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Topology evolution during coarsening of nanoscale metal network structures
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Many experiments exploit curvature-driven, surface-diffusion-mediated coarsening for tuning the character-
istic structure size of metal network structures made by dealloying, such as nanoporous gold. Here we study
this process by kinetic Monte Carlo simulation. The initial microstructures are leveled Gaussian random fields,
approximating spinodally decomposed mixtures, of different solid fraction ϕ. Earlier work establishes these
structures as valid representations of the nanoporous gold microstructure. We find that the coarsening law for
the characteristic spacing between the ligaments of the network is universal, whereas the time evolution of
the characteristic ligament diameter is not. The expected time exponent 1/4 is confirmed by our simulation.
Contrary to what may be expected based on continuum models, the degree of surface faceting or roughness has
no apparent effect on the coarsening kinetics. In the time interval of our study, the network connectivity—as
measured by a scaled density of topological genus—remains sensibly invariant for networks with ϕ � 0.3,
consistent with previous reports of a self-similar evolution of the microstructure during coarsening. Yet, networks
with lesser ϕ lose their connectivity on coarsening and can even undergo a percolation-to-cluster transition. This
process is slow for ϕ only little below 0.3 and it accelerates in networks with lesser ϕ. The dependency of the
connectivity evolution on ϕ may explain controversial findings on the microstructure evolution of nanoporous
gold in experimental studies.
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I. INTRODUCTION

Nanoscale metal network materials made by dealloying,
and notably nanoporous gold (NPG), are under investigation
as model systems for fundamental studies of small-scale plas-
ticity [1]. These studies have provided insights into the impact
of size [2–7] and of surface effects [8–10] on small-scale
plasticity and they highlight the role of nanoporosity in stress
corrosion cracking [11,12]. The discussion tends to focus on
the ligament size, L, and on the solid (volume) fraction, ϕ, as
the defining microstructural parameters. Yet, inconsistencies
between published data for strength or stiffness suggest that
additional parameters might be relevant for the mechanical
behavior [1,13–15]. It is therefore significant that the
connectivity – to be defined below – of the network has been
highlighted as an additional, important characteristic [16]
which strongly affects the mechanical behavior [14,17–19].

With attention to as-dealloyed nanoporous metal, it has
indeed been demonstrated that the anomalously low effective
Young’s modulus [14,20] can be understood as the conse-
quence of a decrease in connectivity with decreasing ϕ [21].
A standard processing approach in experimental studies is
to establish series of samples with ever-larger L by coars-
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ening [22]. The underlying mechanism is curvature-driven
redistribution of matter by surface diffusion [16,23,24], with
the pinch-off of ligaments by Plateau-Rayleigh instability
as the topology-changing events [16]. Model microstruc-
tures for atomistic and finite-element model studies of NPG
have been generated by simulating spinodal decomposition
[17,20,25,26], which can also involve coarsening. Since the
connectivity affects the mechanics, one is led to ask how will
the connectivity evolve during coarsening?

The experimental findings on the above issue are con-
tradictory. Changes in Young’s modulus during coarsening
suggest that the fraction of disconnected ligaments increases
strongly as the ligaments grow [14]. Yet the analysis of
experimental tomographic reconstructions of NPG appears to
refute the suggestion: These data suggest that the coarsening
is self-similar; in other words, the number of connections in
a representative volume element is a constant, independent of
the ligament size [15,27].

In view of the similarity between the microstructures of
NPG and of spinodally decomposed mixtures [20,21,25,26],
phase-field simulation studies of coarsening during spinodal
decomposition may provide a lead to a possible origin of the
contradictory findings. Such studies find that symmetric spin-
odal structures, with equal phase fractions, retain their con-
nectivity during coarsening [28]. Yet they also reveal that the
evolution of the topology in asymmetric (ϕ �= 0.5) structures
depends sensitively on ϕ [29,30]. Specifically, the spinodal
decomposition of mixtures by bulk diffusion yields bicontin-
uous (percolating) and essentially self-similar microstructures
when 0.36 � ϕ � 1

2 ; lesser values of ϕ lead to disconnected
clusters [29]. Apparently contradictory observations might
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then be obtained in studies of topology evolution that work
with samples of different ϕ. Yet, even though similarities
between NPG and spinodal microstructures are widely ac-
knowledged, it is not obvious in how far the observations in
Ref. [29] can be transferred to NPG. In stark contrast to those
observations, the experiments on NPG show load-bearing and,
hence, well-connected structures at ϕ ranging from 0.45 down
to as small as 0.25 [1]. This is not surprising in view of the
quite different underlying processes. Spinodal decomposition
involves, in its early stage, the continuous conversion of a
uniform solution into a two-phase microstructure when com-
position fluctuations grow in amplitude. During dealloying,
by contrast, the two-phase microstructure is created by the
progression of a discontinuous interface between the solid
and the corrosive medium [31,32]. In each case the geometric
arrangement of the two phases is correlated, not random, and
this affects the criteria for percolation. The detailed nature of
such correlations depends on the nature of the active processes
[33]. These processes are distinctly different between spinodal
decomposition and dealloying. The use of phase-field gen-
erated spinodal structures as models for NPG may therefore
require caution.

