PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 12, 020124 (2016)

Beyond performance metrics: Examining a decrease in students’ physics self-efficacy

through a social networks lens
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The Modeling Instruction (MI) approach to introductory physics manifests significant increases in
student conceptual understanding and attitudes toward physics. In light of these findings, we investigated
changes in student self-efficacy while considering the construct’s contribution to the career-decision
making process. Students in the Fall 2014 and 2015 MI courses at Florida International University
exhibited a decrease on each of the sources of self-efficacy and overall self-efficacy (N = 147) as measured
by the Sources of Self-Efficacy in Science Courses-Physics (SOSESC-P) survey. This held true regardless
of student gender or ethnic group. Given the highly interactive nature of the MI course and the drops
observed on the SOSESC-P, we chose to further explore students’ changes in self-efficacy as a function of
three centrality measures (i.e., relational positions in the classroom social network): inDegree, outDegree,
and PageRank. We collected social network data by periodically asking students to list the names of peers
with whom they had meaningful interactions. While controlling for PRE scores on the SOSESC-P,
bootstrapped linear regressions revealed post-self-efficacy scores to be predicted by PageRank centrality.
When disaggregated by the sources of self-efficacy, PageRank centrality was shown to be directly related to
students’ sense of mastery experiences. InDegree was associated with verbal persuasion experiences, and
outDegree with both verbal persuasion and vicarious learning experiences. We posit that analysis of social

networks in active learning classrooms helps to reveal nuances in self-efficacy development.
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I. INTRODUCTION

The implementation of active learning environments
across science, technology, engineering, and mathematics
(STEM) fields has garnered attention from education
researchers across the country. Their work has revealed
with strong significance the advantage of active learning
strategies over traditional, lecture-based pedagogies [1].
Specifically in the arena of physics education, a variety
of active learning approaches have led to the reformation
of introductory physics courses in colleges and universities.
These include Investigative Science Learning Environ-
ments (ISLE), Student-Centered Activities for Large
Enrollment University Physics (SCALE-UP), Workshop
Physics, Tutorials in Introductory Physics, and Modeling
Instruction (MI) among others. To various degrees, they
have exhibited positive impacts on student learning [2-6].
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Yet, success in physics education, particularly in the
realm of career persistence, involves more than just
improving learning gains; it requires exploring changes
in affective constructs that complement academic perfor-
mance [7-9].

Affective constructs, like self-efficacy, identity, and
interest, are often positively correlated with student out-
comes like academic performance [9,10]. Moreover, these
constructs play major roles in students’ career decision-
making process [11-14]. This holds true across global
cultures, affirming that self-concepts and personal values
matter more in determining whether students foresee
themselves in science careers than do performance out-
comes [15]. Considering the general dearth of individuals
from statistically underrepresented communities pursuing
physical science degrees in comparison to other STEM
majors, more attention should be paid to these often-
overlooked factors [16,17]. While focusing on the impact
of active learning curricula on academic performance
provides valuable support in favor of these methods, their
possible effect on affect may help researchers better under-
stand why students persist (or do not persist) in a major. In
this paper we make the argument that an examination of
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self-efficacy formation as a factor of students’ classroom
interactions merits attention.

II. THE NATURE OF SELF-EFFICACY

Of the constructs related to both performance attainment
and career choice, self-efficacy plays a unique, well-tested,
and strongly influential role [9,12—-14,18-22]. Even while
controlling for prior academic attainment, aptitude, and
career interest, self-efficacy continues to significantly pre-
dict career choices [23,24]. When comparing self-efficacy
to career-choice theories that link students to a vocation
based on their personalities, self-efficacy has greater pre-
dictive power for career-choice than personality-based
theories [25]. Students with high self-efficacy regarding
tasks related to a field of study will more likely develop
interests in, set goals toward, and make positive decisions
about careers in that field [13]; indeed, many other factors
play a similar role, but few hold the influence that self-
efficacy does [19,26].

Bandura [27] describes self-efficacy as the beliefs indi-
viduals have about their capability to complete specific tasks
and the outcomes they believe may result from their efforts.
In other words, when faced with a particular problem to
solve or assignment to accomplish, individuals make self-
assessments about how successful they will be at solving
said problem or completing said assignment. While some-
what akin to confidence and other expectancy constructs,
self-efficacy differs in that the construct fluctuates according
to both task and context [28]. For example, an individual
may have one set of efficacy beliefs about her ability to solve
amath problem, while holding a different set of beliefs about
her ability to operate a voltmeter. Furthermore, the same
individual may exhibit different self-efficacy beliefs about
the same task according to her context (e.g., performing to an
audience versus performing in private) [29].

Bandura proposes four types of experiences (i.e., sources)
contribute to a person’s self-efficacy beliefs: mastery expe-
riences, vicarious learning, verbal persuasion, and physio-
logical states [30]. Students’ self-efficacy on physics related
tasks is influenced by (i) students’ past performance on
similar tasks (i.e., mastery experiences), (ii) observations
of peers to whom they relate succeeding or failing at those
tasks (i.e., vicarious learning), (iii) direct encouragement or
discouragement from peers, instructors, and others (i.e.,
verbal or social persuasion), and (iv) the emotional and
physiological states of each student at the moment one
assesses their self-efficacy or when students think about
completing the task in question (i.e., physiological states).
Anxiety, depression, or excitations are examples of physio-
logical states that can contribute to students’ self-efficacy.

A. The social nature of self-efficacy development

Although individuals regulate their self-efficacy inter-
nally [10], some of the experiences that contribute to

self-efficacy development result from external interactions
in social settings. (Here and throughout the rest of the paper
we define social settings as locations where two or more
individuals work in close proximity on related tasks). We
argue that development of efficacy beliefs, to an extent,
relies on social interactions in these types of settings,
which are the hallmark of various reformed physics
courses. Our basis for this begins with how theory defines
vicarious learning and verbal persuasion—two of the four
established sources of self-efficacy. Vicarious learning and
verbal persuasion experiences imply social settings.

