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First-principles study of phonon anharmonicity and negative thermal expansion in ScF3
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The microscopic origin of the large negative thermal expansion of cubic scandium trifluorides (ScF3) is
investigated by performing a set of anharmonic free-energy calculations based on density functional theory.
We demonstrate that the conventional quasiharmonic approximation (QHA) completely breaks down for ScF3

and the quartic anharmonicity, treated nonperturbatively by the self-consistent phonon theory, is essential to
reproduce the observed transition from negative to positive thermal expansivity and the hardening of the R4+ soft
mode with heating. In addition, we show that the contribution from the cubic anharmonicity to the vibrational
free energy, evaluated by the improved self-consistent phonon theory, is significant and as important as that from
the quartic anharmonicity for robust understandings of the temperature dependence of the thermal expansion
coefficient. The first-principles approach of this study enables us to compute various thermodynamic properties
of solids in the thermodynamic limit with the effects of cubic and quartic anharmonicities. Therefore, it is
expected to solve many known issues of the QHA-based predictions particularly noticeable at high temperature
and in strongly anharmonic materials.
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I. INTRODUCTION

Negative thermal expansion (NTE) materials are useful for
technological applications and have been studied actively in
the recent two decades [1]. So far, various kinds of NTE
materials have been discovered including metal oxides [2–5],
metal fluorides [6–8], and metal-organic frameworks [9,10].
Also, NTE materials provide a route for near-zero thermal
expansion composite materials, which are desired in the field
of high-precision measurements and semiconductor devices.
The mechanism of NTE can be roughly categorized into two
types: the vibrational effect and the nonvibrational effect [11].
The former, which applies to many NTE materials, attributes
NTE to existence of phonon modes having a large negative
Grüneisen parameter [12]. Indeed, many NTE materials com-
prise rigid octahedral or tetrahedral structure units, mainly
formed by oxygen atoms, and their rotational modes often
show the pressure-induced softening.

Scandium trifluorides (ScF3) is an NTE material belong-
ing to the family of metal trifluorides [13,14], whose struc-
ture is the ReO3-type “open perovskite” (Fig. 1). Greve
et al. reported that the coefficient of the thermal expansion
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(CTE) of ScF3 is strongly negative at low temperature (αl �
−10 ppm K−1 at 200 K), and the NTE is persistent up to
∼1100 K [6]. Although the modest NTE can also be observed
in other ReO3-type structures [15,16], the magnitude of NTE
is far lower than in ScF3. Moreover, ScF3 is unique in that
it does not show a structural phase transition even at 0.38 K
[17], while the other 3d metal trifluorides transform into a
rhombohedral structure with cooling [18]. In ScF3, the R4+
soft mode, relevant to the cubic-to-rhombohedral structural
phase transition, softens with cooling but does not condensate
in the low-temperature limit, as evidenced by recent inelastic
x-ray scattering (IXS) experiments [18,19]. Since cubic ScF3

is in proximity to the rhombohedral phase at low temperatures,
the cubic-to-orthorhombic phase transition can be induced by
applying low pressure of ∼0.1 GPa at 50 K [6].

To elucidate the unique thermophysical properties of ScF3,
accurate treatment of lattice dynamics including anharmonic
effects is essential. Since the discovery of the large NTE
in ScF3, several first-principles studies based on density
functional theory have reported the CTE calculated within
the quasiharmonic approximation (QHA) [20–22]. Since the
QHA only accounts for the volume dependence of phonon
frequencies and neglects higher-order anharmonicities, how-
ever, none of these QHA results correctly reproduced the
experimental CTE values. Li et al. [20] have demonstrated that
the inclusion of quartic anharmonicity of the R4+ soft mode
is significant and essential for explaining the experimental
result. More recently, an improved treatment of anharmonic
effects either by ab initio molecular dynamics (AIMD) [23]
or by a stochastic implementation [24] of the self-consistent
phonon (SCP) theory [25] has been shown to explain
the observed CTE more quantitatively and highlighted the
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FIG. 1. Crystal structure of cubic ScF3 with space group Pm3̄m
(created with VESTA [29]). Each scandium atom is surrounded by six
fluorine atoms, which form corner-sharing octahedra. The structure
is similar to the ABX 3 cubic perovskite, but the A site is vacant.

importance of higher-order anharmonicities. Despite the suc-
cess of these numerical methods for reproducing the temper-
ature dependence of CTE of ScF3 somewhat quantitatively,
the microscopic mechanism of the large NTE is not fully
understood. In particular, the role of the quartic anharmonicity
on the CTE has not been quantified in comparison with that of
the cubic anharmonicity, which can also affect the vibrational
free energy. Therefore, an alternative approach is desired.

In this paper, we present another first-principles approach
for incorporating anharmonic effects in the vibrational free
energy beyond the QHA level. Our approach is based on the
recent implementation of the SCP theory that uses fourth-
order interatomic force constant (IFC) [26]. Since the SCP
approach can compute an anharmonic phonon quasiparticle
nonperturbatively on a dense momentum grid, thermody-
namic properties in the thermodynamic limit can be evaluated
accurately, which is essential for accurate determination of
phase boundaries [27]. By applying the method to ScF3, we
show that the inclusion of the quartic anharmonicity solves
the issue of the QHA and reproduces the experimentally
observed change from negative to positive CTE with heating.
In addition, we find that the effect of the cubic anharmonicity,
evaluated by the improved self-consistent (ISC) theory [28], is
equally important and compensates the overcorrection made
by the SCP theory.