The evolution of the topology during coarsening of
nanoporous nanoparticles by surface diffusion has been stud-
ied by kinetic Monte Carlo (KMC) simulation [16]. These par-
ticles evolve into massive solids with no connected porosity.
In experiments, an analogous process results in denser layers
near the surface of nanoporous metal [34]. The observations
on the coarsening of nanoparticles cannot be transferred to
bulk network structures, since the densification which is me-
diated by the surface of the particles has no equivalent in the
interior of the network [35].

Simulations exploring the impact of the solid fraction on
the evolution of network topology in the bulk, considering
realistic network geometries and focusing on coarsening by
surface diffusion, have not been reported so far. Here we
present such a study, based on KMC simulations with parame-
ters matched to NPG. We study realistic initial structures with
solid fractions in the range covered by experiment, focusing
on the behavior in the network’s bulk as opposed to its external
surface, and allowing for surface diffusion as the dominant
transport mechanism.

II. METHODS AND DEFINITIONS

A. Leveled-wave initial microstructures

Our simulations ran on a rigid face-centered cubic (fcc)
lattice with lattice parameter a = 408 pm. Unless otherwise
stated, the simulation boxes extended over 200 lattice param-
eters in each direction. With four sites per fcc unit cell, this
corresponds to 32 million sites and to a simulation box edge
length b = 81.6 nm. Starting configurations were generated
as leveled Gaussian fields, using a model for the microstruc-
ture at the end of early-stage spinodal decomposition [36] in
its adaptation for periodic boundary conditions, as described
in detail in Ref. [21]. In brief, plane waves with wave vectors

qi = 2π

b
(hie1 + kie2 + lie3), (1)

of same magnitude, q, but different direction and with random
phase shifts, were superimposed to map a random field onto
the lattice. Here {ei} provides an orthonormal basis in the
reciprocal space and the tuples (hi, ki, li ) consist of inte-
gers and are of fixed magnitude, H . In other words, H =√

h2
i + k2

i + l2
i = const. The field was then binarized into

solid and pore by a level cut selected for the desired solid
volume fraction ϕ.

Random networks generated in this way provide a re-
alistic representation of as-dealloyed NPG: Their Young’s
modulus is isotropic and in excellent agreement with ex-
periments covering ϕ = 0.25–0.45 [21]. Furthermore, their
connectivity density agrees with experimental data obtained
from tomographic reconstructions of NPG [15,21]. A pro-
nounced interference peak in the experimental small-angle
structure factor of NPG [37,38] confirms the presence of a
dominant characteristic wavelength, as in the leveled wave
model.

B. Coarsening by kinetic Monte Carlo simulation

Coarsening was studied by on-lattice KMC simulations
[39] with periodic boundary conditions in 3D, using the open
source codes SPPARKS [40] for KMC and OVITO [41] for vi-
sualization. A nearest-neighbor bond counting model supplies
the energy, E, of each lattice site, namely for a vacancy E = 0
and for atoms E = εz with z the nearest-neighbor coordination
and ε half of the bond energy. At each simulation step, an atom
may jump to one of its neighboring vacancies. Each jump
induces a change, �E , in the total energy. This change relates
to �z, the difference between final and initial coordination
number of the jumping atom, by �E = 2ε�z. The rate, r, of
such an event is

r =
{

ν if �E < 0

ν exp[−�E/(kBT )] if �E � 0
, (2)

where ν, kB, and T are the attempt frequency, Boltzmann’s
constant, and the temperature, respectively. Transition state
theory describes the dependency of ν on details of the atomic-
scale diffusion mechanism; at T = 900 K a value of 1012 s−1

is typically assumed [40,42].
At T = 900 K, each of the simulations with the box edge

length 200a typically required 2000 h of CPU time on each of
the 64 cores used in parallel, about 130 000 h of CPU in total.
Runs at 1800 K were faster, about 28 000 total CPU hours.
A run at 1800 K with a 400a edge length box and 256 cores
required 98 000 total CPU hours.

An obvious energy scale in our problem is provided by the
specific surface excess free energy, γ , which is the driving
force for coarsening. Densely packed surfaces of metal crys-
tals typically exhibit γ in the order of 1 J/m2. Based on the
excess energy in the broken bonds per area of surface, we find
that our values of ε, namely −0.15 eV, and a imply specific
surface energies of 1.00, 1.16, and 1.23 J/m2, respectively, for
{111}, {100}, and {110} terraces. These values are about 10%
less than predictions by density functional theory (DFT) for
gold [43], yet their ratios agree with DFT.

076001-2



TOPOLOGY EVOLUTION DURING COARSENING OF … PHYSICAL REVIEW MATERIALS 3, 076001 (2019)

C. Extracting ligament size and connectivity

Coarsening results from the strife to reduce the product of
γ with A, the area of surface. Thus, the specific (per volume,
VS , of the solid) surface area, SV = A/VS , is a natural mi-
crostructural parameter in studies of coarsening at conserved
volume [29,44]. This parameter is also routinely determined
in experiments on NPG [9,45,46]. In our study, the surface
reconstruction algorithm of Ref. [47] supplied A and VS as the
basis for SV . The algorithm is based on a Delaunay tessellation
of the atomic structure of the solid. Extracting the location of
a surface from the tessellation involves the convolution with
a spherical probe volume [47], the radius of which was set to
0.3 nm in our study.

