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Jahn-Teller reconstructed surface of the doped manganites shown by means
of surface-enhanced Raman spectroscopy
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We report direct evidence of the theoretically predicted electron-rich surface of doped perovskite manganites
Lay;7403MnO; (A = Ca, Sr) by means of surface-enhanced Raman spectroscopy. The required Au nanoparticles
were grown on top of thin manganite films by the metalorganic aerosol deposition technique, which provides
a stable oxygen atmosphere and prevents deoxygenation effects. The acquired surface-enhanced Raman
spectra of thombohedral Lag 7Sry3;MnOj thin films reveal the symmetry-forbidden Jahn-Teller stretching modes
demonstrating the predicted symmetry breaking at the surface and fallback into the orthorhombic (Pnma)
structure. This results in a unique Jahn-Teller reconstructed surface structure, which limits the capabilities of
mixed-valence manganites in spintronic applications, but will be highly favorable for catalytic reactions.

DOLI: 10.1103/PhysRevMaterials.3.060401

I. INTRODUCTION

Mixed-valence  perovskite  manganites, such as
La;_,A;MnO;3; (A = Sr, Ca), possess strong electron-spin-
lattice correlations [1,2], which result in many fundamentally
interesting and useful electronic properties. Some of them,
such as a high degree of spin polarization [3] and a
high catalytic activity [4], make manganites promising
materials for many future applications, such as tunneling
magnetoresistance (TMR) devices [5] or solid oxide fuel cells
[6]. Therefore, a detailed knowledge of the surface structure
is of crucial importance, as the electronic surface structure
determines the catalytic and fuel cell performance as well as
the spin polarization at the TMR interface.

Numerous theoretical studies have aimed at the under-
standing of the differently oriented LaMnO; surfaces [7,8],
the (001) surface of CaMnO3 [9,10], and the surface of the
hole-doped La;_,A:MnO3 (A = Ca, Sr) [11-14]. The alter-
ations at the surface compared to the bulk structure range
from large surface rumpling [7,8,13—15], over a spin flip in
the surface layer [8,12] to a charge transfer from the bulk to
the surface [11,13,14]. The latter results in the formation of
a nonmagnetic, most likely canted antiferromagnetic, insulat-
ing Mn>*-rich layer at the surface. Coaxial impact-collision
ion scattering spectroscopy on Lag7Srg3MnO; revealed a
MnO;-terminated (001) surface [16]. Photoemission studies
of Lag7Cag3MnO5 and Lag¢Cap;MnO3z showed further that
the surface termination depends also on the doping, changing
from a MnO, to a (La,Ca)O termination with decreasing x
[17]. A nonmagnetic and insulating layer at the manganite
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surface was observed by conducting atomic force microscopy
[18,19] in Lag7CapsMnO; and by x-ray magnetic circular
dichroism (XMCD) [20] as well as by x-ray resonant mag-
netic scattering (XRMS) [21,22] on Lag7Srg3MnO3 and the
layered compound Laj_5,Sr142,Mn,05. Segregation effects,
which are well known in manganite thin films [23,24], lower
the effective doping at the surface and can result in the recon-
struction of the surface layer, forming a Ruddleson-Popper-
like phase [25] or in a change of the manganese valence, as
shown in La;_,Pb,MnQO;3 [26]. In the latter case, the valence
change was attributed to the possible higher oxidation states
of Pb, compared to Sr or Ca. These extrinsic segregation
effects are related to oxygen deficiencies and thus depend on
the growth conditions, i.e., temperature and oxygen partial
pressure [27,28]. They provide a serious obstacle for the study
of manganite surfaces, since they alter the surface chemistry
significantly and, sometimes, in an irreversible way. As a re-
sult, despite an enormous experimental effort, the theoretical
predictions have yet to be proven and a mature picture of the
surface nature is missing.