Vicarious learning (VL) requires that an individual in
question observes another person succeeding or failing at a
given task. For this to occur, two or more persons must find
themselves in the same space, within reasonable distance
to observe one another’s performance. While one may
argue that this need not occur in physical proximity (e.g.,
watching videos of someone performing the task), the
bulk of formal education environments primarily allow for
in-person vicarious learning experiences.

The presence of peers does more than create VL
opportunities, it also nurtures threatening or affirming
contexts that result in changes to students’ overall self-
efficacy. This holds particular sway in circumstances where
individuals rate their performance by comparing their
progress to that of those around them. In the case where
a person observes others surpassing his or her performance,
that individual has a higher likelihood of feeling less
confident about his or her ability to perform the task at
hand [29]. Educational settings often place students in
situations where they find themselves explicitly or implic-
itly ranked among their peers according to their academic
success. This ranking need not occur publicly or blatantly,
but may be perceived by students nevertheless (e.g., a
teacher drawing smiley faces on just a subset of graded
exams).

Social interactions are also required in circumstances
where individuals receive verbal feedback on performance,
which may strengthen or undermine their self-efficacy. In
general, classroom structures provide a forum for these
kinds of verbal persuasion (VP) experiences to take place.
Students often receive verbal recognition about their
progress from teachers, peers, and on occasion, adminis-
trators. On a similar note, the type of emphasis placed on
these performance evaluations matters [31]. Feedback that
accentuates shortcomings contributes more to the break-
down of efficacy beliefs than feedback that focuses on
amount of progress [32].

Some studies reveal that the socially oriented sources
of self-efficacy (i.e., VL and VP) play a more significant
role in the development and sustaining of women’s efficacy
beliefs [21]. For example, Zeldin and Pajares [20]

'"The context of online education may limit such experiences
and render this statement less valid.
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interviewed 15 women working in STEM fields where
underrepresentation of women persists, which included
engineering and computer science. The researchers asked
them about their self-beliefs and career history, specifically
probing for information about their mathematics efficacy
beliefs because of the highly mathematical nature of their
professions. The participants reported experiences in line
with VL and VP as playing a critical role in their career
decision-making process and their persistence in their
respective fields. These VL and VP experiences often
included the presence of role models and positive encour-
agement from grade school teachers.

B. The social nature of Modeling Instruction

Of the existing, reformed instructional approaches
directed at introductory university physics curricula (with
Calculus) our research focuses on Modeling Instruction
(M), which differs significantly from the more common,
lecture-based introductory-course format. MI introductory
physics (referred to as “MI” from here on out) courses have
tended to support low student-instructor ratios, short or
nonexistent lectures, high numbers of solicited student-
student and student-instructor interactions, and classroom
settings designed to promote small group formation and
collaborative learning. Students explore physical phenom-
ena and solve classroom assignments in small groups, use
various representations to summarize their conclusions on a
white board, and come together during a “Board Meeting”
to share and evaluate group solutions. Board Meetings—a
characteristic feature of MI—reflect the highly social
nature of learning that takes place [6].

The originators of MI developed this approach in order
to promote student engagement for the purpose of medi-
ating the construction of physics knowledge [33]. This
grounding highlights the dialectical process where indi-
viduals reconcile their naive ideas with concepts presented
in the curriculum, which in this case occurs via exper-
imentation and argumentation—the latter better described
as social exchanges of ideas. Further development of MI by
Desbien [34], as well as Brewe [6], cemented the inherently
social nature of knowledge construction espoused by this
physics teaching method. Grouping students, encouraging
them to develop physics models together, and then having
them relate group results to a larger classroom setting
provides participants with opportunities to create knowl-
edge and shared meanings or interpretations via verbal
exchanges. This relationship between the building of
knowledge and discussion is summarized in a common
motto of the MI process: learning and social interactions are
not mutually exclusive [35]. Additionally, learning occurs
within a physics context. Students in this active learning
environment employ a variety of physics-relevant tools,
including language, to develop representations of physics
concepts. For a detailed description of MI, please see
Brewe [6].

Studies have shown that MI has led to increased student
understanding in physics and improved attitudes toward
physics [36,37]. Results documented in Brewe et al. [36]
showed that students in MI courses have a 6.73 times
greater odds of success than their counterparts in lecture
sections. In addition to successfully passing, students in MI
courses have greater pre-post gains on the Force Concept
Inventory than students in traditional, lecture-based
courses. The researchers observed these learning advan-
tages for both women and men, though they note that the
presence of a “gender gap” remains. Moreover, MI courses,
unlike other successful, reformed physics approaches,
positively shift student attitudes toward physics even when
examined across varied instructors (Avg. effect size:
Cohen’s d = 0.45)—a feat accomplished by no other study
known to us [37].

C. Student self-efficacy in college physics

Research studies have reported correlations between
self-efficacy and final grade in introductory physics
courses, as well as the likelihood of passing the class
[36,38,39]. The same can be said about other introductory
courses in STEM fields, including chemistry, biology, and
computer science [40—42]. Not only does physics self-
efficacy impact academic performance, but it has also been
shown to have a direct correlation with student affect, like
motivation in physics courses [38].

Gender trends have also been reported, some of which
are seen not only on self-efficacy as a whole, but also on the
sources of self-efficacy. A study of 281 first-year college
students that belonged to the same physics cohort revealed
that female students reported lower self-efficacy beliefs
than their male counterparts [43]. Moreover, in this same
study, male students that had not taken any high school
physics courses had higher self-efficacy than all other
groups of students, indicating a gendered overconfidence.
Larose et al. [41] performed a longitudinal study where
female students who experienced increases in their self-
efficacy during and after high school were more likely to
report stability in their STEM-related vocational choices.
This applied when controlling for high school achievement
and socioeconomic status. On the other hand, a decline in
self-efficacy had the opposite effect for female students
and no effect on male students. In general, men who
successfully attain STEM careers where underrepresenta-
tion of women exists report mastery experiences as the
basis for their persistence and ongoing achievement [18].
Women in similar contexts, as noted earlier, seem to rely on
VL and VP experiences as attributes of their professional
success [20].