Since we are interested in the growth law of the network,
we here used A and VS of the largest cluster. Other, isolated
clusters were ignored.

As a more descriptive parametrization of SV , a character-
istic length scale is provided by the apparent ligament size
(diameter) Lap,

Lap = 4/SV . (3)

Equation (3) applies to long circular rods as a rough approxi-
mation of the microstructure of NPG. The results of Ref. [21]
imply an exact relation between SV and a different measure for
size, namely the characteristic spacing, L̃, between the centers
of neighboring ligaments:

L̃ = αλ = 4

SV

α√
3ϕ

e−[erf−1(2ϕ−1)]2
(4)

with α = 1.23 and λ = 2π/q the wavelength underlying the
Gaussian field. Equation (4) is exact for the initial leveled-
wave microstructure; it remains valid during coarsening if the
microstructure evolution is self-similar.

The topological genus, G, may be identified with the num-
ber of connections in a network microstructure [15,16,24,48].
More precisely, G represents the maximum number of con-
nections in the network that may be cut (disconnected) before
the structure disconnects into two independent ones and falls
apart. By means of example, the values of G for a sphere, a
donut, and a pretzel are 0, 1, and 3, respectively.

For a material with a given microstructure, G scales with
the sample volume. In the context of coarsening it is desirable
to work with a ligament connectivity measure which is inde-
pendent of sample volume and of microstructural length scale.
Here we use a scaled genus, g, defined by [21]

g = G
L̃3

Vtotal
, (5)

where Vtotal represents the total sample volume, solid plus
pores. By its definition, g represents the number of con-
nections in a representative volume element of size L̃3. If
the microstructure evolves in a self-similar manner during
coarsening, then g remains a constant.

As a numerical approach to the topology, we evaluated the
Betti numbers, B0 and B1, of the KMC-generated structures.
The Betti numbers are topological invariants of the surface
of a microstructure [49,50]. They are readily computed by the
open-source code CHomP [51], which we used with its option
for periodic boundary conditions activated. B0 represents the

number of connected components, while B1 measures the
number of handles of the structure [49]. B0 = 1 indicates that
the solid forms a single connected cluster, whereas larger
values of B0 imply the formation of isolated particles. The
genus is obtained as G = B1.

III. RESULTS

A. Temperatures and initial configurations

Simulations were run at two temperatures, T = 900 K
and 1800 K. Runs at T < 900 K require prohibitive CPU
time because the higher ones among the energy barriers for
transport cannot be efficiently overcome at low T . At T >

1800 K, the vacancy concentration and the fraction of single
atoms in the (lattice-) gas are no longer negligible and so bulk
transport may start to contribute. Figures 1(a) and 1(b) show
Wulff shapes of isolated particles equilibrated in simulations
at 900 K and 1800 K. At the lower temperature, the particle
appears almost perfectly faceted. By contrast, the higher tem-
perature leads to a rougher surface, with a substantial amount
of surface defects. Comparing the simulations at the two
temperatures will therefore provide insights into the impact
of thermal roughening on the microstructure evolution.

Our simulations of coarsening were based on initial con-
figurations, generated by the leveled-wave algorithm, with
different solid fractions. Figure 1(c) shows an exemplary
initial configuration, here for ϕ = 0.35. The microstructure
geometry resembles that of experimental NPG. The surfaces
in this initial state are rough, which is a consequence of
projecting the leveled random field onto the crystal lattice.
This configuration used H = √

449. Figure 1(d) shows the
120 wave vectors, emphasizing that the orientation space is
rather uniformly covered. This is consistent with the apparent
absence of microstructural texture in Fig. 1(c).

B. Evolution of characteristic size

Figures 1(e) and 1(f) show configurations at the end of
the 900 K and 1800 K coarsening runs. By construction, ϕ is
invariant during the coarsening. By contrast, the characteristic
structure size has increased about fourfold. At the same time,
the number of ligaments decreases from initially about 104

to about 300 in the final state (see discussion of genus be-
low). The almost tenthousand pinch-off events which underlie
this structural evolution form the basis of our analysis. The
coarsened structures in Fig. 1 have developed a texture, with
ligaments preferentially oriented parallel to the edges of the
simulation box, which are 〈100〉 crystallographic directions.

