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Height of a faceted macrostep for sticky steps in a step-faceting zone
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The driving force dependence of the surface velocity and the average height of faceted merged steps, the
terrace-surface slope, and the elementary step velocity are studied using the Monte Carlo method in the
nonequilibrium steady state. The Monte Carlo study is based on a lattice model, the restricted solid-on-solid
model with point-contact-type step-step attraction (p-RSOS model). The main focus of this paper is a change of
the “kink density” on the vicinal surface. The temperature is selected to be in the step-faceting zone [N. Akutsu,
AIP Adv. 6, 035301 (2016)] where the vicinal surface is surrounded by the (001) terrace and the (111) faceted step
at equilibrium. Long time simulations are performed at this temperature to obtain steady states for the different
driving forces that influence the growth/recession of the surface. A Wulff figure of the p-RSOS model is produced
through the anomalous surface tension calculated using the density-matrix renormalization group method. The
characteristics of the faceted macrostep profile at equilibrium are classified with respect to the connectivity of
the surface tension. This surface tension connectivity also leads to a faceting diagram, where the separated areas
are, respectively, classified as a Gruber-Mullins-Pokrovsky-Talapov zone, step droplet zone, and step-faceting
zone. Although the p-RSOS model is a simplified model, the model shows a wide variety of dynamics in the
step-faceting zone. There are four characteristic driving forces: �μy , �μf , �μco, and �μR . For the absolute
value of the driving force, |�μ| is smaller than Max[�μy,�μf ], the step attachment-detachments are inhibited,
and the vicinal surface consists of (001) terraces and the (111) side surfaces of the faceted macrosteps. For
Max[�μy,�μf ] < |�μ| < �μco, the surface grows/recedes intermittently through the two-dimensional (2D)
heterogeneous nucleation at the facet edge of the macrostep. For �μco < |�μ| < �μR , the surface grows/recedes
with the successive attachment-detachment of steps to/from a macrostep. When |�μ| exceeds �μR , the macrostep
vanishes and the surface roughens kinetically. Classical 2D heterogeneous multinucleation was determined to be
valid with slight modifications based on the Monte Carlo results of the step velocity and the change in the surface
slope of the “terrace.” The finite-size effects were also determined to be distinctive near equilibrium.
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I. INTRODUCTION

Faceted macrosteps have sometimes been considered to
degrade the quality of grown crystals. In the case of solution
growth for 4H-SiC [1] as an example, which is expected to be
used for future power devices, the faceted macrosteps near
equilibrium hinder the preparation of good quality crystals
that satisfy the requirements for electrical devices. Therefore,
to control the dynamics of macrosteps, the fundamentals
regarding the formation of macrosteps should be clarified.

For smooth surfaces, the approaches based on the time-
dependent Ginzburg-Landau (TDGL) equation for surface
motion [2–6], which is used to study rough surfaces, are not
valid. The nucleation model is instead known to be more
effective. In Saito’s solution for the TDGL equation of a
smooth surface with a modified discrete Gaussian (MDG)
model [5], the two-dimensional (2D) nucleus is not included.
Based on the TDGL equation of the surface, the surface
cannot grow until �μ exceeds a “spinodal” value �μc. Here,
�μ = μambient − μcrystal is the driving force, where μcrystal is
the chemical potential of the bulk crystal and μambient is the
chemical potential of the ambient phase. This suggests that the
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excitation of islands on the surface, which can be 2D nuclei,
corresponds to a higher-order response to the driving force with
respect to the crystal growth.

The phase field method [7] is also known as a powerful tool
to study the solidifications or other nonequilibrium phenomena
accompanied by phase changes. In the phase field method, the
phase boundary is assumed to be analytic and differentiable.
The faceted structure on the surface can be simulated with the
phase field method by the introduction of a strong anisotropy
to the interface tension. The planes can be imitated by curved
surfaces with small curvature. However, this slight difference
in the curvature causes a significant difference in the long time
behavior, i.e., the nonequilibrium steady-state behavior. For
example, the singularity of the flat smooth interface inhibits
the growth/recession of the crystal without 2D nucleation
processes or screw dislocations [8].

With respect to nucleation, the nucleation model interprets
how the large clusters (domains) are formed; therefore, the
nucleation model is widely accepted for study of the dynamics
around the first-order phase transitions [6,8–10]. However, for
quantitative study, the classical nucleation theory [8,11,12]
often disagrees with the experimental observations or the
results of large-scale molecular dynamics by an order of 103

[13]. Therefore, many improvements in the nucleation theory
have been reported [9,10]. In recent years, the notion of
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FIG. 1. (a) Perspective view of the RSOS model tilted toward
the 〈110〉 direction. (b) Top-down view of the RSOS model. Thick
blue lines represent surface steps. Reproduced from [26], with the
permission of Hindawi Publishing Corporation.

modern “multinucleation” [13–16], where the growing clusters
change the crystal structure at a certain size during growth, has
attracted attention and opened a new research area.