Previous studies on MI have explicitly explored stu-
dents’ self-efficacy [44,45]. A study by Sawtelle et al. [46]
revealed that respondents taking one of several 30-student
capacity MI courses at a public research university,
regardless of gender, did not exhibit a statistically
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significant change in overall self-efficacy. When disaggre-
gated by the sources of self-efficacy, the results did reveal
an increase for women on the VP subscale. On the other
hand, the same study revealed that both male and female
students in lecture-based introductory physics courses
exhibited a drop in self-efficacy. This drop held true across
all four sources of self-efficacy. These findings align
somewhat with findings by Fencl and Scheel [47] who
showed that calculus-based physics I courses that employ a
mixture of reformed pedagogical approaches, in particular
student collaborations, have a stronger positive impact on
students’ self-efficacy than traditionally taught courses.
This effect is enhanced for physics majors. Another study
by Sawtelle et al. [44] employed logistic regression
analysis to show that mastery experiences predict the rate
at which male students pass or fail introductory physics,
while female students’ success depends more on vicarious
learning.

Although the studies done with students participating in
MI take a first step toward our understanding of self-
efficacy development in these kinds of active learning
environments, missing from the analyses are careful con-
trols for other variables associated with self-efficacy, such
as student ethnicity, as well as a more focused approach to
understanding the role played by the MI curriculum’s most
prominent feature: social interactions. Considering addi-
tional limitations, such as potential selection bias intro-
duced by the use of online surveys and the amount of
unincorporated missing data, the propositions of the

referenced studies in MI warrant further exploration.
Moreover, our investigation will allow us to examine the
effect of the curriculum in larger class-size settings.

III. PURPOSE

This study aims to more carefully examine both changes
in students’ self-efficacy in a larger M1 course as well as test
our belief that the prevalent social interactions that occur in
these courses have a notable relationship with self-efficacy
development. This approach does not endeavor to compare
MI to lecture-based pedagogies, but rather offers a more
introspective look at the affective outcomes of MI as an
active-learning curriculum. Using self-efficacy theory as a
guide, we suggest that individual students come into class
with certain internal expectations about their performance
in the MI course. These expectations may differ according
to each source of self-efficacy. For example, a student
may have high expectation to receive praise from others
(i.e., VP) but lower expectations to learn from peers (i.e.,
VL). Classroom experiences will influence students’
expectations along the four sources of self-efficacy (see
Fig. 1). We pay particular attention to VP and VL because
the social nature of the MI curriculum leads us to
hypothesize heightened prevalence for these events. We
expect these types of experiences influence overall student
self-efficacy at the end of the semester.

Given the increases of student conceptual understanding
in MI courses, the social nature of self-efficacy develop-
ment, and the highly interactive structure of MI courses, we

Model of Self-Efficacy Development in Active-Learning
Environments

Classroom interactions

Verbal
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Students’ mean
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Our model of self-efficacy development in active learning environments accounts for students’ initial self-efficacy and its

subsequent development as a result of classroom experiences. In alignment with theory, some of the development arises from learning
experiences not directly related to social interaction (i.e., mastery experiences) [27]. In addition, we postulate that the social nature of
many active learning environments has the capability of generating opportunities for students to receive verbal feedback or perceive
others with whom they relate as successful or unsuccessful on physics tasks (i.e., verbal persuasion and vicarious learning experiences).
Thus, we posit a link between certain types of classroom interactions and self-efficacy development.
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hypothesized that students would exhibit a positive shift in
their efficacy beliefs related to physics and the MI class-
room even when controlling for variables associated with
self-efficacy development. Furthermore, we use students’
in-class social networks as a proximal measure of types
and abundance of potential VL- and VP-related experiences
that may play a role in mediating self-efficacy shifts.
Specifically, we sought to address the following research
questions:

1. Do students in the MI course experience statistically
significant changes in physics self-efficacy as mea-
sured by PRE and POST scores on a self-efficacy in
physics instrument (i.e., Sources of Self-Efficacy in
Science Courses—Physics)?

2. Do students in the MI course experience statistically
significant changes in physics self-efficacy scores
when disaggregated by the four sources of self-
efficacy?

3. How are social interactions as measured by student
network centrality in the MI classroom associated to
changes in students’ self-efficacy?

4. Do other variables historically associated with stu-
dent success in physics, such as gender, major, and
ethnicity, contribute to the variance in students’
POST self-efficacy scores when controlling for
PRE scores?

IV. A NOTE ON SOCIAL NETWORK ANALYSIS

Although the employment of social network analysis
(SNA) in sociology has been taking place since the 1930s
[48], its use in education research has experienced a
growing popularity in recent years [35,49-52].
Discipline-based education researchers have explicitly
encouraged the use of SNA to understand the social
networks formed during learning [51]. Even more specific
to the field of physics education research (PER), Bruun and
Brewe [35] have suggested that increased application of
SNA will better help the field understand student cognition.
Many of the above cited papers may serve as primers to
education researchers desiring to further their comprehen-
sion of SNA terminology and implementation. Grunspan
et al. present a concise introduction targeted at science
education researchers [51].

In brief, social network analysts endeavor to quantify the
role of particular individuals in a network and the character-
istics of a network and its evolution [53]. Our study focuses
on measuring the “centrality” of actors in our network.
Centrality can be calculated from students’ interactions in a
variety of ways. For example, the most basic form of
centrality is “degree” centrality, which simply refers to the
number of people with whom a person in a network
interacts [35]. Other measures in the centrality family
include inDegree, outDegree, PageRank, Closeness, and
Betweenness. These may be calculated using the same
student interaction information.