Figure 2 shows subsets (50 × 50 × 50 lattice spacings)
of the larger simulation box, following their evolution. The
columns of the figure refer to the two temperatures. The rough
surfaces of the initial state are seen in the top row, Fig. 2(a).
The central row [Figs. 2(b) and 2(c)] shows snapshots early
in the relaxation, before the onset of substantial coarsening.
It is seen that relaxation immediately leads to faceting, even
for the smallest structures. The bottom row [Figs. 2(d) and
2(e)] shows the final states. The prevailing features are {111}
and {100} terraces, with similar numbers of atoms in both.
Large facets are apparent at the lower temperature, whereas
the surfaces are rougher at higher temperature.
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FIG. 1. Temperatures, initial and final configurations. The top
row shows Wulff shapes of isolated particles equilibrated at tem-
peratures T = 900 K (a) and 1800 K (b). Note the roughness at
1800 K. Central row shows in (c) a simulation box with the initial,
leveled-wave microstructure and in (d) the position of the underlying
120 wave-vector directions (black dots) on the unit sphere in recip-
rocal space. The 100-type crystallographic directions are indicated.
The bottom row shows the coarsened structure at the end of the
simulation runs at 900 K (e) and 1800 K (f). Note the appearance
of microstructural texture after coarsening. Simulation box size in
(c), (e), and (f) is 200 × 200 × 200 face-centered cubic unit cells,
phase fraction in the example is 0.35. Yellow spheres denote atom
positions.

We used different strategies for the initial configurations.
The runs at 900 K compared systems with different ϕ but
identical apparent ligament diameter, Lap. This required se-
lecting different values of H and, therefore, different random
fields with different characteristic q and different characteris-
tic spacing L̃. By contrast, the runs at 1800 K generated the
structures with different ϕ by level cuts on one and the same
random field. Here the initial structures have the identical L̃
but different Lap. For more details on the initial configurations
see the Supplemental Material [52], confirming the validity of
Eq. (4).

Figures 3(a) and 3(b) show how the size parameters Lap

and L̃ evolve over time at 900 K and 1800 K, respectively.

FIG. 2. Microstructure evolution during coarsening. (a) Initial
structure generated by the leveled-wave construction. Central row:
Structures after initial relaxation and before the onset of signifi-
cant coarsening. (b) After period of 1.1 × 106 ν−1 at temperature
T = 900 K; (c) after period of 108 ν−1 at T = 1800 K. Insets in
(a)–(c) show a blowup of an exemplary ligament, emphasizing initial
roughness and faceting during relaxation. Bottom row: Coarsened
structure at the end of the simulation runs at T = 900 K (d) and
1800 K (e). Note large facets at lower temperature and rougher
surface at higher temperature. All subfigures show the same subset
of the larger simulation box; subset size is 50 × 50 × 50 lattice spac-
ings. Solid fraction is 0.35. Yellow spheres denote atom positions.

The size parameters were determined from the specific surface
areas using Eqs. (3) and (4). Their initial values are system-
atically smaller, by 11 ± 2%, than the a priori known values
(see the Supplemental Material [52]) of the leveled random
fields. The deviation arises, first, because of the atomic-scale
roughness of the initial surface—this increases A over the
smooth surface of the leveled wave model. Second, the surface
reconstruction algorithm lets the surface interpolate the atom
centers. By construction, these are displaced inward from the
leveled wave surface. VS is then underestimated. Apart from
the systematic deviation, the sizes provide an accurate match
with the leveled-wave template.

Figures 3(a) and 3(b) reveal three stages of size evolu-
tion for each simulation run. In the first stage, at extremely
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FIG. 3. Evolution of characteristic structure sizes with time, t .
Networks with different solid fraction ϕ at temperatures T = 900 K
(a) and 1800 K (b). Closed symbols: apparent ligament diameter,
Lap; open symbols: characteristic spacing, L̃, between neighboring
ligaments. Legends link symbol shapes to ϕ. Straight lines indicate
t1/4 kinetics (with arbitrary prefactor). Note universal behavior of L̃
and not of Lap. (c) Comparison of L̃ versus t at both temperatures
for the structure with ϕ = 0.35. Closed symbols: simulation results;
open symbols: 1800 K results with the time axis multiplied by 65.
Note that this shift leads to superposition of the graphs. All axes in
this figure have logarithmic scale.

short times, t , the size does not yet increase. However (as
discussed above), the surface morphology evolves from rough
to more faceted. In the second stage, the coarsening law
approximates the t1/4 variation of size which would be ex-
pected for steady-state growth based on Ref. [53]. In the third
stage, the coarsening slows down. We tentatively attribute
that slowdown to an effect of the finite size of the simulation
box—the microstructure evolution is no longer representative
of bulk behavior once the ligament size approaches the box
size.

The most striking observation in Fig. 3 is the different
convergence behavior of the two size parameters. The evo-
lution of Lap depends on ϕ, even when all starting configu-
rations have the same Lap. By contrast, the L̃ of all samples
converge to a common graph, independent of ϕ, even when
the initial L̃ differ. This implies that L̃—and not Lap—is
inherently the appropriate size parameter when discussing
coarsening.

The coarsening at 1800 K is almost 2 orders of magnitude
faster than at 900 K. Besides the acceleration, and even
though the surface morphologies—faceted versus rough—
differ between 900 K and 1800 K, comparison of Figs. 3(a)
and 3(b) shows that the qualitative features of the coarsening
agree, independent of the temperature. For a closer inspection
we focus on the simulations for ϕ = 0.35, which have the
identical initial structure at both temperatures. Figure 3(c)
shows that the 1800 K graph of L̃(t ) here coincides quite
precisely with the graph at 900 K if the time axis of the
former is multiplied by 65. The precise agreement implies
the identical temperature dependence throughout the entire
microstructure evolution. This is consistent with a single
rate-limiting step and a unique value of the activation en-
ergy, namely 0.65 eV (which is equivalent to 2.2 broken
bonds).

