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Previous research on problem diagrams suggested that including a supportive diagram, one that does not
provide necessary problem solving information, may bring little, or even negative, benefit to students’
problem solving success. We tested the usefulness of problem diagrams on 12 different physics problems
(6A/B experiments) in our massive open online course. By analyzing over 8000 student responses in total,
we found that including a problem diagram that contains no significant additional information only slightly
improves the first attempt correct rate for the few most spatially complex problems, and has little impact on
either the final correct percentage or the time spent on solving the problem. On the other hand, in half of the
cases, removing the diagram significantly increased the fraction of students’ drawing their own diagrams
during problem solving. The increase in drawing behavior is largely independent of students’ physics
abilities. In summary, our results suggest that for many physics problems, the benefit of a diagram is
exceedingly small and may not justify the effort of creating one.
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I. INTRODUCTION

As physics instructors, we often feel obliged to accom-
pany the problems we write with a figure or a diagram.
It is common wisdom that a figure or a diagram can help
students understand and solve the problem, especially
when it involves complex spatial relations or unfamiliar
objects. In a typical commercial physics textbook, a
significant fraction of problems are accompanied by a
diagram. While some diagrams provide necessary problem
solving information that is not conveyed in the problem
body, such as circuit diagrams, free body diagrams, or
voltage phasor diagrams, many are supportive diagrams—
a term we use when all of the information necessary for
solution is already unambiguously included in the problem
body, and the diagram adds no new information relevant to
problem solving.
Often, creating a “good looking” diagram or figure often

consumes several times the time and effort of creating the
problem text itself, and requires additional proofreading to
determine whether figure and text are fully in accord,
especially when the problem is to be published in either a
printed textbook or an online platform. Therefore, it is

important to measure how much a supportive diagram helps
students solve physics problems in order to determine
whether the benefit justifies the cost of creating one. Since
all the diagrams involved in this study are supportive, we
will refer to them simply as “diagrams” in the remainder of
this paper.
A number of cognitive learning theories suggest,

although somewhat indirectly, that supportive diagrams
can still be potentially beneficial to problem solving.
Paivio’s dual coding hypothesis [1] and the ensuing
multimedia learning theories [2,3] imply that, when parallel
verbal and visual channels are utilized to convey informa-
tion, significantly fewer cognitive resources are required,
leading to more accurate processing and freeing up more
cognitive capacity that can be delegated to problem solving.
However, both of those theories relate to teaching rather
than problem solving. From a problem-solving perspective,
the extra mental effort required to generate a visual
representation from text can potentially deepen under-
standing of the problem, suggesting that drawing a diagram
may have benefits over simply being presented with one.
More importantly, the cognitive theories do not take into

consideration the impact of a diagram on students’ problem
solving behavior, which can be a more dominant factor in a
real instructional setting. Evidence supporting a stronger
behavioral impact comes from a series of recent experi-
ments by Lin, Maris, and Singh [4–6] which found that for
the problems involved in their study the accompanying
diagrams provide no detectable benefit for problem solv-
ing, and in some cases significantly hurt performance.
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Based on this observation, the authors suggested that in the
presence of a problem diagram, students are less likely to
draw one on their own, which in some cases leads to
shallow processing of the problem. In other words, their
study suggests that in certain cases, the presence or absence
of a diagram can indeed significantly impact students’
problem solving behavior, which in turn influences their
problem solving outcome.
One of the major limitations of those studies is that only

a very small number of problems (2 in each study) and
students (<60 each group) were studied. This limits the
ability of the study to provide a general suggestion to
instructors on whether or when to include a diagram. In
addition, some problem diagrams may only be beneficial
for students at a particular level of proficiency. Heckler [7]
reported that prompting weaker students to construct free
body diagrams can actually hurt their problem solving
performance.
Recent developments in online educational technology,

especially massive open online courses (MOOCs), provide
an opportunity to address the limitations of previous studies
[8–10]. The large number of participants in our MOOC
ensures adequate statistics for detecting small differences or
looking at a subsection of students, even with moderate
response rate. Adding or removing a diagram from a
problem is much easier in an online platform, enabling
us to test a large number of problems covering different
topics, involving objects of various familiarity, and with
different levels of visual and spatial complexity. Finally,
MOOC students present a much wider distribution of
background knowledge compared to students in a typical
brick and mortar classroom. This allows us to study the
impact of diagrams on students with different abilities. In
addition, students’ problem solving behavior can be studied
by appending survey questions following the problem.
By utilizing the “split test” feature of the edX platform

[11], which allows the instructor to randomly present
different materials to students in a MOOC, we seek to
disentangle the complicated relationships among a problem
diagram, students’ problem solving performance, students’
drawing behavior, and students’ background ability. More
specifically, this study addresses the following research
questions in the context of a calculus based introductory
mechanics course:
(1) Do diagrams in general have an impact on students’

problem solving performance (either percentage of
correct answers or time spent on problem solving)?
If so, to what extent?

