gender also allowed us to frame
our analysis in terms of equity of effects. We defined equity
as being the case where a course does not increase
preexisting group mean differences. This definition means
that for a course to be equitable the effect on the lower
pretest group is equal to or larger than the effect on the
higher pretest group.

For this analysis we calculated the effect sizes for males
and females separately. For each effect size measure we
then calculated the difference between males and females
effect sizes, for example, Ay = €140 — &remale- If males in a
course had a larger effect size than females in the course

(@) (b)
06 0.6

0.4 0.4

0.2 02

0.0 0.0

0.0 0.2 04 0.6 0.0 0.2
c

FIG. 1.

then that course was inequitable, A, > 0. This created four
categories into which any two effect size measures would
locate each course. Two categories for agreement where
both effect sizes said it was either equitable or inequitable
and two categories for disagreement where one said equity
and the other said inequity. If one of the effect size
measures was biased and indicated larger effects on higher
pretest mean populations than we expected that one type of
disagreement would occur more frequently than the other
type. To easily identify differences in the number of courses
in the disagreement categories and the size of those
disagreements, we plotted the data on a scatter plot. We
tested the statistical difference in the distributions using a
chi square test of independence with categories for each
effect size measure and whether they indicated equity or
inequity.

C. Simplifying the analysis

The multiple methods for calculating normalized gain
for a course complicated our purpose of comparing
normalized gain and Cohen’s d. Therefore, we compared
normalized gain calculated using each of the three common
methods, which are described in Sec. III. C, for each
course. We calculated g using the average pretest and
post-test scores for the course. We calculated the course g
and ¢ by averaging the individual student scores for each
course. Correlations between all three measures were all
large and statistically significant, as shown in Table II. The
scatter plots for these three measures are shown in Fig. 1.
These results indicated that all three measures were very
similar. Therefore, we only used the normalized gain
calculated using course averages, g, in our subsequent
analyses.

The filters we applied to the data likely minimized the
differences between g; and the other two forms of
normalized gain. As Marx and Cummings [8] point out,
g; is asymmetric. Students with high pretest scores can
have very large negative values for gy, as low as approx-
imately —32, but can only have positive values up to 1. We
focused on filtering out spurious and unreliable data that

()
0.6
0.4

0.2

0.0

0.4 0.6 0.0 0.2 0.4 0.6
9 9

Scatter plots comparing the course average value for the three forms of normalized gains.
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TABLE III. Correlations between the effect size measures and test statistics, including pretest mean (Pre. Mean), pretest standard

deviation (Pre. S.D.), post-test mean (Post. Mean) and post-test standard deviation (Post. S.D.). *p < 0.05. **p < 0.01. ***p < 0.001.
d g Pre. Mean Post. Mean Gain Pre. S.D.

g 0.75%**

Pre. Mean —0.11 0.43%%*

Post. Mean 0.43%** 0.87%%% 0.81%**

Gain 0.87%** 0.93 %% 0.11 0.67%**

Pre. S.D. —0.18 0.44%** 0.67#** 0.65%** 0.24*

Post. S.D. —0.24 0.10 —0.01 0.08 0.15 0.42%**

would have likely produced many large negative gy values
for individual students and resulted in larger differences
between g and the other two normalized gain measures.
Nonetheless, the notable differences between the three
normalized gain metrics all occurred for gy being much
lower than the other two metrics.

VI. FINDINGS
A. Relationship between g and d

Investigating the relationship between g and d indicated
that there was a large positive relationship between the
two measures and it was statistically reliable: r = 0.75,
p < 0.001. This indicated that d and g shared approximately
half of their variance in common (> = 0.56). Because these
two measures serve the same purpose, the 44% that they do
not have in common was a large amount. Further investigat-
ing the correlations between the effect sizes and their related
descriptors, shown in Table III, revealed large differences
between d and g. The correlations between d and both pretest
mean and pretest standard deviation were small to very small
and were not statistically reliable. In contrast, g was mod-
erately to strongly correlated with both pretest mean and
pretest standard deviation. These correlations between g
and pretest statistics (0.43 and 0.44, respectively) indicated
that approximately one-fifth of the variance in normalized
gains was accounted for by the score distributions that
students had prior to instruction. In contrast, d was only
weakly associated with both pretest mean and pretest standard
deviation. Three of these relationships are shown in Fig. 2.

(@) ,5 e (b) »5

20 20

0.2 0.4

0.6 20

Meang,,

These relationships were strong evidence that g was positively
biased in favor of populations with higher pretest scores.