With an eye on the possible power-law coarsening we
performed one (very CPU-intensive) simulation run in which
the simulation box had twice the standard edge length, namely
400 lattice spacings or 163.2 nm, and 256 million sites.
Temperature, solid fraction, and initial ligament spacing were
1800 K, 0.35, and 4.7 nm, respectively. Figure 4(a) shows
a log-log plot of the results for L̃(t ) versus t , superim-
posed to those obtained with the standard size box (edge
length 200 lattice spacings) under otherwise identical con-
ditions. It is obvious that the slowdown in the third stage
of coarsening in Fig. 3 is only seen for the smaller box;
this feature is indeed an artifact of the box size. The sim-
ulations with the larger box also confirm the agreement of
the simulation with the t1/4 coarsening law. This agreement
is further supported by the linearity of the graph of L̃4

versus t in Fig. 4(b). Analogous graphs for the remaining
simulation runs (see the Supplemental Material [52]) also
show essentially linear behavior in the second stage of the
coarsening.

C. Evolution of network connectivity

Next we inspect the evolution of the network topology
during coarsening. Figures 5(a) and 5(b) show the genus
G of the largest cluster and the number, B0, of connected
components, respectively, of each stage during coarsening at
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FIG. 4. Coarsening kinetics. For the example of T = 1800 K and
ϕ = 0.35, panel (a) shows log-log plot of characteristic ligament
spacing L̃ versus time t . Open symbol, standard size simulation box
with edge length 81.6 nm; closed symbols, larger simulation box
with edge length 163.2 nm. Solid line: t1/4 kinetics (with arbitrary
prefactor). Slowdown of coarsening at largest L̃ for the small box is
an artifact of the finite box size. (b) Same data, plotted as L̃4 versus
t . Note the linear variation for the results obtained with the larger
box size. Data in this figure confirm that the coarsening law of the
simulation is inherently L̃ ∝ t1/4.

900 K. The results at 1800 K (not shown) are consistent,
except that few (a fraction ∼10−5 of all sites) free atoms in
the gas here contribute to B0. In Fig. 5(a), the initial values of
G depend on ϕ. This is a consequence of, first, the different
H , and, second, the variation of connectivity of leveled-wave
structures with ϕ, see below. Most importantly, it is seen
that the values of G systematically drop when the coarsening
sets in. That drop is faster at lesser ϕ. The final G value of
the structure with ϕ = 0.22 approaches zero, indicating that
this sample has almost completely disintegrated into isolated
dense clusters. One of the pinch-off events which decrease G
is visualized in the inset in Fig. 5(a).

The appearance of isolated clusters may also be fol-
lowed by inspection of the number of connected components,
Fig. 5(b). For samples with ϕ > 0.35 that number changes
little or retains its initial value of 1. By contrast, B0 of samples
with lesser ϕ increases significantly during coarsening.

FIG. 5. Evolution of the topology during coarsening, here for
the 900 K simulation. (a) Topological genus, G, of the largest
cluster versus time, t , for structures of different solid fraction ϕ.
Inset exemplifies a pinch-off event. (b) Number, B0, of connected
components versus t . Note logarithmic axis. Legend in (b) links
symbol shapes to solid fraction, ϕ.

For the 900 K simulation, Fig. 6 inspects how the scaled
genus g [Eq. (5)] of the largest cluster in each state varies with
the solid fraction ϕ. The bold line refers to the leveled-wave
geometry that underlies our initial structures, where

g = 2πα3

3
√

3
(1 − ξ 2)e−ξ 2/2 (6)

with ξ = √
2 erf−1(2ϕ − 1) [21]. The symbols refer to the

numerical results obtained by analysis of the discrete atomic
structures. In the initial state (L̃ = L̃0), the numerical analysis
underestimates g. This can be understood as the result of L̃

FIG. 6. Scaled genus, g, versus solid fraction ϕ in different stages
of the coarsening. Bold solid line: Theory for leveled wave initial
structure, Eq. (6); ϕP denotes the percolation threshold of the theory.
Symbols: Numerical results for initial structures (L̃ = L̃0) and after
coarsening to L̃ = 1.5L̃0 and to L̃ = 2.0L̃0, see legend. Note that
g of structures with ϕ > 0.3 converge toward the theory, whereas
structures with ϕ < 0.3 move away from it.
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FIG. 7. Scaled genus, g, versus characteristic spacing, L̃, be-
tween neighboring ligaments. L̃ has been normalized to initial value,
L̃0, before the onset of coarsening. Different symbol shapes dis-
criminate between different values of solid fraction, ϕ, as indicated
in legend. Open symbols: coarsening at 900 K; closed symbols:
1800 K. Note that structures with ϕ < 0.3 tend to lose connectivity
on coarsening.