(2) Do diagrams given with problems change students’
problem solving behavior, or more specifically, their
decision to draw their own diagram?

(3) How does spontaneously drawing a diagram influ-
ence problem solving outcome? (as compared to
being prompted to draw a diagram in Ref. [7]?)

(4) Do students with different physics ability react
differently to the presence or absence of a diagram?

(5) What types of problems (if any) are more likely to
require a diagram?

II. MATERIALS AND METHODS

The experiments described in this paper are conducted in
8.MReVx Mechanics Review, an edX MOOC ran by the
RELATE group at MIT [12,13] from May 29th to
September 14th 2014. This MOOC covers most of the
topics in a typical college level introductory mechanics
course, and is designed for students with some existing
knowledge of Newtonian mechanics. In summer 2014, the
course received ∼11 000 registrations, with over 500
students’ receiving certificates.

A. Controlled AB experiment on the edX platform

The edX platform allows the course creator to create
controlled AB experiments by splitting the student pop-
ulation into two or more groups (called “partitions”), and
presenting each group with a different version of content,
such as a problem or a series of problems or html pages.
Every student who tries to access the experimental

course content for the first time is randomly assigned to
one of the groups at the time of first access. This assign-
ment strategy insures that each group will have approx-
imately the same number of students despite the fact that
MOOC students may randomly choose not to access the
experimental content.
The instructor can choose to keep the same group

assignment (partition) for multiple contents in different
locations of the course. For example, we can make sure that
all students who received a diagram in problem 1 will
receive no diagram in problem 2. The instructor can also
use a different partition for different experiments in the
same course, which reduces systematic bias between
different groups, and prevents interference between earlier
and later experiments in the same course. In the current
study, we kept the group partition for the two problems
within the same experiment, and used a different partition
for each experiment, as described in detail in Sec. II C.

B. Structure of 8.MReVx Mechanics Review

The 2014 iteration of 8.MReVx consists of 12 required
units and 2 optional units, with each unit designed to be
about a week long. A typical unit contains three sections:
instructional e-text (with embedded checkpoint problems),
homework, and quiz. All components of a single unit are
released and are due at the same time. To accommodate for
the varying schedule of MOOC students, each unit is
released at least 4 weeks ahead of the due date.
All checkpoint problems, homework, and quiz problems

are graded. Students earn a certificate for the course if they
obtain a minimum of 60% of total course credit. Most
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graded problems in the course allow multiple attempts. All
quiz problems allow 3 attempts, whereas numeric and
symbolic response problems on the homework allow for up
to 10 attempts. The number of attempts on any multiple
choice problem equals half of the available choices to
prevent exhaustive guessing. There is no time limit for
completing any of the problems, as long as they are
completed before the due date of the unit. Quiz and
homework problems are weighted almost the same towards
the final course grade. The only difference between a quiz
problem and a homework problem is that the correct
answer to the quiz problem is only released after the unit
due date, whereas the correct answer to the homework
problem is available to students after they finish (get the
correct answer or depleted all the attempts) the problem.
Data analysis showed little (if any) differences in the
completion rate of homework vs quiz problems [14].