This paper is organized as follows. First, we introduce
the theoretical methods to incorporate anharmonic effects in
vibrational free energy in Sec. II. We then describe computa-
tional and technical details of the DFT calculation in Sec. III.
In Sec. IV B, we demonstrate the limitation of the QHA theory
in ScF3, which can be resolved by more accurate treatment
of anharmonic effects as shown in Sec. IV C. Moreover, we
discuss the temperature dependence of the R4+ soft mode in
Sec. IV E. Finally, a concluding remark is made in Sec. V.

II. VIBRATIONAL FREE ENERGY

The Helmholtz free energy of a nonmetallic system is
expressed as a function of the volume of the unit cell V and

temperature T ,

F (V, T ) = Eel(V ) + Fvib(V, T ), (1)

where Eel(V ) is the static internal energy of electrons obtained
by a first-principles calculation and Fvib(V, T ) is the vibra-
tional free energy. Assuming that the lattice vibration is well
described by thermal excitation of phonons, we examine the
behavior of Fvib(V, T ) with the three levels of approximation
in this study: the QHA, SCP theory, and ISC theory. Once
the free energy is obtained at various volumes, the F (V, T )
curve is fitted by the equation of state (EOS) to estimate an
equilibrium volume at each temperature. By repeating the
procedure at different temperatures, we can obtain the volume
thermal expansion αv(T ) = 1

V ( ∂V
∂T )P. For isotropic systems,

the CTE is equal to 1
3αv.

For the sake of brevity, we use the shorthand notation of
q = (q, j) and −q = (−q, j), where q is the phonon momen-
tum and j is the phonon branch index.

A. Quasiharmonic theory

The quasiharmonic (QH) theory is the standard approxi-
mation of Fvib(V, T ), in which the vibrational free energy is
given as

F (QH)
vib (V, T ) = 1

β

∑
q

ln

[
2 sinh

(
1

2
β h̄ωq(V )

)]
. (2)

Here, β = 1/kT with the Boltzmann constant k, and ωq(V )
is the phonon frequency at volume V obtained within the
harmonic approximation (HA). While the anharmonic effect
is partially incorporated via the volume dependence of ωq(V ),
the QHA completely neglects the intrinsic anharmonic effects
which are responsible for making the temperature dependence
of phonon frequencies. Nevertheless, the QH theory turns out
to be a good approximation at temperatures far below the
melting point and has been employed to predict the thermal
expansivity and phase boundary of various materials based
on DFT. When the temperature reaches the melting point or
the structure is strongly anharmonic, the QHA is less reliable.
Moreover, the QHA is not valid for cases where phonon
modes become unstable within the HA as will be discussed
in Sec. IV B.

B. Self-consistent phonon theory

The SCP theory is one of the most successful approaches
for calculating the temperature dependent phonon frequencies
nonperturbatively [25,26]. In this method, we assume the
existence of effective harmonic phonon frequency �q (�2

q �
0) and polarization vector εq, with which we can define an
effective harmonic Hamiltonian H0 as

H0 = 1

2

∑
q

h̄�qAqA†
q. (3)

Here, Aq = aq + a†
−q is the displacement operator with a†

q and
aq being creation and annihilation operators of SCP, respec-
tively. In the first-order SCP theory, the renormalized phonon
frequencies and eigenvectors {�q, εq} are determined so that
the vibrational free energy within the first-order cumulant ap-
proximation is minimized. Let Fvib denote the vibrational free
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energy of an anharmonic system described by Hamiltonian
H = H0 + U2 + U3 + · · · [see Eq. (A2)] and F ′

vib denotes the
free energy with the first-order cumulant approximation, the
following inequality then holds:

Fvib � F ′
vib = F0 + 〈H − H0〉H0

. (4)

Here, F0 = − 1
β

log Z and 〈X 〉H0
= Z−1Tr(X e−βH 0 ) with

Z = Tr(e−βH0 ) the partition function and β = 1/kT . It is
straightforward to show that F ′

vib is given as follows:

F ′
vib = 1

β

∑
q

ln

[
2 sinh

(
1

2
β h̄�q(V, T )

)]

+ 1

2

∑
q

[(
C†

q�(HA)
q Cq

)
j j

− �2
q(V, T )

]
αq

+ 1

8

∑
q,q′

�(SCP)(q; −q; q′; −q′)αqαq′ , (5)

where �(HA)
q = diag(ω2

q1, . . . , ω
2
q j ) and αq = h̄

2�q
[1 +

2n(�q)] with n(ω) being the Bose-Einstein distribution
function. �(SCP)(q; −q; q′; −q′) is the fourth-order IFC in
the normal coordinate basis of the SCP. For the detailed
expression, see Appendix A. From the condition of ∂F ′

vib
∂�q

= 0

and ∂F ′
vib

∂C†
q

= 0, we obtain the first-order SCP equation as

�2
q = (

C†
q�(HA)

q Cq
)

j j + 1

2

∑
q′

�(SCP)(q; −q; q′; −q′)αq′ .