being underestimated by the surface reconstruction algorithm,
as discussed above. As the ligaments grow to L̃ = 1.5L̃0 and
then to L̃ = 2.0L̃0, the scaled genus of structures with ϕ > 0.3
relaxes toward the theory line, which it accurately meets.
In other words, the topology of the leveled wave appears
stable during coarsening at those solid fractions. By contrast,
structures with ϕ < 0.3 evolve away from the leveled wave
topology during coarsening. The more ϕ approaches the per-

colation threshold of the theory (ϕP = 1
2 [1 − erf (

√
2

−1
)] ≈

0.16 [21]), the faster connectivity is lost during coarsening.
These observations are further illustrated by the graphs,

in Fig. 7, of g versus L̃ for the structures with various ϕ

and at both temperatures. All L̃ in this figure are scaled to
the respective initial value, L̃0. It is seen that the data from
the 900 K runs (open symbols) and from the 1800 K runs
(closed symbols) are in excellent agreement. Furthermore, the
figure confirms that g of structures with ϕ � 0.3 varies little
during coarsening. This is at least consistent with self-similar
coarsening at those solid fractions. Remarkably, however,
samples with ϕ < 0.3 exhibit a decrease of g on coarsening.
That trend is weak at ϕ = 0.27 and it becomes more promi-
nent as ϕ decreases further. For example, the value g of the
sample with ϕ = 0.25 decreases by the factor 110 between
the initial and final data point. These findings are consistent
at the two temperatures of our study. In other words, within
the range of our simulations, there appears to be a transition
between apparently self-similar coarsening for ϕ � 0.3 and a
behavior with progressive loss of connectivity and eventually
a percolation-to-cluster transition for ϕ < 0.3. The renderings
of the structural evolution in real space in the Supplemental
Material [52] visualize the geometry changes behind this loss
of connectivity.

IV. DISCUSSION

A. Assessing the initial microstructures

Our study is motivated by experimental observations on
coarsening of nanoporous gold made by dealloying. The two
processes, dealloying and coarsening, are distinctly different:
During dealloying, chemical or electrochemical driving forces
for the dissolution of the less-noble element let the porosity
and the area of surface increase over time. Coarsening, by
contrast, is driven by the strife to reduce the net excess
surface energy that was introduced during dealloying. During
this process, porosity is conserved and the area of surface
decreases over time. As their starting point, our simulations
of coarsening require a realistic model for the microstructures
that are produced by dealloying. The leveled random fields
which provide these initial structures in our study approx-
imate the microstructure at the end of early-stage spinodal
decomposition [36]. Thereby, our results are also relevant
for the microstructure evolution during the coarsening of
spinodal structures, in other words, for late-stage spinodal
decomposition.

Because dealloying and early-stage spinodal decomposi-
tion involve distinctly different processes, it is not a priori
obvious that our initial structures provide useful approxima-
tions to the microstructure of NPG. Yet Ref. [21] points out
the excellent agreement of the elastic properties and of the
scaled genus of leveled random fields with experiments on
NPG. To date, no other microstructural model has received
a comparable validation by comparison to experiment. This
motivates and supports the initial configurations of our study.

B. Microscopic details of the KMC simulation

Our KMC approach is based on a simplified represen-
tation of the experimental scenario. Its rigid lattice forbids
the atomic-scale relaxation of the surface atoms as well as
the long-range elastic and plastic deformation of the bulk in
response to capillary forces. The activation energies of the
individual diffusion events are embodied in a simplified man-
ner and the possible impact of adsorbates ignored. Instead,
the model focusses on the most essential features behind
the coarsening of metal network structures, specifically the
(anisotropic) excess energy of the surface and the transport
by diffusion along the surface and along step edges and not
through the bulk. In support of the adequateness of this model,
the KMC simulations in Refs. [31,32,54] have obtained semi-
quantitative agreement with experiments on various aspects
of the structural evolution during the making of NPG by
dealloying.

Previous KMC studies of NPG have used bond energy
values of −0.285 eV [31] and −0.15 eV [32,54]. The present
value of −0.30 eV is motivated by the ensuing, realistic values
of the surface tensions, see Sec. II. Furthermore, the value,
0.65 eV, of the apparent activation energy for coarsening in
the present work compares favorably to 0.64 eV for gold
surface diffusion in vacuum [55], a value that was also found
to agree well with the activation energy for nanoporous gold
coarsening in air near 900 K [24]. The reasonable value of
the activation energy supports our choice of the bond energy
value.
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In view of its simplified representation of diffusion, our
KMC simulation is not designed for a quantitative represen-
tation of coarsening timescales. Yet one may ask whether
the simulation reproduces the coarsening rate in a roughly
realistic manner. If we adopt the value ν = 1012s−1 (see
Sec. II B) for the attempt frequency, then the time interval of
108ν for coarsening from 4 to 16 nm at 900 K [see Fig. 3(c)]
corresponds to 100 μs. Extrapolation using the activation
energy of 0.65 eV suggests that the same process would
take slightly more than half an hour at room temperature.
In view of the fact that coarsening behind the dealloying
front (secondary dealloying [54,56]) in NPG leads to ligament
sizes of 20–40 nm after several hours of dealloying at room
temperature [34], the time constant appears reasonable.