C. Experiment design

A total of six AB experiments with identical design were
implemented throughout the first eight units of the course.
We chose to implement the experiments in the first eight
units mainly because of two reasons: First, based on
previous experience there is a significant drop of activity
towards the end of the course, since only 60% of the course
credit is necessary for a certificate. Second, two different
experiments were conducted in the homework and quiz
section of units 9–12 [13]; therefore, the diagram experi-
ment was restricted to the first eight units to avoid potential
interference between experiments.
Each experiment involved two problems chosen from

either the homework or the quiz section of a given unit, so the
entire study involves twelve different problems in total. The
problemswere chosen from the first eight units of the course,
covering kinematics, Newton’s laws, circular motion, con-
servation of momentum, and conservation of energy.
The two problems had all the necessary information

required for solution expressed unambiguously in the
problem text. For each problem, we created two versions
with identical problem text: one with a diagram (DG) and
one with no diagram (NDG).
In each two-problem experiment, the student population

was randomly partitioned into two groups, A and B
(Fig. 1). Group A saw the first problem in DG format
and the second problem in NDG format. Group B saw the
two problems in the same order, but the DG and NDG
conditions were reversed. The group assignment for each
experiment is independent, reducing systematic bias in the
population.
Immediately after each problem, we presented students

with the following survey question:

When solving this problem, (check all that apply)
(i) I drew one or more diagrams
(ii) I wrote down some equations

(iii) I did the problem entirely in my head
(iv) I used some other means to solve the problem

D. Obtaining students’ physics skill through
item response theory

A dichotomous item response theory (IRT) model was
used to obtain the students’ skills (ability) and item
difficulty and item discrimination parameter estimates.
Although multiple attempts were allowed to students in
our test, only “first attempted correct” was considered as a
correct response. To get the IRT ability values to represent
students’ skills, 604 students who tried more than 50% of
all items were selected and 1197 items (checkpoint, home-
work, quiz, and final test) were used to estimate IRT. The
students’ skills were estimated by the BILOG-MG IRT
computer program [15]. A two- parameter logistic item
response theory (2PL IRT) model was applied using a
marginalized maximum likelihood estimation (MMLE)
method [16]. The person centering method was applied
as an identification problem constraint and a concurrent
calibration equating method was used to put all IRT values
on the same scale for comparisons of skills and item
parameters [17].
Using IRT, the physics skills (θ) of the student

population obeys a Gaussian distribution with mean
of 0 and width of 1. In this study, we define weak students
as those with θ ≤ −0.5, median students as those with
−0.5 < θ ≤ 0.5, and strong students as those with θ > 0.5.
To ensure the accuracy of skill estimation, IRT analysis is
only performed on those who attempted > 50% of all the
problems in the course.

E. Student populations used in the analysis

In a MOOC environment, students have more freedom to
choose the assignments that they wish to complete. As a
result, the number of students completing each problem
(including its survey question) varies and drops as students
either drop out of or complete the course, as shown in
Table II.
As previously explained, each experiment contained

two problems, and the partitions were different for each

FIG. 1. Experiment design. Each experiment consisted of a pair
of problems. The same design was used for all 6 experiments
conducted.
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experiment. For example, the 480 students in DG condition
of P1 are largely the same students as the 428 students in P2
NDG condition (except for a few that completed only one
of the two problems). The 327 students in the P3 DG
condition came randomly from both the P1 DG and P1
NDG conditions, also including those who did not attempt
P1. Since our experimental design minimized systematic
bias in the population, it is reasonable to treat each
observation as independent. The last column contains the
total number of observations for each condition.
Not every one of those students completed > 50% of all

the course problems. Therefore, IRT skill can only be
calculated for a fraction of those students. The number of
IRT eligible students for each problem is listed in Table II.

Notice that the total number of IRT available observa-
tions in the DG and NDG conditions is the same for the
adjacent pairs of problems. This is because we switched the
conditions between the two problems in each experiment,
and every student who completed > 50% of the course
problems completed both problems in each experiment.

F. Obtaining time on task information
for problem solving

The “time on task” information for each problem is
obtained by analyzing the click stream data from the edX
platform. For a single student, the time spent on a single
problem is defined as the time between the first access

TABLE I. Number of students included in the analysis for each problem. We only included students who answered both the problem
and the survey question.

Problem P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Total

N(DG) 480 432 327 303 303 230 296 257 284 224 241 187 3564
N(NDG) 473 428 354 282 272 239 283 283 269 228 257 185 3553

TABLE II. Number of IRT eligible students with different physics skills in the NDG condition.

NDG P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Total

N(Low) 50 56 58 49 27 38 58 53 44 37 35 36 541
N(Medium) 98 100 94 100 87 91 91 105 89 92 72 85 1104
N(High) 61 60 62 55 60 66 58 71 55 65 70 47 730

TABLE III. Rating rubric for problem-diagram pairs.