To inform the size of this bias, we ran several models
using MLR with g as the dependent variable and inde-
pendent variables for d, pretest mean, and pretest standard
deviation. We used g as the dependent variable because this
was consistent with the correlations between g and pretest
mean indicating that g was positively biased by pretest
means, whereas correlations indicated that d was not
biased. The linear equation for the final model is given
in Eq. (5). Our focus in these MLRs was on the additional
variance explained by each variable in the models, which
we measured using the adjusted 7>. We did not focus on the
coefficients f for each variable:

g =P+ p xd+ ppx Meanpre + f3 % S-D'pre (5)

The four models for the MLR are shown in Table IV.
All the models were statistically significant (p < 0.05).
Model 1 only included d and shows that d and g shared 55%
of the same variance as indicated by the adjusted > value.
Adding either pretest mean or pretest standard deviation to
the model markedly increased the explained variance to
either 82% or 89%, model 2 and model 3, respectively.
Including all three variables in model 4 explained 92% of the
variance in g. We interpreted this as indicating that the
disagreements between d and g were largely explained by
the pretest means and standard deviations. Because the
pretest means and standard deviations explained such a large
proportion of the unexplained variance from model 1 and the

(©) 06

40 50 20 30 40 50
Meang,,

FIG. 2. Scatter plots for (a) d and g, (b) d and pretest mean, and (c) g and pretest mean.

010115-8



COMPARISON OF NORMALIZED GAIN AND ...

PHYS. REV. PHYS. EDUC. RES. 14, 010115 (2018)

TABLE IV. MLR exploring relationships between g and dependent variables (D.V.) for d, pretest mean (Pre. Mean), and pretest

standard deviation (Pre. S.D.).

Model Model 1 Model 2 Model 3 Model 4
(%) 55.6 82.4 89.0 92.1

adj. r*(%) 55.0 82.0 88.7 91.8

p <0.001 <0.001 <0.001 0.02

D.V. p 14 p p p p p p
Intercept 0.05 0.05 -0.21 <0.001 -0.21 <0.001 -0.26 <0.001
d 0.22 <0.001 0.24 <0.001 0.25 <0.001 0.25 <0.001
Pre. Mean 0.01 <0.001 0.01 <0.001
Pre. S.D. 0.01 <0.001 0.01 <0.001

correlations indicated that pretest mean and pretest standard
deviation were much more strongly related to g than to d,
these results indicated that g was biased in favor of groups
with higher pretest means.

B. Testing the bias in g using populations
with different pretest scores

Results from the MLR model 2 indicated that a class’s
pretest mean explained 27% of the variance in a class’s g
value that was not explained by d. If g is biased in favor of
high pretest groups, as the MLR and correlations indicated,
then we expected the disagreements between g and d to
skew such that they indicated a bias for g in favor of the
high pretest population. To visualize potential bias in g we
plotted the difference in d on the x axis and the difference in
g on the y axis in Fig. 3. The course marker color shows
whether male or female students’ pretest means were
higher. Almost all of the markers (41 of 43 courses)
indicated that male students started with higher pretest
means and that the data were consistent with our focus on
equity being a larger effect on female students. In total, g

showed a larger effect on males in 33 out of 43 courses,
whereas d indicated a larger effect on males in 22 out of 43
courses. Figure 3 illustrates this bias in g in the difference
between quadrants II and IV. A chi squared test of
independences indicated that these differences were sta-
tistically reliable: y?(1) = 6.10, p = 0.013. This difference
confirmed that g was biased in favor of the male pop-
ulation, showing that g is biased in favor of populations
with higher pretest means. This bias implies that g is not a
sufficiently standardized change metric to allow compar-
isons across populations or instruments with different
pretest means and is not a suitable measure of effects.

VII. DISCUSSION

To simplify our comparison of the statistical merits of
using g and d to measure student learning, we first
determined what differences there were between the three
methods of calculating g. Our analysis showed that the
three methods for calculating normalized gain scores were
highly correlated (r > 0.93). The high level of correlation
between the normalized gain values indicated that it made

v
N
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o S v v v v v
g - vV v .
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. Y
3 Q R4 Vv
s °
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v
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FIG. 3. Comparison of gender differences for 4 and g.
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little difference which method we used. This result was
encouraging given that many researcher report g scores
without discussing which method of calculation they used
[13]. The scatter plots (Fig. 1) for the three measures of g
indicated that the large disagreements between the measures
that occurred were cases in which g; was much lower than
both g and c. This discrepancy is consistent with the negative
bias in possible g scores that led Marx and Cummings [8] to
develop c. The filters we used to remove unreliable data likely
increased the agreement we found between g and the other
normalized gain measures. However, there were several
courses where g; was noticeably lower than g and c.
These disagreements indicate two potential problems in
the existing literature. Some studies using g; may have
underestimated the learning in the courses they investigated
due to the oversized impact of a few large negative gy values.
Alternatively, some studies may have filtered out data with
large negative gy values but not explicitly stated this filtering
occurred. Both situations are consistent with Von Korff and
colleague’s [ 13] statement that few researchers explicitly state
which measure of normalized gain they used. Either situation
or a combination of the two make it difficult for researchers
to rely on and to replicate the work of those prior studies.