We collected student network data in order to calculate
three specific measures of directed centrality: inDegree,
outDegree, and PageRank. InDegree centrality measures
direct incoming interactions (i.e., the number of times
student Y is listed by peers) and outDegree measures direct
outgoing interactions and in some cases can be thought of as
a measure of one’s sociability (i.e., the number of peers
student Y lists). PageRank captures direct incoming inter-
actions while taking into account the social connectedness
of nodes leading to a student. PageRank offers a measure of
weight to being named directly by a student who is often
named by others. The PageRank algorithm establishes a
node’s importance using the number of links to the node,
but also each node can then redistribute that importance by
its number of outgoing links [35]. It is worth noting that
students reported more often by others will have higher
inDegrees and tend to have higher PageRanks. That is to say
that inDegree and PageRank may be interpreted as measures
of popularity or recognition from other actors in a social
network since the more often a person is named, the more
his or her PageRank grows. We chose to examine these
three measures of centrality (i.e., inDegree, outDegree,
PageRank) primarily because they limit our analysis of
the relationship between self-efficacy and social interactions
to students who had direct interactions with one another.
They also follow with the uses and recommendations of past
research [49-52], and they are generally understood by
researchers outside the field of SNA. Moreover, by exam-
ining whether each of these three centrality measures
contributes to changes in students’ self-efficacy, we may
get a clearer picture of the kinds of interactions that matter
for student self-efficacy formation in MI courses.

Specifically, we secured responses from students on this
question: “Name the individual(s) you had a meaningful
classroom interaction with today.” (see Sec. VI for more
details about the network survey). Responses to this question
can be used to calculate a plurality of network measures, not
just the ones addressed in this study. Given student responses,
InDegree can then be characterized as the number of
incoming connections for a student. The number of partic-
ipants a student reports or initiates interactions with is that
person’s outDegree. PageRank takes a more sophisticated
approach to measuring the “importance” of a student or actor
in anetwork. Developed by Brin and Page [54] for the Google
search engine algorithm, the measure has been compared to
calculating the probability of a random walker on a directed
network to arrive at a particular node [55]. This means that not
only does a node’s inDegree affect its PageRank, but so does
the inDegree of its neighbors (see Sec. VIIL. B.).

V. CONTEXT

A. Florida International University

Florida International University (FIU), Miami’s public,
urban research university, boasts a unique population. The
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institution educates over 56 000 students, making it one of
the largest public universities in the country. Over 60% of
FIU’s students identify themselves as “Hispanic,” while
13% identify themselves as “Black,” another 12% as
“White,” and 13% as “Other” [56]. FIU is classified as a
Hispanic Serving Institution (HSI), offering critically
important services to the members of its community, which
are primarily Hispanic. Considering recent national calls
for a greater number of STEM majors, many of which
include an emphasis on recruiting from underrepresented
groups [8,16], it is relevant that no other university awards
more STEM bachelor’s degrees to underrepresented minor-
ities than FIU [57].

B. Introductory Physics I with Calculus at FIU

Students regardless of major or academic year have the
option of self-selecting into one of the MI sections offered
each semester or the lecture-based sections of Introductory
Physics I with Calculus. The MI course incorporates the lab
credit. It is worth noting that student familiarity with the MI
approach varies. For example, students registered in the
Fall 2015 MI courses responded differently to being asked
about their expectations for the course. Of the 44 survey
respondents, 9% expected a course only slightly different
than lecture, 32% expected a much more interactive and
hands-on experience, while a similar number expected no
differences from a traditional lecture-based course.
Remaining students either had no expectations or did
not respond. Lecture sections at FIU usually have enroll-
ments that range from 120 to nearly 400 students, though
some offer a much lower class size limit. Students in a
lecture section usually register concurrently for a respective
laboratory course, but are not required to do so. In the Fall
of 2014 only one section of MI was offered, limiting
students’ scheduling flexibility, but this particular section
was the first designed to serve 75 students—over twice the
number of students previously attempted—in a technology-
saturated classroom specifically designed for active learn-
ing. Prior iterations of the course limited enrollment
capacity at 30. Two sections of the large-capacity MI
course were offered during the Fall 2015 term—one taught
by the same experienced instructor who taught the Fall
2014 course and another taught by a postdoc. In order to
accommodate the larger number of students, two graduate
teaching assistants and three experienced learning assist-
ants (i.e., undergraduate students) helped to facilitate
instruction during courses in both terms. Only data from
classes taught by the same primary instructor were used in
this study in order to minimize confounding variables
introduced by having data from different instructors.

VI. METHODS

We obtained student data from FIU’s database, which
keeps a record of student responses to demographic

questions answered at the time they apply to the university.
Some of the majors represented in the courses included
Engineering, Chemistry, Pre-Med, and English. No student
in either MI course (i.e., Fall 2014 and Fall 2015) had
declared physics as a major at the beginning of the
semester, though we should note that students who declared
dual majors were categorized under a larger umbrella
(i.e., DUALFIU), which may include physics majors.
The classes were composed of four prominent ethnic
groups into which students identified: Asian, White,
Hispanic, and Black. The majority of students enrolled
in both classes identified themselves as Hispanic (47
women and 58 men), while eight identified themselves
as Asian (three women and five men), 13 as White (five
women and eight men), and 11 students as Black (two
women and nine men). Four students identified as other or
more than one race. The race and gender of the remaining
six students in our data set were not available.

Self-efficacy surveys were administered in class on the
first day of each semester (i.e., pre) and once during the last
week of the semester (i.e., post). We had an overall 92%
response rate on the pre based on a total of 147 students
who registered for Fall 2014 and Fall 2015 MI courses. Our
post administrations yielded an 80% response rate.