(6)
Since the anharmonic interaction is relatively short-range
compared with the harmonic one, it is sufficient to solve
the above equation on an irreducible set of q points that are
commensurate with an employed supercell. Once the change
of the dynamical matrix 	D(q) = D(SCP)(q) − D(HA)(q) is
obtained on these grids, 	D(q) can be interpolated to arbitrary
q points by the Fourier interpolation [26].

In Eqs. (5) and (6), we neglected the sixth- and higher-
order anharmonic terms assuming that their effects are far
smaller than the dominant fourth-order term. With this as-
sumption, the third term in Eq. (5) can be removed by using
Eq. (6) as

F (SCP)
vib (V, T ) = 1

β

∑
q

ln

[
2 sinh

(
1

2
β h̄�q(V, T )

)]

− 1

4

∑
q

[
�2

q(V, T ) − (
C†

q�(HA)
q Cq

)
j j

]
αq.

(7)

Hence evaluating the anharmonic free energy F (SCP)
vib (V, T )

in the thermodynamic limit is feasible owing to the inter-
polation technique, which is hardly achievable by the ther-
modynamic integration based on AIMD. The first term in
Eq. (7) corresponds to the QH contribution [Eq. (2)] but the
harmonic frequency is replaced with the SCP frequency. The
second term is a correction necessary to satisfy the correct
thermodynamic relationship S = −dF/dT [30], where the
entropy is given as S = k

∑
q[(nq + 1) ln(nq + 1) − nq ln nq]

with nq = n(�q). When the anharmonic effect is small, we

can assume �q ≈ ωq + 	q and Cq,i j ≈ δi j . Then, we obtain
the small perturbation limit of Eq. (7) as

F (PT)
vib (V, T ) = 1

β

∑
q

ln

[
2 sinh

(
1

2
β h̄�q(V, T )

)]

− h̄

2

∑
q

	q

(
nq + 1

2

)
. (8)

This result is the same as the one reported by Allen [30].
In this study, we always use Eq. (7) because it is more
generalized and even applicable to systems where unstable
(imaginary) phonon modes exist within the HA.

C. Improved self-consistent phonon theory

The SCP theory accounts for the quartic anharmonicity
nonperturbatively but neglects the effect of the cubic anhar-
monicity. The ISC theory [28] accounts for the additional
three-phonon term perturbatively as

F (ISC)
vib (V, T ) = F (SCP)

vib (V, T ) + F (B)
vib (V, T ), (9)

where F (B)
vib (V, T ) is the Helmholtz free energy from the

bubble diagram [26], associated with the cubic anharmonicity,
given as

F (B)
vib (V, T )=− h̄2

48

∑
q1,q2,q3

∣∣�(SCP)(q1; q2; q3)
∣∣2

�q1�q2�q3

	(q1+q2+q3)

×
[

(1 + n1)(1 + n2 + n3) + n2n3

�q1 + �q2 + �q3

+ 3
n1n2 − n2n3 + n3n1 + n1

−�q1 + �q2 + �q3

]
. (10)

Here, we simply denote n(�qi ) as ni and 	(q) = Nqδq,mG

with any integer m. In the calculation of F (B)
vib (V, T ), we use

the SCP lattice dynamics wave function instead of those
within the HA. Previous numerical studies using empirical
model potentials showed that the ISC theory could describe
various thermodynamic properties of copper [31] and noble-
gas solids [28,32] accurately in a wide temperature range. In
this study, we evaluate all the components entering the free
energy with fully nonempirical first-principles calculation.

The bubble free energy is theoretically related to the bubble
self-energy �(B)

q (iωm) as

F (B)
vib (V, T ) = − 1

6β

∑
q

∑
m

G(SCP)
q (iωm)�(B)

q (iωm), (11)

where ωm = 2πm/β h̄ is the Matsubara frequency,
G(SCP)

q (iωm) = (iωm + �q)−1 − (iωm − �q)−1 is the SCP
Green’s function, and

�(B)
q (iωm) = 1

16

∑
q1,q2

h̄|�(SCP)(−q; q1; q2)|2
�q�q1�q2

×	(−q + q1 + q2) f (1, 2, iωm), (12)

f (1, 2, iωm) =
∑

σ=−1,1

σ

[
1 + n1 + n2

iωm + σ (�q1 + �q2 )

− n1 − n2

iωm + σ (�q1 − �q2 )

]
. (13)
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The ISC Green’s function G(ISC)
q (ω) defined as

[
G(ISC)

q (ω)
]−1 = [

G(SCP)
q (ω)

]−1 − �(B)
q (ω) (14)

provides information of lattice dynamics in the same ap-
proximation level as Eq. (9). Equation (14) can be used to
calculate the phonon spectral function with the effects of
cubic and quartic anharmonicities, as demonstrated in cubic
SrTiO3 [33], and the imaginary part of �(B)

q (�q) is essential
for thermal conductivity calculations [26,33,34].