Over the last 20 years, Raman spectroscopy was estab-
lished as a powerful tool to study correlated materials [29],
including mixed-valence manganites [30—32]. Numerous Ra-
man studies engaged in the correlation of the observed Ra-
man modes to the presence of Jahn-Teller (JT) distortions
in the manganite system [33,34] as well as in their rela-
tion to the metal-insulator and ferromagnetic-paramagnetic
phase transition [31,33]. In the Raman spectra, these JT
distortions, which are inherent for the orthorhombic (Pnma)
structure of the lightly doped manganites (x < 0.5), are rep-
resented by two high-frequency stretching modes at 490
and 611 cm™! [31,33]. In thombohedral Lag7Sry3MnOs, in
turn, these modes are forbidden [32,35,36], and instead the
Raman spectra are dominated by a sharp bending mode at
442 cm™'. Therefore, the appearance of the JT modes can
be used as a fingerprint of the lattice structure of the man-
ganite film. Unique Raman techniques to probe the surface
structure of manganites or other correlated oxides could be
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tip-enhanced (TERS) and/or surface-enhanced Raman spec-
troscopy (SERS), which both exploit the excitation of surface
plasmons in metallic nanostructures to enhance the Raman
signal from nearby adsorbates [37]. The strongly localized
character of the surface plasmon, i.e., its electric field E(r)sp
scales with 1/r3, limits the probing area down to a few
nanometers (dsp & 4-5 nm) [38,39], making the study of
the manganite surface by means of Raman spectroscopy in
principle possible. However, up to now only a few studies
were performed on oxides, mostly focused on nanoparticles
rather than thin films [40—42]. Moreover, to the best of our
knowledge, only one TERS study on a strongly correlated
material, the double perovskite La,CoMnOg [43], was pub-
lished, but no surface-oriented studies of the mixed-valence
manganites, La;_,A,MnOs;, were reported up to now.

In this Rapid Communication, we present a SERS study on
thin Lay7Cag3MnO3; (LCMO) and Lag 7Sry3MnO3; (LSMO)
films. While the surface Raman spectra of LCMO are en-
hanced but congruent, the surface of LSMO reveals the
dominance of two Jahn-Teller-like Raman modes. This gives
evidence for the presence of the cooperative JT effect due
to the symmetry-breaking-induced electron enrichment at the
LSMO surface.

II. EXPERIMENTAL TECHNIQUES

LSMO and LCMO films have been grown by a metalor-
ganic aerosol deposition (MAD) technique [44] on MgO(100)
substrates (Crystal GmbH). Acetylacetonates of La, Sr, Ca,
and Mn were used as precursors. The films were grown
at a substrate temperature Ty, = 950 °C with a growth rate
v = 10 nm/min and cooled down to room temperature in
15 min. The gold nanoparticles (Au-NPs) were subsequently
deposited by MAD at T, = 550-570°C, using a gold(III)
acetate precursor (Alfa Aesar, 99.9%) dissolved in dimethyl-
formamide to a concentration ¢ = 0.02 M. The solution with
a volume V =1 ml was sprayed onto the manganite film
with a deposition rate v = 0.011 ml/s. Finally, the prepared
Au-NP/LS(C)MO/MgO(100) samples were cooled down to
room temperature in 10 min. X-ray diffraction in ®-20
Bragg-Brentano geometry with Cu K,, radiation and small-
angle x-ray reflectivity measurements were performed to char-
acterize the structure and thickness of the films. Magnetic
(Magnetic Property Measurement System, Quantum Design)
and electrical four-probe characterizations (Physical Property
Measurement System, Quantum Design) were carried out for
temperatures 7 = 5-400 K. The morphology and size of the
Au-NPs were characterized via scanning electron microscopy
(SEM, Leo Supra 35). A four-lens optical reflection setup
under normal incidence, combined with a UV-VIS spec-
trometer (Maya 2000Pro USB, Ocean Optics), was used to
determine the wavelength of the surface plasmon resonance
Aspr. The Raman spectra were acquired in a backscattering
geometry with a confocal Raman microscope (LabRAM HR
Evolution, Horiba Jobin Yvon) equipped with a thermoelec-
trically cooled charge-coupled device of 1024 x 256 pixels.
A continuous-wave HeNe laser, A = 632.8 nm, with a spot
size of d < 1 um, was used and the laser power at the surface
was kept at Py = 0.65 mW during the measurement.