Code Question Detailed explanation

Rep_Info Does this diagram represent a significant
fraction of the key information contained

in the problem body?

Consider information that is either key to
solving the problem or might affect the
solution, such as additional variables

not necessary for the solution.
Irr_Visual Rate the amount of irrelevant visual

elements, or visual elements clearly
inconsistent with the problem description

Such as showing a real car or human,
or showing a small ball when the
problem says “massive ball.”

Diagram_Helpful Overall, do you think this diagram will be
helpful to students solving this problem?

Unfamiliar_Objects What kinds of objects are involved in this problem?
Non-Visual_Info What fraction of key information in this problem

CANNOT be easily represented visually?
Such as “elastic collision” or “frictionless surface.”

Need_Draw In general, do you think students need to draw
a diagram in order to solve this problem?

Spatial_Complexity Spatial complexity of problem Evaluate the spatial complexity of the problem,
by estimating how many geometric relations are
needed to solve the problem, such as finding

the correct angle, or finding a relevant distance.
Temporal_Complexity Temporal complexity of problem Evaluate the temporal complexity of the problem,

by estimating how many sequential steps were
described in the problem, such as follows: First the

person throws a ball, then the ball hits a wall.
This would be considered as two steps.
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(opening the webpage that contains the problem) and the
last attempt on the problem. If the student opened a
different edX page during problem solving, the time
between opening that page and the next submission on
the current problem is excluded from the total time on task.
In addition, if no new events were recorded 30 min after the
problem was open, we assume that the student was not
actively working on the problem, and in that case the
problem access event is discarded from the analysis.
Similarly, if a student navigated away from the problem
in less than 10 seconds, we do not count that time as time
spent on solving the problem.

G. Expert evaluation of diagram and problem

We asked 5 physics experts to rate both the problems and
the diagrams on the following aspects on a 1–3 scale
(Table III), with 1 indicating disagree, and 3 indicating
agree, and 2 indicating neutral.
The only exception is the fourth question “Unfamiliar

Objects: What kinds of objects are involved in this
problem.” On this question, the experts were given four
choices:
(1) Involves ideal objects such as blocks and pulleys
(2) Involves relatively familiar real world objects such

as baseball and bus
(3) Involves relatively unfamiliar real world objects or

situations
(4) Involves real world objects or situations that most

people have not heard of
In the final analysis, we combined the last two choices,

and coded the three choices 1–3, with 1 being ideal physics
objects and 3 being unfamiliar real world objects, or objects
that most people have not heard of. The reason to code ideal
physics objects as one is because we think that physics
objects such as blocks and pulleys are very familiar to most
of the students in this course, and carry fewer visual
features than real objects.

The physics experts were selected from physics faculties,
postdocs, and graduate TAs who have experience teaching
introductory mechanics.

III. RESULTS

A. Adding a problem diagram slightly improves
performance on problem solving

We first look at the impact of including a diagram on the
difficulty of physics problems. Problem difficulty is mea-
sured by the percentage of correct answers on students’ first
attempts. As shown in Fig. 2, in most cases the presence or
absence of a diagram had little impact on the difficulty of
the problem itself. Only 3 out of 12 problems (P3, P4, and
P8) showed a significant difference in difficulty between
the two conditions (p < 0.05, χ2 > 5).
Since we carefully balanced systematic bias in the

population in our experiment design, it is meaningful to
add up the data from all 12 problems and compare the
overall success rate between the DG vs NDG conditions.1

As shown on the rightmost column of Fig. 2, the overall
correct rate under the DG condition is higher than that in
the NDG condition by 3� 0.8%. The difference, although
small, is still statistically significant due to the large
cumulative sample size (∼3500 observations per condition,
p < 0.01, χ2 ¼ 6.9).
Essentially no differences between the two conditions

were observed for either the final attempt correct rate
(∼87% on average) or the average number of attempts used
on each problem (ranging from 1.4 to 3 attempts).
In Figure 3 we compare the median time on task in

seconds for solving each problem under the two conditions.
Since the distribution of MOOC time data is highly non-
normal, with a long, one-sided tail and often more than one

FIG. 2. Percentage of first attempt correct for each problem. The rightmost column is the percentage correct aggregated over all 12
problems. *Difference is significant at the 0.05 level. ** Difference is significant at the 0.01 level. (chi-squared test).