Although the ISC theory is computationally more costly
than the SCP theory because of the triplet (q1, q2, q3) loop
in Eq. (10), its computational complexity is the same as
that of thermal conductivity calculations with three-phonon
interactions, which has been applied to various materials so
far including relatively complex ones. Therefore, we expect
the ISC is feasible even for complex systems. Moreover, for
high-symmetry structures such as ScF3, we can drastically
reduce the computational cost by utilizing the symmetry of
�(q; q1; q2) [35].

III. COMPUTATIONAL DETAILS

A. DFT calculation

We employed Vienna ab initio simulation package
(VASP) [36] for calculating the electron states of ScF3, which
implements the projector augmented wave (PAW) [37,38]
method. The adopted PAW potentials treat Sc 3s23p63d14s2

and F 2s22p4 as valence states [39]. A kinetic energy cutoff
of 700 eV and the 12 × 12 × 12 Monkhorst-Pack k-point
mesh were employed. The self-consistent field loop was con-
tinued until the total electronic energy change between two
steps became smaller than 10−8 eV. To investigate the influ-
ence of the exchange-correlation functional, we adopted the
local-density approximation (LDA), Perdew-Burke-Ernzerhof
(PBE) [40] functional, and a variant of PBE optimized for
solids (PBEsol) [41].

B. Force constant calculation

To compare the vibrational free energy within the different
levels of approximation, either the QH, SCP, or ISC theory, it
is necessary to extract second-, third-, and fourth-order IFCs
from first-principles calculations. To this end, we employed
the real-space supercell method with the 2 × 2 × 2 supercell
(32 atoms), which is sufficiently large to allow the out-of-
phase tilting motion of fluorine octahedra. To extract second-
order IFCs, an atom in the supercell was displaced from its
equilibrium site by 0.01 Å and the Hellmann-Feynman forces
were calculated for the displaced configuration. From the data
sets comprising the displacements and forces, we estimated
the second-order terms by the least-squares fitting [42], as
implemented in the ALAMODE [43,44] package. To check the
convergence of the calculation, we changed the supercell size
to 4 × 4 × 4 (256 atoms) and calculated the second-order
terms. However, the calculated F (QH)

vib (V, T ) was almost unal-
tered by this change, thus validating the use of the 2 × 2 × 2
supercell.

The anharmonic IFCs were extracted by using the com-
pressive sensing lattice dynamics method [45]. Following the
prescription given in Refs. [26,45], we generated 60 random
displacement patterns from the trajectory of AIMD at 500 K
and calculated atomic forces for these patterns. We then
fitted the Taylor expansion potential (TEP) [26] by using
the least absolute shrinkage and selection operator (LASSO)
with a regularization parameter optimized through the cross
validation. The adopted TEP includes anharmonic terms up to
the sixth order; the fourth-order IFCs are restricted to on-site,
two-body, and three-body terms and the higher-order IFCs are
restricted to on-site and two-body terms. We also verified the
accuracy of the obtained TEP for independent test data sets.
In the LASSO regression step, we fixed the second-order IFCs
to the precalculated values and optimized the anharmonic
terms only.

C. Calculation of phonons and CTE

The SCP equation [Eq. (6)] was solved using a numerical
algorithm of Ref. [26], as implemented in the ALAMODE

code. The q mesh of the SCP was set to 2 × 2 × 2, which
is commensurate with the supercell size, and the inner q′
mesh was increased up to 8 × 8 × 8 to achieve convergence of
anharmonic phonon frequencies. After the solution to the SCP
equation was found, we converted the effective dynamical
matrices at the commensurate q points into the real-space
effective second-order IFCs, which was then used to calculate
anharmonic phonon frequencies at a denser q-point grid for
Eqs. (7) and (10). For the calculation of the vibrational free en-
ergy, we employed 20 × 20 × 20 q point, which was sufficient
to reach convergence. In all of the phonon calculations, the
nonanalytic correction to the dynamical matrix was included
by using the Ewald’s method [46] with the dielectric tensor
and Born effective charges obtained from density functional
perturbation theory (DFPT) [47] calculations.

To calculate the CTE of ScF3, we changed the lattice con-
stant from the optimized value from −0.05 Å to +0.02 Å in
steps of 0.005 Å and repeated the procedure described above
and in Sec. III B. The lattice constants and Bulk modulus
at finite temperature were estimated by fitting the obtained
F (V, T ) curves with the Birch-Murnaghan EOS [48], as im-
plemented in ASE [49].

IV. RESULTS AND DISCUSSIONS

A. Ground state structural property

Table I shows the equilibrium lattice constant a0 and bulk
modulus of ScF3 calculated from Eel(V ), which are compared
with previous experimental and computational results. All of
the adopted functionals give a0 values close to the experi-
mental results of Greve et al. [6] within an error of ∼1%.
Among the three functionals, PBEsol best reproduces the
experimental result with deviation as small as 0.1%. In con-
trast, the bulk modulus estimated from Eel(V ) overestimates
the experimental value at 300–500 K [50], in accord with
the previous computational studies [21,23]. This indicates the
essential role of lattice vibration in determining B0, which will
be discussed further in Sec. IV C.
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TABLE I. Comparison of calculated and experimental lattice
constant and bulk modulus of ScF3.