C. Kinetics of coarsening and appropriate size parameter

Our findings for the microstructure evolution by surface
transport emphasize that the characteristic spacing between
ligament centers, L̃, is more inherently linked to the coars-
ening kinetics than the ligament diameter, Lap. This is of
relevance since many experiments on NPG parametrize the
characteristic microstructural length scale by a mean ligament
diameter L—similarly to our Lap—which is determined by
measuring dimensions in electron micrographs. Other exper-
iments compute L as the inverse of the specific surface area,
which is accessible through electrochemistry. The more fun-
damental parameter L̃ relates to an underlying wavelength and
can therefore be determined from information in reciprocal
space. Experiment provides such information in the form
of peak positions in small-angle scattering [37,38,57] or in
Fourier transforms of electron micrographs [23]. Yet L̃ is
rarely reported in experimental studies.

We find the coarsening kinetics consistent with the t1/4

power law that is expected [53] for coarsening mediated
by surface transport. The experimental literature for NPG
provides no conclusive picture on the time exponent. The
reported data are typically not inconsistent with exponent
1/4, but confidence limits are wide and some data appear
even consistent with linear growth [23,24,58]. Conceivably,
more precise data may be obtained by basing future analysis
systematically on L̃.

D. Impact of faceting

Slender cylindrical rods with surface energy are susceptible
to pinch-off by the Plateau-Rayleigh instability as, for ratios
of length over diameter > π , small fluctuations in diameter
reduce the energy and can spontaneously grow [59]. In net-
works, as in the present study, matter can be redistributed
over distances larger than the length (distance between nodes
connecting neighboring ligaments) of ligaments and so the
instability is expected even when, at high ϕ, the ligaments
appear short and thick. Indeed, pinch-off events are observed
in our structures at all solid fractions.

The Plateau-Rayleigh instability is affected by anisotropy
of the specific surface free energy, γ , and may slow down
when there are steep cusps in γ of crystal surfaces at low-
index orientations [60]. The cusps prevent the rotation of
terraces out of their low index/low energy orientation, thereby

suppressing the fluctuations that initiate the instability. The
presence of facets, which are a consequence of steep cusps
in γ , may also affect coarsening exponents [61]. It is there-
fore noteworthy that our structures at 900 K appear almost
perfectly faceted, indicating steep cusps in γ . The enhanced
roughness at 1800 K can be understood as the consequence
of the specific step edge excess free-energy (line tension)
decreasing at higher temperature due to the configurational
entropy that is associated with step-edge fluctuations. The
decrease of the step-edge energy lets the cusps become more
shallow. Significantly, we observe no qualitative changes in
the coarsening behavior between the two temperatures, in
spite of the substantially different degrees of faceting or
roughness. We note the abundance of kink sites in all struc-
tures, even in the equilibrated small particles of Fig. 1. The
number of atoms in those particles happens not to be suit-
able for forming a perfectly faceted outer surface, and some
kinks are then configurationally necessary. In the network
structures, the kinks provide for facile migration of step edges
as an alternative pathway for microstructure evolution. This
pathway differs from the coordinated rotation of the terraces
out of their low index orientation, as it is considered in
Ref. [60].

High-resolution transmission electron micrographs of the
surface of NPG have revealed microfacets [62], and faceting
on the scale of the ligament size has been reported in several
studies of coarsened NPG [24,63,64]. This appears natural,
since the Wulff shape of gold is known to retain facets up to
temperatures close to the melting point [65]. However, many
other studies of NPG present scanning electron micrographs
that show curved and, hence, rough surfaces [13–15,17,58].
Thus, the faceting in our simulation is not unanimously
supported by experiment. Yet the observations on the time
exponent for coarsening are consistent in simulations and
experiment. In this respect it is significant that our simulation
finds the coarsening kinetics as independent of the degree
of faceting. Even though the confidence limits of experiment
and of simulation are wide, our simulation apparently catches
essential features of experiments on NPG, irrespective of the
faceting.

The texture in the orientation of the ligaments of our coars-
ened samples represents another aspect which is not typically
reported for experimental coarsened NPG. Yet strikingly sim-
ilar textures have been reported in one experimental study of
NPG [66] and in a study of dealloyed nanoporous silver [67].

E. Impact of solid fraction

The loss of connectivity during coarsening of spinodal
structures is of particular relevance in polymer blends, where
extended coarsening can entail a percolation-to-cluster tran-
sition [44,68–71]. The transition can be limited to strongly
asymmetric (ϕ 	 0.5) blends [71] but can also occur at
any phase fraction [69]. Studies of the topology evolution
during spinodal coarsening in experiment [44,72] as well as
simulation [49] have documented the loss of connections.
The scaled connectivity has been reported in an experimental
study of polymer blends [44], which finds g invariant during
coarsening at ϕ = 0.5, whereas a 4-fold increase in domain
size brings a 10-fold reduction in g when ϕ = 0.35. This
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observation supports the trends in our simulation. In the
phase-field study of Ref. [29], spinodally decomposed (by
bulk diffusion) mixtures with phase fractions ϕ = 0.5, 0.40,
and 0.36 are bicontinuous and coarsen self-similarly, whereas
mixtures with ϕ = 0.30 and 0.22 are not percolating at any
stage of the decomposition process.