A. Self-efficacy survey: Strengths and limitations

We employed the 33-item SOSESC-P survey to gauge
the sources of self-efficacy and to get a measure of overall
student self-efficacy. We chose this survey for a variety of
reasons, including its specific designation for physics
classroom settings given that self-efficacy measures require
task-relevant items in order to align with the construct’s
definition [28]. The SOSESC-P was designed so that
responses to statements can be disaggregated by each of
the four sources of self-efficacy. We achieved an overall
reliability alpha coefficient of 0.94, and reliability coef-
ficients of 0.73 for verbal persuasion (7 items), 0.76 for
vicarious learning (7 items), 0.84 for physiological mech-
anisms (9 items), and 0.86 for mastery experiences (10
items) subscales. These values align with past research led
by the instrument’s developers [39]. In that same study the
survey was shown to correlate well with the Self-Efficacy
for Academic Milestones Strength scale—a positively
recognized and validated instrument. Some of the state-
ments on the survey included the following: “I am capable
of receiving good grades on assignments in this class”
(mastery experience) and “I will get positive feedback
about my ability to recall physics ideas” (verbal persua-
sion). Students used a five-point Likert scale to express
agreement or disagreement with these. Overall scores in our
study ranged from 79 to 165. The use of the SOSESC-P
also supported continuity with past studies performed at
FIU that employed the same instrument.

Though the SOSESC-P was designed for the purpose
of measuring overall self-efficacy and the sources of
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self-efficacy, prominent researchers in the field warn about
potential issues caused by combining two or more sources
of self-efficacy [58]. These argue that combining items
specific to each source increases ambiguity about what
exactly is being measured and that students’ context,
including gender and ethnicity, may shift the combination
of sources that contribute to students’ actual self-efficacy.
We present this as a limitation of our study and for that
reason we report on analyses of each source of self-efficacy
separately, in addition to students’ total score on the
SOSESC-P, which we interpret as a proxy for student
self-efficacy. We do so on the grounds that we found
significant change on all four sources of self-efficacy and
criteria established by past studies [39,44,46,47,59].

B. Social network survey

Since we could not directly measure when a student
happens to have a meaningful VP or VL experience, we
adopted an indirect approach that quantifies the number and
types of social interactions students have using SNA. We
also did this to test the model that the quantity and quality
of certain kinds of interactions correlates with changes in
students’ self-efficacy and sources of self-efficacy. To
measure relevant social interactions we administered a
social network survey on the last day of the first week
of class and subsequently once a month until the end of the
semester for a total of 5 administrations. The development
of this short survey took place under the guidance of the
PER group at FIU, building off a previously used survey
[49]. Of the open-ended questions appearing on this
survey, only the first is relevant to this study: “Name the
individual(s) (first and last name) you had a meaningful
classroom interaction with today, even if you were not the
main person speaking or contributing. (You may include
names of students outside of the group you usually work
with).” We provided a note to participants stating, “class-
room interaction includes but is not limited to people you
worked with to solve physics problems and people that you
watched or listened to while solving physics problems.”
Blank space was provided so that participants could list as
few or as many individuals they wished to. We carefully
analyzed responses in order to identify the students listed.
When 100% certainty or agreement could not be estab-
lished as to the identity of a written name, a unique code
was created for that specific report. This occurred five times
when students with common first names were reported sans
last name. To avoid this issue in the Fall 2015 course, we
attached a numbered roster of students to the survey.

VII. RESULTS

A. Diagnosing changes in self-efficacy

Prior to performing ¢ tests we imputed student responses
to the SOSESC-P in order to preserve the structure of our
data, which reduces the rate of type I error by better

accounting for nonresponses than would simply removing
those cases from the analysis [60]. Multiple imputation is a
Monte Carlo technique that replaces missing values using a
likelihood function that assumes missing data is missing
at random (MAR) and not because of reporting bias not
captured by other variables [61]. For that reason we
included responses to pre and post SOSESC-P surveys,
student GPA at the start of the course, gender, and centrality
measures when estimating values for the missing data.
Given that we had no more than a 20% nonresponse rate on
the SOSESC-P we ran five imputations (m = 5) as sug-
gested by the literature using the Amelia Il package [62] in
R [63]. We ran the same analyses on all five data sets
and pooled the results according to Rubin [64,65]. Since
imputed values were generated for missing cases, the
resulting N (i.e., N = 147) included all unique participants
enrolled in the fall courses during the first week of the
semester.

We performed a dependent samples ¢ test to compare
the mean total scores of the pre SOSESC-P responses
(Mpe = 135.36, SD =13.86) to those of the post
(Mo = 129.11, SD = 17.23). The outcome revealed a
statistically significant drop in physics-related self-efficacy
from the beginning of the semester to the end of the
semester [7(146) = —4.75, p < 0.001] with a small to
medium effect size (Cohen’s d = 0.40). In order to further
explore the breakdown of students’ sources of self-efficacy,
we disaggregated responses on the SOSESC-P according to
the following sources of self-efficacy: mastery experiences
(ME), VL (i.e., vicarious learning), VP (i.e., verbal per-
suasion), and physiological states (PS). Dependent sample
t tests on each of these subsections showed a statistically
significant drop in students’ sources of self-efficacy on
every portion of the survey even when setting our threshold
alpha at 0.0125 in order to apply a Bonferroni correction to
diminish type I error (see Table I).

B. Measuring social interactions

We combined students’ responses to the social network
survey across the first four administrations. We did this
with the goal of preserving uniformity of data collection.
We planned for five survey administrations with the
requirement that they take place during a typical MI class
in which student groups work together on collaborative
activities. Student interactions were primarily student
generated and participants worked on physics related tasks.
We achieved this setting across the first four data collec-
tions from both semesters in question, which had response
rates of over 75%. Final exam scheduling altered the
intended environment for the fifth administration both in
the fall of 2014 and in the fall of 2015. Still, we pursued
collection of data from the last survey, which was given
during optional final exam review classes where students
who chose to attend were not encouraged to participate in
active-learning physics related inquiry. This is relevant
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TABLE 1. Although students in MI courses typically show
conceptual and attitudinal gains, these results suggest that
students in MI experience a statistically significant drop in
physics self-efficacy. This drop also shows up significantly on
all subsections of the SOSESC-P.