1For further discussion on the legitimacy of adding the experi-
ment data, see the Sec. IV.
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peak, we use the Mann-Whitney U test to examine whether
the distributions of time data are statistically different from
each other. Two of the problems (P1 and P10) showed a
significant difference (p < 0.01) between the conditions. In
both cases, the median time for solving the problem ranges
from 400 to 600 s, and the NDG group took ∼200 s longer
than the DG group. Note that due to the unique distribution
of MOOC time data, it is difficult to capture the difference
by one variable such as the mean or the median [18]. For
example, although on P2 the median time of the DG
condition is longer than that of the NDG condition, the
difference in the distributions is insignificant (p ¼ 0.22 on
a Mann-Whitney U test). More careful treatment of the time
data requires sophisticated statistical models, which we
deem to be unnecessary for our purpose in this study.

B. Adding a problem diagram reduces students’
tendency to draw their own

We also investigated how the presence or absence of a
problem diagram impacts students’ tendency to draw their
own diagram. The fraction of students drawing their own

diagram is measured by students’ answers on the survey
question following each problem. As shown in Fig. 4(a), on
7 out of 12 problems, a significantly lower fraction of
students (ph0.01; χ2i7, chi-square test) in the DG condition
reported drawing their own diagram during problem
solving than in the NDG condition. Combining the data
across all 12 problems, students in the DG condition are
10% less likely to draw their own diagram than in the NDG
condition (p < 0.001, χ2 ¼ 65).
A noteworthy observation is that while for some

problems the drawing behavior is highly sensitive to the
DG and NDG condition, other problems are far less
sensitive. We plot the difference in the percentage
of student drawing (DG-NDG) for all problems in
Fig. 4(b), and we see that the data points form two distinct
groups: one centered around zero (no difference) and the
other around −15% (significant difference). As a rough
estimate, the standard deviation of the 12 data points is
0.08, while the average standard error of each data point
(combined standard error from the two conditions) is 0.04.
Therefore, it is unlikely that the differences between the
problems arise from random noise.

FIG. 3. Comparing median time on task (seconds) for each problem. **Significant at p ¼ 0.01 level, Mann-Whitney U test.

FIG. 4. Comparing the drawing behavior between the two conditions. (a) Percentage of students who chose to draw a diagram during
problem solving. The rightmost columns are the drawing percentage aggregated over all 12 problems. *Difference is significant at the
0.05 level. ** Difference is significant at the 0.01 level. (chi-squared test) (b) The difference in percentage between the two conditions on
each problem.
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C. Adding a diagram might only improve problem
solving performance of “nondrawers.”

To further understand how the decision of drawing a
diagram interactswith theDGandNDGcondition,we divide
the subject population into “drawers” and “nondrawers” for
each problem, and look at their performance separately.
As shown in Fig. 5(a), the DG and NDG condition has

no overall impact on “drawers” first time percentage
correct. Indeed, on problems P11 and P12, the DG
condition even resulted in significantly worse performance
than the NDG condition. On the other hand, “nondrawers”
are much more sensitive to the DG and NDG condition. As
shown in Fig. 5(b), nondrawers perform significantly better
overall in the DG condition compared with the NDG
condition, and the DG condition outperformed the NDG
condition on P3, P4, and P8, identical to that observed for
the entire population.
A possible explanation of this observation is that the

drawing behavior helped students overcome the disadvant-
age of the NDG condition. However, it must be pointed out
that the observed difference could also be partly explained
by an artifact of the current experimental design. Namely, a
student can choose to draw a diagram after their failed first
attempt, but cannot become a nondrawer by “undrawing” a

diagram at any point. Therefore, the observed first attempt
correct rate is an underestimation for drawers and an
overestimation for nondrawers. In the Appendix [19], we
will discuss this artifact in detail, and argue that while it
may partly give rise to the differences shown in Fig. 4, it is
probably not the only cause of the observed difference.
For the same reason, comparing the first attempt correct

rate between drawers and nondrawers under the same DG
and NDG condition is misleading, since the correct rate for
drawers will always be less than that of the nondrawers; see
the Appendix [19].