LDA PBE PBEsol Expt.

a0 (Å)
Present 3.986 4.074 4.031 4.026a

Ref. [21] 4.069
Ref. [23] 4.037
B0 (GPa)
Present 106 89 96 ∼60b

Ref. [21] 89
Ref. [23] 97

aReference [6], T = 0 K.
bReference [50], T = 300–500 K.

B. Volume dependent phonon frequency
and breakdown of QHA

In this section, we demonstrate the breakdown of the QHA
in ScF3. Figure 2 compares phonon dispersion curves along
high-symmetry lines calculated with LDA, PBE, and PBEsol
at volumes close to their equilibrium values. In ScF3, two soft
modes exist: the triply degenerate R4+ mode and the M3+
mode. Along the high-symmetry line M-R, the soft mode
shows almost no dispersion. Also, the soft mode is unstable
at the equilibrium volume within LDA.

The frequencies of the soft modes sensitively change with
the volume as shown in Fig. 3. The frequency of the R4+ soft
mode increase sharply with increasing the cell volume, which
represents a large negative mode Grüneisen parameter γq =
− V

ωq

∂ωq

∂V as pointed out in the previous theoretical work [20].
Assuming that all phonon modes are stable, the CTE is
given as

αv(T ) = Cvγ

BT V
, (15)

γ =
∑

q cqγq∑
q cq

, (16)

where Cv, BT , γ , and cq are the isothermal heat capacity,
isothermal bulk modulus, the average Grüneisen parameter,
and the mode-specific heat, respectively. Therefore, the NTE
originates from a negative γ , which in turn can be attributed
to the large negative γq of the low-frequency soft mode whose
thermal weight cq is relatively large in a low-temperature
region.

To estimate the CTE quantitatively, we need to calculate
Eq. (15) or (2) from phonon frequencies. When an unstable
mode exists, however, these equations must not be used.
One may naively expect that using F (QH)

vib (V, T ) only with
stable phonon modes gives a reasonable estimate. However,
such a simple treatment produces an irregular oscillation of
F (QH)

vib (V, T ) curve which affects the accuracy of the EOS
fitting. The same discussion has also been made by Lan
et al. [51]. Therefore, within the QH theory, we argue that
the EOS fitting should be performed only with the volumes
where all phonon modes are stable. By this principle, we
calculated the CTE with the three functionals. As shown in
Fig. 4, the CTE as well as the lattice constant keep decreasing

Γ X M Γ R X|M R

0

20

40

60

80

F
re

qu
en

cy
(m

eV
)

LDA PBE PBEsol

FIG. 2. Comparison of harmonic phonon dispersion curves cal-
culated with the lattice constants close to the optimized values: 3.985,
4.075, and 4.030 Å for LDA, PBE, and PBEsol, respectively.

with increasing the temperature. Above ∼300 K, the EOS
fitting failed because of the lack of valid free-energy data
points in the small volume region. In Fig. 4, we also compare
our results with the previous QHA results [20,21], showing
noticeable disagreement. While we cannot identify the origin
of the disagreement, it can likely be attributed to the difference
in the treatment of unstable phonon modes and the details of
DFT calculation. Indeed, when we performed the EOS fitting
with including the incorrect F (QH)

vib (V, T ) data in the small
volume region, we obtained the temperature dependence of
CTE similar to the result of Ref. [21].

C. Inclusion of anharmonic free energy

The SCP theory can circumvent the limitation of the QHA
mentioned above because it can stabilize the unstable soft
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FIG. 3. Volume dependence of the phonon frequency of the R4+

soft mode. The imaginary frequencies are shown as negative values.
The filled symbols indicate the volumes corresponding to the results
shown in Fig. 2.
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FIG. 4. CTE calculated within the QHA compared with the
experimental results [6] and the previous QHA results [20,21].

mode by the Debye-Waller type renormalization. Since the
SCP assumes the existence of well-defined phonon modes
(�2

q > 0), the SCP equation (6), if converged, always gives

stable phonons. Therefore, F (SCP)
vib (V, T ) can be evaluated even

when an unstable mode exists within the HA. Besides, it is
straightforward to include the additional correction term from
the cubic anharmonicity by evaluating Eq. (10) on top of the
SCP solution.

To quantify the effect of quartic and cubic anharmonicities,
we first investigate the volume and temperature dependence of
the anharmonic free energies as shown in Fig. 5. The anhar-
monic free energy correction based on the SCP is defined as

	F (SCP)
vib (V, T ) = F (SCP)

vib (V, T ) − F (QHA)
vib (V, T ), (17)

which can be defined only when all phonon modes are stable
within the HA. As shown in Fig. 5(a), the 	F (SCP)

vib (V, T )
value of ScF3 is positive and decreases gradually as the cell
volume increases. Therefore, a larger unit-cell volume system
is relatively more stabilized by the quartic anharmonicity.
On the other hand, the correction from the bubble diagram
F (B)

vib (V, T ) is negative and shows an opposite volume de-
pendence. The sign of the total correction 	F (SCP)

vib (V, T ) +
F (B)

vib (V, T ) is positive in most of the studied volumes, but it
becomes negative in the large volume systems as noticeable in
the PBE results. Our result thus shows the importance of the
anharmonic correction not only from the quartic anharmonic-
ity but also from the cubic one, which compete with each
other.