Changes in sources of self-efficacy scores:

Dependent samples comparisons of SOSESC-P shifts
(post-pre; N = 147)

Total score ME VL PS VP

Pre 135.36 40.87 29.74 34776  30.11
SD 13.86 471 330 482 2.85
Post 129.11 38.54 28.1 3328 289

SD 17.23 6.05 405 644 3.51
Diff. in mean —6.25" —2.33" —1.64" —1.48" —1.21°
t value —4.75 —5.21 —4.68 —-3.28 —3.81
Cohen’s d 0.40 043 039 0.27 0.32

*p < 0.001

since social context affects students’ interactions, and the
student network may reflect this. The uncharacteristic
environment of this setting yielded less than 50% response
rates and altered the resulting student network. In order to
maintain fidelity of implementation, data from these
surveys were not admitted into the final results, though
analysis revealed nearly identical outcomes when included.

From the responses to the network survey question we
constructed directed edge lists indicating the source of the
interaction (i.e., student responding to the survey) and each
target listed on the survey (i.e., student name written in
response to the question). The edge lists from the first four
collections were combined and every interaction given a
value of “1.” Repeated interactions with the same targets
were given a weight of 41 for each additional time the
targets were listed on other administrations of the same
survey question (see Fig. 2 for an example of the Fall 2014
network structure). After combining data from both semes-
ters, students’ total inDegree (M = 14.1, SD = 6.04),
outDegree (M =18.2, SD=10.4), and directed PageRank
(M=1.19x10"2, SD=2.56x1073) were calculated in R
using the igraph package [59]. InDegree was calculated by
adding up the number of times a student was listed on
question one of the four network surveys. OutDegree was
calculated by adding up the number of individuals each
particular student listed on question one of all four surveys,
including instructors. Directed PageRank was calculated in
igraph from incoming and outgoing links using the algo-
rithm developed by Brin and Page [54] and represented by

p(Jj)
jij—i Kout(j)

4

pi) =2+ (1-4q)

i=1,2,...n, (1)

where p is the PageRank of node i, j represents a node in the
network linked to i, p(j) and ky (/) are the PageRank and

FIG. 2. Combined student network in the MI course for Fall
2014 drawn using the Force Atlas algorithm on Gephi [66].
Sphere size represents PageRank centrality and edge thickness
represents weight of tie. Instructors have been removed.

outDegree of node j, respectively, and ¢ is a damping
factor commonly set at 0.15 as precedent in the literature
[55,67].

We tested four linear regression models that aimed to
predict total post self-efficacy scores while controlling for
pre scores. Because network data often fails to meet the
assumption of independence, measures of centrality often
result in non-normal distributions. Bootstrapped linear
regressions do not require assumptions about the distribu-
tion; therefore, we used this technique in order to account
for any dependency in data retrieved from the social
network [68]. Bootstrapping is a Monte Carlo approach
that applies a random resampling of the existing data set to
calculate a set of regression coefficients on that sample. We
did so over 1000 iterations on each dataset and created a
distribution of coefficients by which to compare the values
in our data [69]. 95% confidence intervals (CI) for our
parameters were calculated using the bias-corrected and
accelerated method developed by Efron [70], which better
addresses bias and skewness while producing narrower
intervals. These analyses were run on each of our impu-
tations with nearly identical results, which were then
pooled. Although, in general, all four models predicted
the dependent variable, the models revealed that PageRank
was the only statistically significant predictor besides the
control variable. Regression coefficients for inDegree and
outDegree had confidence intervals that included zero.
PageRank explained an additional 3.7% of the variance in
students’ post self-efficacy scores (see Table II). Because of
potential collinearity between the centrality measures,
we tested these variables using separate models. The
correlation between PageRank and inDegree was 0.46
(p <0.001), between PageRank and outDegree was
0.24 (p < 0.01), and between inDegree and outDegree
was 0.76 (p < 0.001). Again, because centrality measures
typically fail to meet the assumption of normality required
by traditional statistical tests, the above correlations were

020124-8



BEYOND PERFORMANCE METRICS: EXAMINING ...

PHYS. REV. PHYS. EDUC. RES. 12, 020124 (2016)

TABLEII.

Models using network variables predicting post self-efficacy scores. InDegree and PageRank centralities capture a measure

of recognition, but PageRank weighs that recognition according to the popularity of peers interacting with the student. Here we show
that only PageRank predicts overall self-efficacy scores. Note standardized regression coefficients (i.e., f) appear in parentheses.

Model-level statistics

F statistic F(1,111) =42.34

F(2,110) = 25.04

F(2,110) = 22.58
0.291
(0.122, 0.453)

F(2.110) = 22.76
0.293
(0.128, 0.451)

Regression coefficients

R square 0.276 0.313

95% CI for (0.114, 0.445) (0.159, 0.472)
R square

Predictors Model 1 Model 2

Pre SOSESC-P 0.65 (f; = 0.52) 0.65 (f; = 0.52)

CI[0.41,0.88]; SE = 0.12  CI[0.42,0.88]; SE = 0.12

Model 3
0.64 (4, =0.51)
CI1]0.40, 0.87]; SE = 0.12

Model 4
0.63 (5, = 0.51)
C1]0.38,0.85]; SE = 0.12

0.37 (f, = 0.13)
CI[—0.13,0.80]; SE = 0.24

PageRank 1380 (, = 0.21)
CI[279,2539]; SE = 586

inDegree

outDegree

0.22 (8, = 0.13)
CI[—0.05,0.47]; SE = 0.13

calculated using a permutation test for correlation, which
also employs a Monte Carlo method.