D. The impact of diagrams on students with
different physics abilities

The impact of problem diagrams on problem solving is
likely dependent on student’s physics ability. On one hand,
weaker students may have more difficulty generating a
visual representation from verbal description, while on
the other hand, they are also more likely to benefit from
being forced to carefully read and understand the problem
body. The very wide distribution of backgrounds and
physics abilities in MOOCs naturally lends itself for the
investigation of such dependencies. As mentioned in the
methods section, we probed these questions by dividing our

FIG. 5. Comparing the percentage of first attempt correct rate between the two conditions for “drawers” (a) and “nondrawers” (b).
*Difference is significant at the 0.05 level. ** Difference is significant at the 0.01 level. (chi-squared test).

TO DRAW OR NOT TO DRAW? EXAMINING THE … PHYS. REV. PHYS. EDUC. RES. 13, 010110 (2017)

010110-7



subjects into three cohorts: high skilled, medium skilled,
and low skilled, based on their IRT skill parameter.
As shown in Fig. 6(a), for low and medium skilled

students, the overall first attempt correct rate for problems
in the DG condition is about 5% higher than that of the
NDG condition, and the differences are statistically sig-
nificant [p < 0.05, χ2 ¼ 3.94 (low skill), p < 0.03, χ2 ¼
5.0 (medium skill)]. However, for high skilled students,
the overall performance difference is smaller (< 3%), and
statistically insignificant (p ¼ 0.26, χ2 ¼ 1.24), while still
in the same direction.
In contrast, a student’s decision to draw their own

diagram during problem solving is much more uniform
across all skill groups [Fig. 6(b)]. For all three skill levels,
an equal fraction of subjects decided to draw a diagram
during problem solving (DG: p ¼ 0.71, χ2 ¼ 0.7, NDG:
p ¼ 0.16, χ2 ¼ 3.56), while students in the DG condition
are ∼10% less likely to do so than students in the NDG
condition regardless of their skill.
For each individual problem, the sample size drops to

∼30–50 people in each skill level, making it difficult to
identify any significant differences.

E. What kinds of problems are more sensitive
to the DG and NDG condition?

To understand if problems that are more sensitive to the
DG and NDG condition have common features, we asked
physics experts to rate 8 different features of the problems

on a 1–3 scale. We then performed cluster analysis
(ward.D2 method using Euclidian distance) on the average
rating of the 12 problems involved, the result of which is
shown in the dendogram in Fig. 7.
From this graph it is reasonable to conclude that the 12

problems form three clusters at the relative distance of 2.
Plotting the average rating of the three clusters on a radar
graph (Fig. 8), we see that problems in cluster 1 are unique

FIG. 6. The impact of DG and NDG condition on students with different skill backgrounds averaged over all 6 experiments. (a) The
impact on performance as measured by first attempt correct rate. (b) The impact on drawing behavior.

FIG. 7. Dendrogram of cluster analysis on expert’s ratings of problems. The height is ametric formeasuring the relative distance between
items and clusters. The three major clusters are largely independent of either the clustering algorithm or the choice of distance metric.

FIG. 8. Radar graph for the average rating of each problem
cluster.
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in that they involve ideal physics objects such as blocks
on pulleys (“Unfamiliar_Objects”). Cluster 2 stands out as
problems that have complicated spatial or temporal informa-
tion (“Spatial_Complexity” and “Temporal_Complexity”)
and that the diagrams represent more key information from
the problem. Cluster 3 is a loosely formed cluster that is the
least challenging onvisual or spatial information, rated lowon
the helpfulness of diagram, and involves unfamiliar or real-
world objects. (See examples in Sec. IV.)
In Table IV, we list the different types of sensitivity of

each problem to the DN and NDG condition, grouped by
clusters. Most problems in clusters 1 (ideal physics objects)

and 2 (spatially demanding) are sensitive to the DG and
NDG condition in one way or another, although with only
12 problems the difference is not statistically significant
(Fisher’s exact test p ¼ 0.22). More specifically, problems
that are sensitive in terms of either difficulty or time on task,
all belong to the first two clusters.