III. RESULTS AND DISCUSSION

Structural, electrical, and magnetic characterization of thin
LCMO and LSMO films are shown in Figs. S1.1- S1.4
in the Supplemental Material (SM) SM 1 [45] demonstrat-
ing the high quality of our thin manganite films. The esti-
mated pseudocubic lattice constants, apcymo = 3.867 A and
arsmo = 3.882 A, are very close to the corresponding bulk
values [46,47] indicating a strain-free state of the man-
ganite films on MgO(100). Electrical and magnetic mea-
surements reveal a coupled ferromagnetic-paramagnetic and
metal-insulator transition, Ty = Tc = 267 K, for LCMO and
a ferromagnetic-paramagnetic transition, 7¢c = 364 K, and
metal-metal transition, Typy = 343 K, for LSMO. After the
deposition of the Au layer, the structural, electrical, and
magnetic properties of our manganite films did not change.
This is in line with density functional theory calculations
[48] and x-ray photoemission spectroscopy measurements
[49] showing no chemical interaction between an Au layer
and the manganite surface. However, Brivio et al. observed a
drastic decrease of the Curie temperature for ultrathin films
with a thickness less than 8 nm [50]. They attributed the
observed decrease of T¢ by ~150 K for a 4-nm-thick LSMO
film to deoxygenation effects during the deposition of the Au
layer. Oxygen vacancies, strongly affecting the properties of
the manganites [51], are a well-known problem in common
thin-film deposition techniques using ultrahigh vacuum, e.g.,
pulsed laser deposition. However, the high partial oxygen
pressure, p(O,) =~ 0.2 bar, within the MAD prevents or at
least minimizes the formation of oxygen vacancies during
the deposition. This is supported by annealing experiments
done on MAD-grown Ruddleson-Popper SrO(SrTiO3), het-
erostructures [52]. To verify the stability of our films with
respect to deoxygenation effects caused by the Au deposition,
we prepared an ultrathin LSMO film, d = 12 u.c. (4.6 nm),
on a TiO,-terminated STO(100) substrate. Since the thick-
ness is much smaller than 8 nm, one could expect a strong
reduction of the 7¢ and Ty, because of deoxygenation. As
one can see in Fig. 1, only minimal changes of the transition
temperatures, ATc = 3 K and ATy = 7 K, occur, compared
to the huge decrease in previous works [50,53]. Therefore, de-
oxygenation effects are negligible in our films. SEM images
of the manganite surface show a homogeneous formation of
Au-NPs without any indication of clustering. Nevertheless,
the particle size is distributed over a rather broad range with
a mean particle size dnp = 15-16 nm [see Fig. 1(d)], as
it is common for a self-aggregated growth of nanoparticles
[54]. The reflectance of the studied Au-NP/manganite films
shows a surface plasmon resonance (SPR) around Agpr =
592-606 nm, indicated by the broad reflectance peak [45,55]
seen in Fig. 1(c).

In Fig. 2(a), the Raman spectra of thin LCMO films at room
temperature are shown. A detailed explanation of the process-
ing of the raw Raman spectra is given in SM II [45]. The
spectra are dominated by a rotational mode at 228 cm™! (Arg)
and by the two broad JT stretching modes: antistretching at
499 cm ™! (as-JT, Ag) and stretching at 609 cm ™! (s-JT, Ba,),
respectively [30,33,34]. One can also see a small contribution
of the bending mode at 438 cm ™! (Bag). The remaining modes
at 343 cm ™! (Byy) and 438 cm ™! (A},) can be also assigned to
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FIG. 1. (a) Electrical and (b) magnetic characterization of the ultrathin LSMO film (d = 12 u.c.). Slight changes of the magnetic
and electric transition temperatures infer negligible deoxygenation effects (black: LSMO; red: Au/LSMO). Reflectance measurements
(c) provide a SPR wavelength Agpr = 606 nm for LCMO (black) and Agpr = 592 nm for LSMO (red), respectively. SEM pictures of an
exemplary Au/manganite structure show the formation of Au-NPs with a mean particle size, dxp ~ 15-16 nm, obtained from the particle size

distribution (d).