Additional models were tested to determine whether
PageRank, inDegree, or outDegree centrality contributed to
variance on the sources of self-efficacy. Each model tested
whether a centrality measure predicted outcomes on the
disaggregated postscore from each of the subsections of the
SOSESC-P while controlling for the prescores for each
subsection. Each measure of centrality was tested sepa-
rately for each of the four subsections. Bootstrapped linear
regressions indicated that although all models resulted in
significant F statistics with p values of less than 0.001,
only PageRank predicted postscores on the ME subsection
(B =421, p=0.17, CI44,835], SE = 197), inDegree
predicted some of the variance in postscores on the VP
subsection (B=0.11, #=0.17, C1[0.01, 0.22], SE = 0.05),
and outDegree predicted some of the variance in postscores
on the VP (B = 0.06, = 0.16, CI[0.01,0.12], SE = 0.03)
and VL (B = 0.06, = 0.14, CI][0.001,0.13], SE = 0.03)
subsections. No centrality measure predicted students’ post
PS scores in a statistically significant way when controlling
for prescores. Prescores on each section always predicted
postscores. These results lend credence to the argument
that students’ relational position in the social network
of a classroom is associated with changes in the sources
of self-efficacy even when including nonsocial sources of
self-efficacy, like mastery experiences. We address this
further in our Discussion section.

C. Examining other relevant variables

In order to gauge whether changes in students’ self-
efficacy scores were related to the presence of other
variables associated with student performance, we under-
took several additional analyses. Two separate student’s
independent samples ¢ tests were run to determine whether

or not a difference exists between female and male
students’ pre- and postscores on the SOSESC-P. The
analysis revealed that no statistically significant gender
difference existed at the start of the MI courses or at the
end. The same held true when examining the disaggregated
sources of self-efficacy. Furthermore, a multiple linear
regression model was examined to determine the ability
of ethnicity and major, along with gender, to predict the
variance in student self-efficacy scores at the end of the
course when controlling for prescores. The results showed
that the model was statistically significant (p < 0.001), but
the only variable that contributed to the model’s signifi-
cance was prescore. Neither ethnicity nor declared major
contributed to the variance in students’ post self-efficacy
scores, though to be sure, the low number of representatives
from certain ethnic groups (e.g., Black) and majors (e.g.,
English) limited the power of our model and our ability to
make strong claims about the effect of ethnicity and major.
Given that gender differences were not seen on pre- and
post self-efficacy scores, we did not expect this variable to
be significant.

Bootstrapped analyses revealed no difference between
the mean outDegree nor PageRank of female and male
students. Nevertheless, male students on average had
slightly higher inDegrees than did female students
[#(121.9) = —2.13, p < 0.05, Cohen’s d = 0.37]; see
Table III.

VIII. DISCUSSION

Our examination of an active-learning, introductory
physics course format revealed that regardless of gender,
major, and ethnicity, students had on average lower beliefs
about their ability to successfully complete physics related
tasks at the end of the semester than they did at the
beginning. This negative change was seen across the
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TABLE III. Gender-based comparisons of network centrality.
InDegree and PageRank centralities do not differ significantly by
gender. On the other hand, female students report more peers (i.e.,
outDegree) in response to the network survey question examined.

inDegree outDegree PageRank
Mean differences —2.13% —0.63 0
(female—male)
T statistic —2.14 —-0.49 0.74
Cohen’s d 0.37 0.09 0.13

ip <0.05

self-efficacy survey as a whole and when disaggregated
by the four accepted sources of self-efficacy. Students
report a decrease in the kinds of experiences that theoreti-
cally contribute to positive self-efficacy formation. This
contrasts with a previous study in smaller classrooms using
the same MI curriculum that showed no change in overall
student self-efficacy and an increase along the verbal
persuasion scale [46]. We suggest as a possibility that
these differences may exist for several reasons, including
class size and data structure (e.g., handling of missing
data). Moreover, we set our alpha levels at much steeper
thresholds in order to combat type I error—a correction this
prior study did not apply. However, the drop we found is
relatively small compared to the range of the self-efficacy
scale and the variance in student responses. The drop
may simply reflect a correction of students’ overconfi-
dence [43].

In light of past research on student academic outcomes in
MI, what captures our interest is that students experienced a
decrease as opposed to an increase in all the sources of
self-efficacy. In fact, we hypothesized increases both on
self-efficacy as a whole and on each of the four sources.
The decrease found was approximately 73% as large as
decreases seen in past studies with students in lecture
courses [46]. These contrary results point to the need for
further exploration of this topic, in particular with
regard to factors that mediate these shifts. We should also
note that our students started at higher levels than pre-
viously reported studies using the SOSESC-P [46,47].
While a variety of variables may have contributed to
this latter attribute, any justification would merely be
speculative.

Given the inherently social aspects of self-efficacy
development in addition to the emphasis on discourse-
based learning in the MI curriculum, we tested whether
students’ social behavior predicted self-efficacy shifts. We
aver that a relationship exists between at least one kind of
interaction, as captured by student PageRank centrality, and
changes in students’ overall efficacy beliefs. We found that
the number of times a student is listed by popular peers
makes a difference (see PageRank in Table II). That is to
say that being named by a student whom others report
having a high number of interactions with positively

predicts increases in overall self-efficacy. In short, a 1
standard deviation increase in student PageRank results in a
0.21 standard deviation increase in post self-efficacy after
controlling for prescores (see Table II). On the other hand,
we did not find that the number of peers a student has a
meaningful interaction with (i.e., outDegree) nor the
number of times a student is recognized by his or her
peers as having contributed to a meaningful interaction
(i.e., inDegree) affect changes on the self-efficacy scale as
a whole.

With regard to the sources of self-efficacy, PageRank
also positively predicted mastery experience scores. This
deserves some unpacking, as this source of self-efficacy is
not typically associated with social interactions, but often
plays a primary role in self-efficacy formation, especially
for men [18]. Moreover, the number of both incoming and
outgoing interactions positively predicted verbal persua-
sion scores, while only outgoing interactions positively
predicted vicarious learning scores. None of the inter-
actions examined had a statistically significant association
with students’ physiological state.

These results align with our model of self-efficacy
development in active learning environments (see
Fig. 1), but also expand on it. They support our belief
that specific kinds of social academic experiences, as
quantified using centrality measures, partially predict
students’ postmeasures on the inherently social sources
of self-efficacy. Yet, the analyses also support expansion of
the model as centrality was found to have an even stronger
relationship with ME, which we did not consider as a
source of self-efficacy related to social networks. In other
words a student exhibiting a drop because of having
poor results on a mastery experience (e.g., exam) did
not necessarily strike us as an experience directly related
to the student’s network of peers. Nevertheless, indirectly, it
may be possible that access to a support group in the class
may provide students with capital that leads to improved
performance as implied by previous studies on teacher
networks and capital theory [71,72].