Figure 6 shows the temperature-dependent CTE and bulk
modulus calculated within the SCP and ISC theories. The
SCP theory correctly reproduced the positive sign of the
CTE observed in the high-temperature region. However, the
temperature at which the sign change occurs was around
400–500 K, which underestimates the experimental value of
∼1100 K. This underestimation was partially cured by the
correction from the bubble diagram, and the sign change tem-
perature became ∼600–800 K. Considering the fact that the
CTE is sensitive to the exchange-correlation functional and

60 62 64 66 68

Volume (Å3)
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FIG. 5. Anharmonic free-energy correction 	F (SCP)

vib (V, T )
[Eq. (17)] and F (B)

vib (V, T ) [Eq. (10)]; (a) volume dependence at
600 K and (b) temperature dependence for PBEsol with a = 4.025 Å.

pseudopotentials, the agreement between our ISC results with
the experimental CTE of Greve et al. [6] is reasonable. We
expect that adopting a hybrid exchange-correlation functional
and/or treating the effect of the bubble diagram fully self-
consistently would improve the prediction accuracy, which are
left for future study.

We also calculated the mean square relative displacement
(MSRD) of the nearest Sc-Sc and Sc-F pairs from the SCP
lattice dynamics wave function. Let 	u = ui − u j denote
the difference of the instantaneous thermal displacements of
two involving atoms; the parallel (perpendicular) MSRD is
defined as MSRD‖(⊥) = 〈	u2

‖(⊥)〉, where 	u‖(⊥) is the pro-
jection of 	u along the axis parallel (perpendicular) to the
bond direction. The calculated MSRD‖ values for the Sc-Sc
and Sc-F were rather similar, whereas the MSRD⊥ value of
the Sc-F pair was much larger than that of the Sc-Sc pair. The
anisotropy of the MSRD defined as γ = MSRD⊥/MSRD‖
was quite large for the Sc-F pair and amounted to γ ∼ 16 in
the high-temperature range. All of these results are in reason-
able agreement with the experimental data of Hu et al. [52],
where the MSRD anisotropy of the Sc-F bond is reported as
γ ∼ 19. Moreover, we estimated the average bond length r
from the perpendicular MSRD as [53]

r = R0 + 〈	u2
⊥〉

2R0
, (18)

where R0 is the bond length at absolute rest. For the nearest
Sc-Sc pair, the r value shows the temperature dependence
similar to that of the lattice constant a since the second term
of Eq. (18) is much smaller than the first term, as shown in
Fig. 7 (lower panel). By constrast, the r value of the nearest
Sc-F increases monotonically with heating owing to the large
perpendicular MSRD factor in the second term (Fig. 7, upper
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FIG. 6. (a) CTE and (b) isothermal bulk modulus calculated within the SCP and ISC theories compared with the experimental results of
Greve et al. [6] and Morelock et al. [50]. The DFT-MD result of Lazar et al. [23] obtained within PBE is also shown for comparison.

panel). These trends are in accord with the findings of the
previous MD and experimental studies [23,52,54].

The bulk modulus calculated from the Helmholtz free en-
ergy is smaller than that of the static DFT result and decreases
weakly with increasing the temperature as shown in Fig. 6(b).
Also, we see that the inclusion of the cubic anharmonicity
by the ISC theory reduces the bulk modulus and improves
the agreement with the experimental data [50]. In the high
temperature region above 750 K, our ISC result within PBE
agrees well with the previous MD result based on PBE [23].
However, in the low temperature region, our prediction tends
to overestimate the experimental bulk modulus by ∼10 GPa.
The disagreement between our results and the previous ex-
perimental and MD studies in the low-temperature region can
likely be attributed to the thermally induced distortions of the
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(Å

)

rSc−Sc

a

0 200 400 600 800 1000 1200 1400

2.00

2.02

2.04

r S
c−

F
(Å
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FIG. 7. Upper panel: temperature dependence of the average
bond length r between the nearest Sc-F pair. Lower panel: temper-
ature dependence of the lattice constant a and the average distance
r between the nearest Sc-Sc pair. All values were calculated within
LDA. The temperature dependence of the a value was obtained from
the ISC free energy and the perpendicular MSRD at each temperature
was calculated from the SCP lattice dynamics wave function.

cubic phase in the vicinity of the cubic-to-rhombohedral phase
transition [23].

D. Quantum effect on CTE

Next, we discuss the nuclear quantum effects on the CTE of
ScF3. Our theoretical approaches described in Sec. II correctly
account for the effects of the zero point motion, which are
neglected in classical AIMD simulations. Since AIMD is
one of the most powerful tools to study thermal expansion
of materials, it should be meaningful to understand how the
quantum effect can affect the CTE quantitatively.