Our comparisons of g and d revealed several meaningful
differences that indicated that g was biased in favor of high
pretest populations. The correlation between g and d was
strong (r =0.75, p < 0.001) but was markedly smaller
than the correlations between the three different methods of
calculating g (r > 0.93). This correlation of 0.75 meant that
g and d shared only 56% of their variance. MLRs indicated
that pretest mean and standard deviation explained most of
the difference between g and d; d, pretest mean, and pretest
standard deviation accounted for 92% of the variance in g.
Given that g was correlated with these pretest statistics
much more strongly than d, we concluded that g is biased
in favor of populations with high pretest means. We
recommend that researchers avoid using all forms of
normalized gain and instead report Cohen’s d and the
descriptive statistics used to calculate it, including the
correlation between pretest and post-test scores.

This bias of g in favor of populations with high pretest
means is problematic. The dependence of g on pretest
privileges populations of students who come into a class
with more disciplinary knowledge or who perform better on
multiple choice exams. This bias disproportionately affects
students from traditionally underrepresented backgrounds
such as women in physics. When comparing the learning of
males and females in our data set, g identified males as
learning more in 33 of 43 courses (77%) while d only
identified males as learning more in 23 of 43 courses (53%),
nearly cutting the rate by 1/3 (Fig. 3). This difference in
measurement indicated that g should not be used for
investigations of equity as it overestimated student
inequities. Researchers are better served by using statistical

methods that analyze individual student’s post-test scores
while controlling for their pretest scores and other variables
of interest. All researchers should ensure that they report
sufficient descriptive statistics for their work to be included
in meta-analyses.

VIII. CONCLUSION AND INFERENCES

The bias in g can harm efforts to improve teaching in
college STEM courses by misrepresenting the efficacy of
teaching practices across populations of students and across
institutions. Students from traditionally underrepresented
backgrounds are disproportionately likely to have lower
pretest scores, putting them at a disadvantage when
instructors make instructional or curricular decisions about
an intervention’s efficacy based on g. For example, g likely
disadvantages instructors who use it to measure learning in
courses (e.g., nonmajor courses) or are at institutions (e.g.,
2-year colleges) that serve students who have lower pretest
means. This is particularly important for faculty at teaching
intensive institutions where evidence of student learning
can be an important criterion for tenure and promotion.

Comparing the impact of interventions across settings
and outcomes in terms of gain scores requires some form of
normalization. Normalized learning gain (g) and Cohen’s d
both employ standardization coefficients to account for
the inherent differences in the data. Hake developed g to
account for classes with higher pretest means potentially
having lower gains due to ceiling effects. By focusing on
ceiling effects, g implicitly assumes that any population
with a higher pretest score will have more difficulty in
making gains than lower pretest populations. This
assumption contradicts one of the most well-established
relationships in education research that prior achievement is
a strong predictor of future achievement. Thus, g’s adjust-
ment for potential ceiling effects appears to overcorrect for
the problem and results in g being biased in favor of
populations with higher pretest means.

Using standard deviation as the standardization coeffi-
cient in Cohen’s d helps to address ceiling effects in that
measure. When ceiling effects occur the data compresses
near the maximum score. This compression causes the
standard deviation to decrease which increases the size of
the d for the same raw gain. Cohen’s d also corrects for
floor effects by this same mechanism. Instruments that have
floor and ceiling effects are not ideal for research because
they break the assumption of equal variances on the pre-
and post-tests and because they are poor measures for high
or low achieving students. Instruments designed based on
classical test theory, such as the CIs used in this study,
mainly consist of items to discriminate between average
students and have few items to discriminate between high-
performing students or low-performing students. Cohen’s
d may mitigate the limitations of these instruments for
measuring the learning of high or low pretest populations of
students by accounting for the distribution of tests scores.
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When the standard deviation is smaller, as with floor or
ceiling effects, the probability of change is lower (i.e.,
learning is harder) so Cohen’s d is larger in these cases for
the same size change in the means.

In addition to reporting Cohen’s d, researchers should
include descriptive statistics to allow scholars to use their
work in subsequent studies and meta-analyses. These
descriptive statistics should include means, standard devi-
ations, and sample sizes for each measure used, and
correlations between the measures. We include correlations
on this list because of the dependent nature of CI pre-post
testing is not taken into account by the change metrics we
have presented in this paper. As discussed in the back-
ground section, this correlation (i.e., linking) results in a
shared error component that can exaggerate the size of the
difference. While it is not a common practice in education
research, there are effect sizes and statistical methods that
can account for the dependence of pre-post tests in
published data when the correlations are reported.

The bias of g is also an issue for researchers who want to
measure the impact of interventions on student learning. The
efficacy of interventions ranging from curricular designs to

classroom technologies have been evaluated and scaled-up
based on measures of student learning. For these inves-
tigations, it is important to have a measure of student
learning that is not excessively dependent on the knowledge
that students bring to a class. By using the pooled standard
deviation, rather than the maximum possible gain as defined
by the pretest, as a standardization coefficient, d avoids
the bias toward higher pretest means while accounting for
instrument specific difficulty of improving a raw score. We
recommend researchers use d rather than g for measuring
student learning. Besides being the more reliable statistical
method for calculating student learning, the use of d by the
DBER community would align with the practices of the
larger education research community, facilitating more
cross-disciplinary conversations and collaborations.
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