Although our linear models only explain a relatively
small portion of additional variance, they forge a valuable
link between SNA and the sources of self-efficacy. As
expected, an increase in the number of times peers interact
with a particular student increases the chances this student
has positive verbal persuasion experiences. The specific
items on the SOSESC-P suggest that the student is
receiving encouragement about his or her physics ability.
This aligns with the fact that others are reporting having
salient academic interactions with this student. The same
occurs with regard to a student’s outDegree, but this kind of
outgoing interaction—in the sense that it represents how
often students reach out to peers—is also positively related
with vicarious learning experiences. Since vicarious learn-
ing experiences theoretically indicate situations where one
learns from watching someone with whom one relates, it is
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possible that these individuals are the ones students seek
out. Although the data in this particular study do not allow
us to make a definitive conclusion in that regard, they
certainly offer some value to an examination of the kinds of
individuals different students reach out to. This is further
supported by the observed relationship between PageRank
and mastery experiences. PageRank does more than simply
tally the number of social interactions (i.e., outgoing or
incoming), but also captures with whom the interaction
occurs. Interactions coming from popular individuals as
defined by their inDegree positively predict a students’
sense that they can learn and get good grades in physics.
Because students did not know each other’s inDegree, we
can infer that students recognize, in some capacity, who
these popular individuals may be and have a perception
about their academic popularity. A highly social setting
may catalyze these peer-to-peer judgments.

Active-learning environments, like MI, create the kind of
social space that allows students the flexibility to interact in
different ways with different people [45]. Though no
relationship was found between gender and self-efficacy,
female and male students differ in the kinds of interactions
they experience. Male students in this class are the subjects
of others’ meaningful interactions more so than female
students. While we did not intend to focus on gender
differences, we do present these results as evidence that
certain students experience the social aspects of this
type of environment differently. In our case, major and
ethnicity did not contribute to these differences, but that
may have been a result of our relatively low sample size in
certain subgroups. The value of having examined
several measures of centrality is justified in our ability
to conclude that the types of interactions students experi-
ence and with whom they have these interactions matters
with regard to self-efficacy formation. The characteristic of
PageRank as a measure of the kinds of people whom
students interact with may also help to explain why
PageRank is a slightly better predictor of overall self-
efficacy than inDegree or outDegree. Additionally, we
know from past studies that mastery experiences, a source
we found associated with PageRank, often plays a greater
role in self-efficacy formation in physics courses than other
sources [18,44].

Our surprising results encourage us to think about ways
to mitigate effects of the social structure of MI on students’
efficacy beliefs and vice versa. This might manifest itself
through the purposeful stimulation of interactions between
certain groups of students. Altering how students partici-
pate in the social aspects of a classroom in a way that gives
all an equitable chance then becomes, in part, an issue of
how students recognize the value of their peers. We suspect
that the highly social nature of this learning approach
exposes students to academic judgment from peers and can
initiate introspective evaluation, specifically while students
solve problems in groups and when they present solutions

to the larger classroom. The increased number of inter-
action events may provide students with more opportunities
to generate perceptions about their peers’ ability to con-
tribute to a physics-related task and, in turn, influence
whom they work with or whom they list when asked to
recall meaningful academic interactions. These perceptions
can drive changes in interactions. Although in this example
we have suggested that these changes may relate to
academic perceptions, they may also relate to students’
ability to communicate effectively, helpfulness, or even
friendliness.

We faced certain limitations worth noting. No student in
the Fall 2014 and 2015 course had declared physics as a
sole major. Physics majors may be less susceptible to
changes in self-efficacy via peer recognition because of
their strong physics identity relative to those pursuing other
STEM fields [11]. The absence of physics majors in these
MI courses might also point to a possibly unidentified
source of self-selection bias. Furthermore, the MI class-
rooms in question were among the first at FIU to host that
many students at once. The novelty of implementing this
curriculum with more students in a brand new classroom
may have led to unrecognized shortcomings. Further
investigation should take place to more clearly understand
how these factors relate to our study.

Knowing the powerful role that introductory physics
courses play on career persistence and the underrepresen-
tation of certain groups of students [7], we are pressed to
search for ways to ensure that students complete the
semester feeling more confident in their ability to perform
physics tasks rather than less confident—regardless of the
gradient. Though we report a somewhat minor 3.79%
overall drop in students’ physics self-efficacy, this is an
average measure. Individually, students ranged from a 29%
decrease from prescore to a 46% increase from prescore.
This variance offers a living example of how students in the
course can exhibit contrary, affective outcomes. Our study
showed that part of what accounted for these differences
are the kinds of interactions students had. Similar learning
environments, particularly those that focus on active-
learning mediated by student interactions, may exhibit
parallel outcomes. Our holistic approach to student learning
motivates us to explore ways to improve MI and interactive-
learning approaches in the introductory classroom such that
the maximal number of students leave not just academically
prepared, but also affectively equipped to persist in physics
careers. Our study aims to highlight the value of examining
these facets of student outcomes in these environments,
specifically self-efficacy development and course-related
social interactions. It is not enough to simply say that
students are learning more. This is especially true in the
realm of career decision-making where self-efficacy plays a
central role even for STEM related professions, partially
explaining the underrepresentation of certain groups in these
fields [73]. Bandura [29] explains,
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“«

..the stronger people’s belief in their efficacy, the

more career options they consider possible, the greater
the interest they show in them, the better they prepare
themselves educationally for different occupations, and
the greater their staying power and success in difficult
occupational pursuits.”

Our exploration of this matter reflects our commitment
to not only help our students better understand physics,
but also motivate some to join the physics community.

(3]

(4]

(8]

(9]

[10]

(1]

This requires that we focus on more than just content
matter.
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