IV. DISCUSSION

A. Impact of problem diagram on problem solving

Perhaps the most surprising observation of this study is
how little students benefit from a problem diagram. Even
with the large sample size provided by MOOC, significant
differences between the two conditions are only observed
for 3 out of 12 problems, with the largest difference at 10%
and the overall difference at merely 3%.
We did observe significant differences for the few

problems that involve exceptionally complicated visual,
spatial, or temporal information. For example, P4 (Fig. 9)
involves a spatially complicated object that is very unfa-
miliar to most students.
P8 (Fig. 10) deals with a somewhat unnatural sequence

of events.
However, for most problems at the level of spatial or

temporal complexity commonly seen for physics problems,
such as the three examples shown here (Fig. 11), no
difference in performance was observed between the two
conditions.
P12 is particularly surprising, not only because it

involves an object (trampoline) that can be unfamiliar to
students, especially international students, but also because
for “drawers,” the DG group performed significantly worse
than the NDG group. This means that the given problem

TABLE IV. Difference in sensitivity to the DG and NDG
condition for each problem. Problems that showed a statistically
significant difference to the DG and NDG condition in either
difficulty, time, or drawing are labeled 1 in the corresponding
column.

Problem Cluster
Difficulty
sensitive

Time
sensitive

Draw
sensitive

P1 1 0 1 1
P2 1 0 0 0
P3 1 1 0 1
P11 1 0 0 1
P4 2 1 0 1
P8 2 1 0 1
P10 2 0 1 0
P5 3 0 0 1
P6 3 0 0 0
P7 3 0 0 0
P9 3 0 0 1
P12 3 0 0 0

FIG. 9. Diagram and problem text of problem P4.

FIG. 10. Diagram and problem text for problem P8.
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diagram likely interfered with students’ ability to draw a
productive diagram on their own. In this case, it may be that
the depiction of the trampoline interfered with students’
ability to treat it as a normal spring.
Together, those results show that even though the

benefits predicted by conventional wisdom and the dual-
coding hypothesis may still exist, the effect size is small in
an in vivo situation and only significant in the most extreme
cases. For the majority of “normal” physics problems, our
findings are consistent with previous studies [5,6,20]
indicating that the benefit of providing a diagram is small,
and in certain cases may even hurt problem solving.

B. Impact of problem diagram on student’s
decision to draw a diagram

For the 12 problems in this study, the fraction of students
who drew a diagram during problem solving ranged from
less than 20% to over 80%, indicating that “drawing a
diagram” is more of a deliberate decision rather than a fixed
habit for most students. To further verify this point, we
analyzed the behavior pattern for 307 students who
completed at least 5 out of 6 experiments as well as the
accompanying surveys. Among those students, only 26%
consistently (in at least 4 out of 6 experiment) drew both
diagrams, and 16% consistently draw no diagrams.
In contrast, a student’s decision to draw is very sensitive

to the DG and NDG condition on 7 out of 12 problems:
when the problem diagram is removed, students are 10%
more likely to draw their own. Furthermore, neither the
decision to draw a diagram nor the difference between
the DG and NDG conditions depend on students’ physics
ability. In other words, weaker students and stronger

students reach much the same decision when deciding
whether they need to draw a diagram or not during problem
solving.
Interestingly, for most problems about one-half of the

students still choose to draw their own diagram when a
problem diagram was provided. However, this is not so
surprising considering the fact that most diagrams provided
are simply a depiction of the problem situation with little
extra information. In addition, the fact that the diagrams are
presented on the computer screen rather than on a piece of
paper where a student can directly sketch might also have
contributed to the observation. Finally, notice that since we
only included students who completed the optional survey,
theremight also be a self-selection effect (e.g., only themore
motivated students are likely to report drawing a diagram).

C. On the validity of adding data from all 12 problems

In this study we reported the “average total” difference
between the two conditions by averaging over all 12
problems. This requires us to address a couple of caveats.
1. Students drop out steadily throughout the study (see

Table I), with the first three problems averaging nearly 400
and the last one just under 200. This means that the students
who persisted are weighted more heavily. However, it is
almost impossible to tell whether the student population is
becoming stronger or weaker, as both “good” and “bad”
students have equally good reasons to drop an online
course. Furthermore, we did not observe any qualitative
difference between the results of earlier experiments and
those from the later ones, suggesting that those who
dropped out may not have performed very differently in
the experiments from those who persisted.

FIG. 11. Diagram and problem text for problems P5, P11, and P12.
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2. Students’ decision to draw or not draw a diagram may
be influenced by their problem solving habit in addition to
the experiment conditions. Indeed, when analyzing data
from ∼300 students who completed at least 5 out of 6
experiments, we found that 26% of them consistently draw
both diagrams for at least 4 experiments, while 16%
consistently choose to not draw a diagram. However, we
point out that since the DG and NDG condition is flipped
for each student in each experiment, and that we are only
interested in the difference between the conditions, students
who draw and do not draw diagrams for both problems in a
single experiment do not contribute to the difference,
therefore they do not affect the result.
Because of the above mentioned reasons, we believe that

the average differences reported in the results section
provide meaningful and valid information despite the
caveats.