the orthorhombic structure [33]. However, since the bending
mode and the JT modes play an important role in the metal-
insulator transition [30,56] and the rotational mode is sensitive
to structural changes, e.g., octahedral tilting due to doping
[57], the focus in the following discussion will be on these
four modes. A direct comparison of the “bulk” Raman spectra
and the surface-enhanced Raman (SER) spectra of LCMO
reveals only slight differences, i.e., an enhancement of the
spectra and a peak shift of the rotational mode as well as of the
JT stretching modes. Furthermore, an additional mode around
568 cm~! is observable [see Fig. 2(c)]. A simple approach to
quantify the enhancement is to calculate the intensity contrast,
C = Isgrs/Irs, with Isgrs as SER and Irs as normal Raman
intensity. The obtained intensity contrasts are summarized in
Table I. Remarkably, both stretching modes have a different
sign of peak shift Aw = wsgrs — wrs: a blueshift for the
as-JT mode and a redshift for the s-JT mode.

In contrast to LCMO, the most prominent features in the
“bulk” Raman spectra of LSMO [Fig. 2(b)] are the rotational
mode at 178 cm™! (A1g) and the bending mode at 422 cm™!

(E,), whose positions are consistent with previous observa-
tions [32,58] and lattice dynamical calculations [35]. Addi-
tionally, weak contributions of the “orthorhombic” modes at
331 and 396 cm~! and the JT modes at 470 and 630 cm~! can
be seen. Since these modes are forbidden in the rhombohedral
structure of LSMO [35,36], we assign their appearance in
the bulk spectra to a small orthorhombic distortion at the
film/substrate interface, which is in agreement with previ-
ous results [45,59,60]. The huge strain induced by the large
mismatch between the MgO(100) substrate (ameo = 4.209 A
[47]) and LSMO (apux = 3.889 A [46]) is released by the
formation of misfit dislocations, located within the first 2 nm
from the interface [47,61]. After this defect- and strain-rich
region, the film grows unstrained and almost defect free [61]
with a pseudocubic lattice constant, ag), = 3.882 10%, which is
almost identical to the bulk value. These misfit dislocations
are responsible for the observed orthorhombic distortions.
Additionally, a broad hump centered around 515 cm~! is
clearly seen in the bulk spectra of LSMO and corresponds
to an collective plasmalike excitation [62]. The SER spectra
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FIG. 2. Comparison between the “bulk” Raman spectra of (a) LCMO and (b) LSMO and (c), (d) their corresponding SER spectra. For
LCMO (c), the Au-NP deposition results in an enhancement of the Raman spectra and an additional mode around 568 cm~!. The SER spectra
of LSMO (d) show an moderate enhancement of the rotational and bending mode as well as the strong enhancement of the JT modes at 477

and 616 cm~!, indicating a Jahn-Teller distorted surface structure.

of LSMO, shown in Fig. 2(d), reveal an additional mode
at 551 cm~! and a strong enhancement of the JT modes at
477and 616 cm™!, compared to the relatively weak enhance-
ment of the rotational and bending mode (see Table I). How-
ever, this strong intensity enhancement cannot be attributed
to an enhancement of the film/substrate interface, since the
electric field of the surface plasmon decays strongly within the
film. Considering the thickness of the film, dg, = 89 nm, and
the distance dependence of the plasmonic enhancement [38],
Ix1/ r~10 the intensity enhancement at the interface would
be of the order of 10~8 compared to that of the surface. Hence,
the observed enhancement of the JT modes in the SER spectra
of LSMO is certainly a surface phenomenon. This is further
supported by the observed peak shift of the JT modes. The
absence of bonding partners at the surface causes a deviation
of the Mn-O bond length dy, o [14], which will be reflected
in the vibrational frequency. However, the redshift of the s-JT
mode in LCMO indicates a smaller dy,.0, but the blueshift
of the as-JT mode a larger dym-o [63]. Similar considerations
apply to LSMO, but here the JT modes are related to the
film/substrate interface and not the bulk structure. The dif-
ferent sign of the peak shift suggests an asymmetric change
of dym-o favoring the asymmetric stretching of the in-plane
oxygen in LCMO, but the symmetric stretching in LSMO.
The appearance of the JT-like modes at the LSMO
surface could be caused by different processes: A charge
transfer from the bulk to the surface [11] would lead to the
formation of an insulating Mn**-rich layer at the surface

TABLE 1. Intensity contrasts obtained for the different modes of
LCMO and LSMO.