As a central observation of the present study, the evolu-
tion of scaled genus during coarsening by surface diffusion
depends strongly on the solid fraction. For ϕ � 0.3, g remains
sensibly invariant during coarsening. At lower solid fraction,
by contrast, g decreases when ligaments coarsen. The struc-
ture with the smallest ϕ even disintegrates completely when
the characteristic structure size reaches twice the initial value.
Our observations on surface-transport-mediated coarsening of
network structures resembling dealloyed nanoporous metals
thereby have parallels to the findings for spinodal decompo-
sition by bulk diffusion in Ref. [29]. Yet, at ϕ < 0.36, the
present network structures exhibit substantially enhanced sta-
bility compared to the spinodal ones. It is therefore significant
that our findings are well compatible with the experimental
observations of Ref. [44] on the evolution of the scaled genus
in spinodally decomposed polymer blends.

As our study aims to explore the connectivity evolution
during coarsening of NPG, we now summarize the relevant
experimental findings on that material. We focus on the initial
stages (to L ∼ 100 nm) of coarsening. Data for the variation of
the effective Young’s modulus during coarsening of NPG with
ϕ = 0.44, 0.35, and 0.27 have been discussed, respectively,
in terms of conservation and slow loss and rapid loss of
connectivity [14,18]. The more direct analysis of tomographic
reconstructions has been discussed in terms of conserved con-
nectivity at ϕ ≈ 0.30 [15,27]. Yet, even though error bars are
significant, an initial, slow loss in connectivity—as may also
be perceived at ϕ = 0.30 in our Fig. 7—is not inconsistent
with that latter data.1 It is seen that the experimental trends
agree qualitatively with those of our simulation. In particular,
our results provide a direct confirmation of the trends inferred
more indirectly from the elasticity data of Refs. [14,18].
Furthermore, while the essentially constant connectivity in
our results for ϕ = 0.30 is consistent with the suggestion, in
Refs. [15,27], of self-similar coarsening at ϕ near 0.30, our
results also suggest that self-similarity will be strongly lost
when the solid fraction is decreased even slightly below that
value.

The link between ϕ and the variation (or not) of g dur-
ing coarsening may be qualitatively understood as the con-
sequence of a competition between the rate of ligaments
breaking and the rate at which matter is transported from
the broken ligaments onto the surviving ones [14]. Thinner
ligaments at lower ϕ are expected to undergo faster pinch-off.
Yet, for a given value of L̃, the diffusion distance to the
neighboring, surviving ligaments is independent of ϕ. The
time for redistributing the material from the broken ligaments
to the neighbors may therefore not sensitively depend on ϕ.
Thus, at any given instant, structures with lesser solid fraction

1At any ϕ, experiment indicates a slow increase of connectivity
on further coarsening, beyond L = 100nm [14,15,18]. This has been
linked to densification by spontaneous plastic deformation [14].

may contain more dangling ligaments and so effectively have
lesser connectivity.

V. CONCLUSIONS

Using leveled-wave microstructures of different solid frac-
tion ϕ as models for as-dealloyed nanoporous gold, we have
followed the evolution of the structure size and of the topology
during coarsening by surface diffusion. We find that the value
of ϕ is decisive for the evolution of the topology. Structures
with ϕ � 0.30 maintain their connectivity during coarsening,
while those with ϕ < 0.30 become more and more discon-
nected as the coarsening proceeds. This process is slow for
ϕ only little below 0.30 and it accelerates as ϕ approximates
the percolation threshold, ϕ = 0.16, of the leveled-wave
model. Earlier work on coarsening of spinodally decomposed
structures using phase-field simulation found disconnected
structures at all solid fractions below 0.36. By contrast, our
results agree with experiment in showing sensibly constant g
down to ϕ = 0.30. They are also consistent with experiments
which find that connected structures with much lesser ϕ

than 0.36 emerge from dealloying and remain load-bearing—
though with a gradual degradation of the mechanical behav-
ior that implies diminishing connectivity—during extended
coarsening.

Our results confirm suggestions [1,13,14] that the strong
dependency of the apparent strength of the ligaments in NPG
on the ligament size in some experimental studies may be
artifacts. When the ligament size is tuned by coarsening, the
connectivity will decrease and this needs to be accounted
for when computing the local strength of ligaments based on
empirical data for the effective macroscopic strength of the
network. We note that this observation is not restricted to ex-
perimental data. The connectivity of bicontinuous structures
generated by spinodal decomposition may be substantially
less than that of the leveled-wave model, which compares
favorably to experimental NPG. Numerical studies using spin-
odally decomposed structures as their microstructure model
may therefore also work with unrealistically small connectiv-
ity. The data for strength and stiffness of such studies may
therefore require verification.

Our study has implications for designing nanoscale metal
network structures as lightweight structural materials and for
the discussion of the behavior of NPG in the context of small-
scale plasticity. Good mechanical properties appear to require
structures with solid fraction at or above 0.3; lesser solid
fractions invite loss of connectivity or even disintegration.
This is of relevance because many experimental studies have
so far worked with ϕ between 0.25 and 0.30. A purposeful
selection of the solid fraction provides opportunities for im-
proved mechanical behavior in dealloying-made nanoporous
metal.
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