V. SUMMARY AND RECOMMENDATION
FOR INSTRUCTORS

For instructors, the study shows that for common physics
problems like the ones involved in the current study, the
benefit of adding a supportive diagram is quite small except
for a few problems where the physical situation is relatively
unfamiliar to many students.
On the other hand, omitting a problem diagram results in

about 10% more students drawing their own diagram
during problem solving. Our observations seem to suggest
that students who drew their own diagram can better
compensate for the loss of a given problem diagram.
However, we note that the evidence is not conclusive
under the current experimental design, as discussed in
detail in the Appendix [19].
The observation that the drawing decision is independent

of students’ physics skills suggests that weaker students are
equally motivated to draw a diagram compared to high
skilled students, although the quality of the diagram may
not be as good.

A. Recommendations

In light of our research, is it advisable (or even useful?) for
instructors to not include nonessential supportive diagrams
with their homework and exam questions. Given that
diagrams give only a ∼3% improvement in student success,
and the fact that they reduce the chances that a student will
draw a diagram on their own by about 10%, it appears that
any advantages of including a diagram may well not justify
the resources and effort required to create it.

B. Advantages and shortcomings of this study and
suggested directions for future research

The use of MOOC AB experiments enabled us to make
some unique contributions to the diagram and no diagram
literature. Online technology allowed testing a much larger

number of problems and students than previous studies.
The large sample sizes of MOOCs allow for the detection
of small effects in real learning environments. On top of
detecting the existence of the effect—in this case the benefit
of adding a diagram—we are also able to measure the size
of the effect and decide whether the benefits justify the cost.
In addition, the relatively large number of problems
enabled us to explore how the characteristics of individual
problems impact the effect of adding or removing a
diagram.
Another advantage particular to MOOCs is the wide

distribution of skills present in the class (approximately
twice the standard deviation of our on-campus classes).
This allowed us to compare the difference in performance
and behavior among students with significantly different
physics abilities.
The most prominent shortcoming of our study is that we

requested no information on the type of diagrams drawn by
students. We would like to know whether a student drew a
sketch of the physics situation containing little additional
information, or a free body diagram that represents a key
step toward solving the problem. Hopefully with the rapid
advancement in online education technology, we will be
able to easily collect and analyze students’ diagrams in
future studies.
A second shortcoming is that while we measured the

impact of diagramming on immediate problem solving, we
did not measure its impact on knowledge transfer from one
problem to the other. A problem diagram may enhance
transfer by facilitating the visualization of the physical
situation, or impede transfer by increasing the level of
specificity of students’ understanding [21]. Unfortunately,
edX.org does not allow for easy control over the order in
which students complete problems, which would be a nice
addition.
Third, in the current study we did not measure the impact

of diagrams on student engagement. It is possible that while
including a diagram has little impact on problem solving
success, it may improve student’s engagement and reduce
the rate of attrition. However, since we rotated the DG and
NDG conditions between student populations in the current
experiments, our experimental design provides little infor-
mation on student engagement. This question could be
answered in future research with a different experimental
design.
Finally, a common concern among researchers is that

while MOOCs provide large sample size, the demographics
of MOOC students can be quite different from the average
college or high-school students, in terms of both age and
educational background [9]. As a result, it is not clear to
what extent results obtained from MOOC experiments (or
experiments conducted in any online learning environment)
provide valuable information for improving traditional
classroom teaching. This is indeed a legitimate concern,
and we advise our readers to keep this fact in mind when

TO DRAW OR NOT TO DRAW? EXAMINING THE … PHYS. REV. PHYS. EDUC. RES. 13, 010110 (2017)

010110-11



interpreting the results of the current study. On the other
hand, we argue that the disparity in demographics is no
reason to dismiss the validity of online experiments
altogether. In fact, it could be argued that similar
differences exist between students enrolled in top research
universities and those enrolled in community colleges.
Instead, we hope that more research can be conducted to
carefully evaluate the extent to which background
differences affect the outcomes of experiments, and find
more reliable experiment designs and data analysis

methods to fully utilize the advantages of online AB
experiments.
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