Rotational Bending as-JT s-JT
LCMO 3.75 1.5 3.15 4.34
LSMO 7.35 7 34.64 30.52

in doped manganites with a hole concentration x = 0.3.
As a consequence, the crystal structure changes from the
rhombohedral (R3c) in the bulk to the orthorhombic (Pnma)
structure at the surface [14]. Since the JT modes are allowed
in this structure, the enrichment of the JT-active Mn>™ ion and
the lowering of the symmetry should lead to the appearance
of the JT modes within the insulating surface layer. Such
a symmetry lowering cannot occur in an orthorhombic
system, since it already resides in the low-symmetric stable
structure, predicted by the tolerance factor for perovskite
oxides [64]. This is supported by theoretical calculations
on orthorhombic LaMnOj [8] and CaMnO; [9,10] and in
good agreement with the observed enhancement in our SER
spectra of LCMO. Chemical effects such as segregation of
the dopant [23-25,28] are well known for doped manganites.
However, since segregation is favored by a low oxygen partial
pressure [28], these effects should be suppressed due to the
high p(O,) provided by the MAD. An enrichment of Sr/Ca
at the surface would further result in a higher effective doping
at the surface, leading thus to a reduction of the JT modes
[65] and not an enhancement. Another possible explanation
for the appearance of the JT-like modes at the LSMO surface
is the Au-NP deposition itself. X-ray absorption spectroscopy
on LSMO (d = 40 nm) with an Au-capping layer (d = 2 nm)
revealed the presence of Mn?* at the interface between the
film and capping layer [66]. Additionally, the deposition of
Au-NPs onto the surface creates an interface between the gold
and the manganite surface, which could cause the observed
symmetry breaking. However, the formation of Mn?* as well
as the artificially created symmetry breaking would impact
the Mn** /Mn** ratio and thus result in a decrease of the
transition temperature. As mentioned before, even an ultrathin
film does not show any significant changes of its properties
after the Au-NP deposition. Therefore, the formation of Mn2t
or an artificially induced symmetry breaking caused by the
Au-NP deposition is unlikely. Hence, the JT-like modes have
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FIG. 3. (a) Bulk and (b) SER spectra of CaMnOj reveal no Jahn-Teller-related Raman modes, supporting the authenticity of our LSMO

spectra and the appearance of the Jahn-Teller stretching mode.

to be an intrinsic electronic surface phenomenon or they are
related to the Au-NPs themselves.

To verify the authenticity of the appearing JT-like modes
at the LSMO surface and to exclude effects caused by the
Au-NPs themselves, we have grown orthorhombic CaMnOj3
thin films on the lattice-matched LaAlOsz (100) substrates
(see Fig. 1.5 in SM 1 [45] for plasmonic characterization).
CaMnO; shows a 60 times smaller JT distortion than the
orthorhombic LaMnOj3 and does not feature any Jahn-Teller-
related Raman modes [Fig. 3(a)] [67]. Slab calculations of
the CaMnO; surface predict only a possible change of the
magnetic order [9,10], but no electronic or structural recon-
struction, which could cause a stronger JT distortion. As one
can see in Fig. 3(b), there are no additional JT-like modes
present in the SER spectra of CaMnOs. This verifies the
authenticity of the observed JT-like modes in the SER spectra
of LSMO and excludes their appearance caused by the Au-
NPs themselves [68]. However, as in LCMO and LSMO, an
additional mode at 545 cm~! is clearly visible in the SER
spectra of CaMnQOj3 and likely will be of similar origin as the
additional surface mode in LCMO and LSMO.

Hence, we can conclude that the strong enhancement of the
JT-like modes has to be an intrinsic surface phenomenon of
the LSMO surface and that they can indeed be assigned to the
JT stretching vibrations, which are inherent to the orthorhom-
bic (Pnma) structure of the lightly doped manganites. Note
that we assume a MnO,-terminated surface of our manganite
films as observed in previous works [16,17]. But, since the
surface termination of the studied films is unknown, one has
to keep in mind that a different termination of the manganite
surface could lead to an alternative surface reconstruction
and thus to the suppression of the JT modes. Nonetheless,
we can experimentally confirm herewith the theoretically
predicted symmetry lowering at the manganite surface and
the formation of an electron-rich JT distorted surface layer
in the ferromagnetic metallic LSMO as well as the electron
enrichment at the surface of the orthorhombic LCMO.