To quantify the nuclear quantum effects based on the SCP
and ISC theories, we derived the formulas of the Helmholtz
free energy in the classical limit (see Appendix B) and
employed them to evaluate the CTE of ScF3 within the
classical approximation. We then found that the classical
theory systematically underestimated the magnitude of the
NTE in the entire temperature range, which was particularly
noticeable below ∼500 K as shown in Fig. 8. Consequently,
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FIG. 8. Comparison of the thermal expansion coefficients calcu-
lated by using the quantum and classical SCP theories. The quantum
SCP theory [Eq. (7)] correctly accounts for the nuclear quantum
effects, whereas the classical SCP theory [Eq. (B2)] neglects it.
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volume. (b) The calculation is conducted with the lattice constant
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as (b) but the classical approximation is made.

the transition temperature from negative to positive CTE was
also underestimated by ∼100 K irrespective of the employed
exchange correlation potential. Above ∼800 K, the results
based on the quantum and classical statistics are almost the
same. These results clearly evidence the non-negligible con-
tribution of the nuclear quantum effect to the CTE of ScF3

below ∼500 K, where the usage of the classical AIMD is not
justfied.

E. Temperature dependence of soft mode frequency

Finally, we discuss the influence of quartic and cubic an-
harmonicities on the frequency of the R4+ soft mode. Figure 9
shows the temperature dependence of the squared phonon
frequency of the R4+ soft mode calculated with the PBEsol
functional. The results shown in Fig. 9(a) were calculated
with the equilibrium lattice constant of the ISC calculation,
and the ISC phonon frequency was calculated by �(ISC)

q =
[�2

q + 2�q	
(B)
q (�q)]

1
2 , where 	(B)

q (ω) = −Re�(B)
q (ω). The

harmonic and anharmonic IFCs at these new volumes were
obtained by linearly interpolating the values calculated at
the nearest two volumes. As shown in the figure, the QHA
frequency softens as a function of temperature because of
the NTE and the negative Grüneisen parameter. This tem-
perature dependence is opposite to the IXS results [18,19].
The hardening of the soft mode frequency can be reproduced
only by the SCP and ISC theories. Unfortunately, however, the
SCP and ISC phonon frequencies systematically overestimate
the experimental values. Since the frequency is sensitive to
the adopted volumes, the deviation may be mitigated by im-
proving the agreement of the PBEsol and experimental lattice
constants. To examine this point, we adjusted the external
pressure P in such a way that the PBEsol lattice constant
agrees with the experimental result at 0 K, resulting in P ≈
0.7 GPa. Then, the agreement was improved considerably
as shown in Fig. 9(b). In the low-temperature limit, the ISC
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FIG. 10. Mode-dependent contribution to the quartic renormal-
ization of the R4+ soft mode at 0 K. The open circle shows the
contribution from phonon mode q′ and the dotted line shows its
cumulative value. The inset shows the displacement patterns of the
phonon modes having large positive and negative quartic interaction
with the R4+ soft mode.

result best agrees with the IXS results, while the SCP theory
well explains the slope of the hardening. The IXS data lies
in between the SCP and ISC results in Fig. 9(b). This may
indicate the necessity of fully self-consistent treatment of the
cubic and quartic anharmonicities, which is left for a future
study.

It is interesting to observe in Figs. 9(a) and 9(b) that the
SCP frequency is smaller than the QHA result near ∼0 K,
meaning that the quartic anharmonicity decreases the soft
mode frequency. This behavior seems to contradict with the
large positive quartic potential of the R4+ mode [20], which
must harden the frequency. To understand this unusual behav-
ior, we investigated the mode-dependent contribution to the
quartic renormalization �(SCP)(q; −q; q′; −q′)αq′ [see Eq. (6)]
for q = R4+ and q′ on the 8 × 8 × 8 uniform grid. Figure 10
shows the mode dependence of �(SCP)(q; −q; q′; −q′)αq′ at
0 K. The quartic coupling is strongly positive in the low-
frequency phonon modes, which are the rigid unit motion of
the fluorine octahedra, in accord with the previous numerical
evaluation [20]. In contrast, the coupling coefficients are
negative for high-frequency optical modes in 40–80 meV,
which are mostly dominated by the vibration of fluorine atoms
as shown in the inset of the figure. Since the total negative
contribution is slightly larger than the total positive one, the
SCP frequency becomes smaller than that of the QHA at
0 K. With increasing the temperature, the factor αq′ increase
more rapidly for low-frequency phonon mode, and the total
contribution becomes positive around 60 K [see Fig. 9(a)]. We
note that this unique phenomenon results from the zero-point
motion of atoms. If we replace nq with nq − 1

2 in Eqs. (6)
and (12), the SCP frequency is larger than the QHA frequency
irrespective of the temperature as shown in Fig. 9(c).

V. CONCLUSION

We investigated the role of the cubic and quartic an-
harmonicities in the large NTE of cubic ScF3 by using
many-body theoretical approaches based on first-principles
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anharmonic force constants. We showed that the quartic
anharmonicity, which was included by the SCP theory, is
essential to reproduce the observed transition from negative to
positive CTE as heating. In addition, we newly found that the
inclusion of the cubic anharmonicity, which was achieved by
the ISC theory, improves the quantitative agreement between
theoretical and experimental thermal expansivities. Therefore,
both cubic and quartic anharmonicities are equally important
for a quantitative understanding of the unusually large NTE of
ScF3. Moreover, we calculated the temperature dependence
of the R4+ soft mode within the SCP and ISC theories and
obtained results that agree semiquantitatively with the IXS
data, particularly when the experimental lattice constant is
employed. We showed that the R4+ mode softens by the
quartic anharmonicity near 0 K, and revealed that it results
from the zero-point vibration of atoms and the negative quartic
coupling between the R4+ mode and high-frequency optical
modes.