To model the surface structure of LSMO and LCMO, we
compared the intensity contrast of the different modes (see

Table I). By keeping in mind the strong distance dependence
of the plasmonic enhancement [38], the significantly higher
contrast of the JT modes in comparison to the bending mode
can be directly linked to a stronger surface contribution of
them. Hence, the bending mode can be considered as a bulk
mode and can be taken to estimate the thickness of the Jahn-
Teller distorted surface layer. The treatment as a bulk mode is
further supported by its negligible peak shift, which would be
expected from an undisturbed structure. Using the simplified
sphere model and the |E|* approximation, the SER intensity
scales with [38]

Isgrs ~ [(1 +r/a)] ™", (1

with Isgrs the SER intensity of the Raman mode, a the radius
of curvature of the field enhancing feature of the metallic
surface, and r the distance from the metallic surface to the ad-
sorbate. Assuming the radius of curvature is given by the mean
particle size dxp &~ 16 nm, Eq. (1) yields the distance depen-
dence shown in Fig. 4. Since we consider the bending mode as
a bulk mode, the ratio n = Cpeng/Cyr represents the weakening
of the plasmonic enhancement within the whole distorted sur-
face layer. To estimate the thickness of the surface layer, one
compares the determined ratio with the distance dependence
in Fig. 4. For LSMO, the determined ratio n =~ 7/31 yields a
thickness of the surface layer, dyr &~ 7 u.c. & 2.8 nm. Similar
considerations for the modes of LCMO yield a significantly
smaller thickness djr &~ 4-5 u.c. & 1.7-2.0 nm. Both values
correspond well to the thicknesses of the insulating antiferro-
magnetic surface layer obtained from XMCD [20] and XRMS
[22]. The inset in Fig. 4 summarizes the proposed model of
the manganite surface. Note that the intensity contrast of the
rotational mode in LSMO is only slightly higher than the
contrast of the bending mode, indicating a rather bulk-related
than surface-related nature. In LCMO, however, the intensity
contrast is similar to those of the JT modes and thus will be
associated with the surface structure. As mentioned before,
this mode is sensitive to the tilting of the MnOg octahedron,
so that its blueshift suggests a change of the octahedral tilting
near the surface. However, both manganite systems show
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FIG. 4. The modeled (a) LSMO and (b) LCMO surface structure, determined from the distance dependence of the electromagnetic

enhancement due to the plasmonic excitation in the Au-NPs.

a comparable peak shift and therefore a similar octahedral
tilting. Considering that a structural transition occurs at the
LSMO surface, this is quite remarkable and, in combination
with the slightly higher contrast of the rotational mode, hints
at the presence of an intermediate layer, which accommodates
the structural transition at the surface.

Finally, we want to discuss the assignment of the additional
mode around 550-570 cm™~'. Compared to theoretical calcu-
lations [33,67], the closest mode would be the out-of-phase
stretching mode at 536 cm~' in CaMnO; and 575 cm™!
in LaMnO3 of Bj, symmetry, respectively. Although, our
backscattering geometry only allows the detection of the
Ay and B, modes, one can imagine that the symmetry
breaking at the surface and the rearrangement of the MnQOg
octahedron could result in a structural distortion at the surface
allowing the observation of B, modes. Further studies, espe-
cially from the theoretical point of view, could give insight
into the origin of the additional mode and our proposed
assignment.

IV. CONCLUSION

We have studied the surface structure of the mixed-valence
perovskite manganites by means of SERS. The SER spectra
reveal an electron-rich surface structure, which is manifested
by the dominance of the JT stretching modes. The strong
enhancement of the JT modes in LSMO was attributed to
a structural transition to the orthorhombic (Pnma) structure
at the surface, which results in a unique surface structure.
This is a direct experimental confirmation of the theoretically
predicted surface of the doped manganite with x = 0.3. The
authenticity of our SERS results obtained for the rhombohe-
dral LSMO is supported by the SER spectra of orthorhombic
LCMO and CMO.
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