The present first-principles approach enables us to obtain
the vibrational free-energy of solids with the effects of the
nuclear zero-point motion, cubic and quartic anharmonicities,
and it is even applicable to systems where unstable phonon
modes exist within the HA (e.g., high-temperature phase of
solids). Since the method is based on the reciprocal space
formalism, thermodynamic properties in the thermodynamic
limit can be calculated efficiently by using the interpolation
technique, which is particularly important for a computational
estimation of CTE and phase boundaries.
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APPENDIX A: TAYLOR SERIES EXPANSION
OF POTENTIAL ENERGY

If the atomic displacements are small compared with the
interatomic distance, the potential energy of the interacting
atomic system can be expanded in a power series of the
displacements u(st ) = R(st ) − R0(st ) as

U = U0 + U2 + U3 + U4 + · · · , (A1)

where

Un = 1

n!

∑
{s,t,μ}

�μ1···μn (s1t1; · · · ; sntn)

× uμ1 (s1t1) · · · uμn (sntn). (A2)

Here, μ = x, y, z and uμ(st ) is the displacement of atom s
in the t th cell. The coefficient �μ1···μn (s1t1; · · ·; sntn) is the
nth-order derivative of U with respect to atomic coordinates,
which is called nth-order interatomic force constant (IFC).

Next, we introduce the complex normal coordinate Qq, with
which the atomic displacement is expressed as

uμ(st ) = (NMs)−
1
2

∑
q

Qqeμ(s, q)eiq·r(t ). (A3)

By substituting Eq. (A3) for Eq. (A2), we obtain Un expressed
in terms of the normal coordinate as follows:

Un = 1

n!

∑
{q}

	(q1 + · · · + qn)�(q1; . . . ; qn)Qq1 · · · Qqn ,

(A4)

where

�(q1; . . . ; qn)

= N1− n
2

∑
{s,μ}

eμ1 (s1, q1) · · · eμn (sn, qn)√
Ms1 · · · Msn

×
∑
t2···tn

�μ1···μn (s10; · · · ; sntn)ei[q2·r(t2 )+···+qn·r(tn )]. (A5)

When phonon frequencies of all phonon modes are real in
the entire Brillouin zone, one may further transform Eq. (A4)
into a second quantization representation by using Qq =
(h̄/2ωq)1/2Aq with Aq = bq + b†

−q being the displacement
operator.

In Eqs. (A3)–(A5), we have introduced Un expressed in
terms of the normal coordinate Qq within the HA. Instead of
using the harmonic eigenvectors, one can also use the SCP
eigenvectors and associated normal coordinates Q̃q for Un as

Un = 1

n!

∑
{q}

	(q1 + · · · + qn)�(SCP)(q1; . . . ; qn)Q̃q1 · · · Q̃qn .

(A6)

Since the SCP eigenvector is a unitary transformation of the
harmonic one, i.e., εμ(s, q j) = ∑

k eμ(s, qk)(Cq)k j , it is easy
to show that the following transformation rule holds:

�(SCP)(q1 j1; . . . ; qn jn) =
∑
{k}

(Cq)k1 j1 · · · (Cq)kn jn

×�(q1k1; . . . ; qnkn). (A7)

APPENDIX B: SCP THEORY AND VIBRATIONAL FREE
ENERGY IN THE CLASSICAL LIMIT

In the classical limit (h̄ → 0), the Bose-Einstein distri-
bution function nB(ω) = 1/(eβ h̄ω − 1) can be replaced with
nC(ω) = 1/β h̄ω, and the constant terms appearing with nC(ω)
can be omitted because they are negligible compared with
nC(ω). By this systematic modification, the free-energy ex-
pressions in the classical limit can be obtained straightfor-
wardly. The QH free energy is given as

F (QH,CL)
vib (V, T ) = 1

β

∑
q

ln (β h̄ωq). (B1)

The original SCP equation [Eq. (6)] is still valid in the
classical limit, but the temperature dependent factor αq must
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be replaced with αC
q = h̄nC(�q)/�q = 1/(β�2

q ). Then, the
SCP free energy becomes

F (SCP,CL)
vib (V, T ) = 1

β

∑
q

ln (β h̄�q)

− 1

4

∑
q

[
�2

q(V, T ) − (
C†

q �(HA)
q Cq

)
j j

]
αC

q .

(B2)

The ISC free energy [Eq. (9)] has first and second order terms
with respect to ni in the numerator, where ni = nB(�i ). In

the classical limit, the first order terms can be neglected and
nB(�i ) is approximated to the classical form n′

i = nC(�i ).
Therefore, we obtain

F (B,CL)
vib (V, T )

= − h̄2

48

∑
q1,q2,q3

|�(SCP)(q1; q2; q3)|2
�q1�q2�q3

	(q1 + q2 + q3)

×
[

n′
1(n′

2 + n′
3) + n′

2n′
3

�q1 + �q2 + �q3

+ 3
n′

1(n′
2 + n′

3) − n′
2n′

3

−�q1 + �q2 + �q3

]
.

(B3)
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