A vicinal surface with faceted macrosteps is surrounded
by smooth surfaces; therefore, the surface is considered to
grow/recede by way of 2D nucleation [8,11,12]. However,
macrosteps are considered to be unstable at equilibrium [17,18]
without impurities or adatoms. Therefore, the dynamics of a
vicinal surface with faceted macrosteps in the nonequilibrium
steady state have not been studied sufficiently.

With respect to the stable faceted macrostep, we reported
a study on a restricted solid-on-solid (RSOS) model with a
point-contact-type step-step attraction (p-RSOS model, Fig. 1)
[19–26]. Here, “restricted” means that the height difference
between nearest-neighbor (NN) sites is restricted to {0, ± 1}.
The RSOS model [27–29] was presented as the simplest model
to study surface roughness, the roughening transition, and the
faceting transition [8,30–33]. An example of surface steps on
the RSOS model is shown in Fig. 1(b). The height difference
between next NN at the meeting points of neighboring steps
can be ±2 with the RSOS restriction. The step-step interac-
tion energy εint can be introduced at the meeting points of
the neighboring steps. For εint < 0, the step-step interaction
becomes attractive and is referred to as the point-contact-type
step-step attraction. The origin of the point-contact-type step-
step attraction is considered to be the orbital overlap of the
dangling bonds at the meeting point of neighboring steps. The
energy gained by the formation of a bonding state is regarded
as the attractive energy between steps.

The characteristic of the p-RSOS model is the discontinuous
surface tension at low temperatures [21–23] (for details, please
see Sec. II). Macrosteps are stabilized when the surface
free energy has anomalous anisotropy [34,35]. Therefore,
it seems a simple task to calculate the surface free energy
explicitly with a standard method of the statistical mechanics.
However, due to the large contribution of thermal fluctuations
in a low-dimensional substance [36], it is difficult to obtain
reliable results theoretically using the mean field approxima-
tion. Therefore, to obtain reliable results, the density-matrix
renormalization group (DMRG) method [37–39] is used for
calculation of the surface tension (the surface free energy per
normal unit area). More precisely, the transfer matrix version
of the DMRG method, which is known as the product wave-
function renormalization group (PWFRG) method [40–42],
was used.
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FIG. 2. Faceting diagram of the p-RSOS model for a vicinal
surface obtained using the DMRG method. Squares: calculated
values of Tf,1. Triangles: calculated values of Tf,2. Open circles:
calculated roughening transition temperatures of the (001) surface.
Solid line: zone boundary line calculated using the 2D Ising model.
For definitions and details regarding the QI Bose solid, liquid, and
gas, please refer to Akutsu [24]. Reproduced from [24], with the
permission of AIP Publishing.

A faceting diagram (Fig. 2) that corresponds to the con-
nectivity of the surface tension was obtained [24]. The faceted
macrostep is stabilized in the step-faceting zone and in the
step-droplet zone. In the Gruber-Mullins-Pokrovsky-Talapov
(GMPT) zone, there is no faceted macrostep; the vicinal surface
obeys the GMPT universal behavior [30–32]. In the step droplet
zone, the vicinal surface consists of stepped surfaces with slope
p1 and a single (111) surface that forms the side surface of a
faceted macrostep. In contrast, in the step-faceting zone, the
vicinal surface consists of only (001) terraces and a single (111)
surface. The characteristic of the height profile of the faceted
macrostep is also classified by the connectivity of the surface
tension at equilibrium [26].

In this paper, we study the driving force dependence of
the surface velocity V , the average height of faceted merged
steps 〈n〉, the terrace-surface slope p1, and the elementary
step velocity vstep, in the nonequilibrium steady state using
the Monte Carlo method for a vicinal surface with a faceted
macrostep in the p-RSOS model. The temperature is selected to
be in the step-faceting zone where the surface is surrounded by
a (001) terrace and (111) faceted step at equilibrium. The Wulff
figure of the p-RSOS model is produced from the anomalous
surface tension calculated with the DMRG method.

To clarify the effect of the discontinuous surface tension on
the dynamics of the surface, the following effects are excluded
from our model: the surface diffusion [18,43], the volume
diffusion [44,45], the elastic interaction [46–58], the long-
range attractive interaction [59,60], the Ehrlich-Schwoeble
effects [61,62], and the effects caused by thermal expansion
[63]. The surface dynamics are complex on the real surface;
therefore, only the effect of the anomalous surface tension
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caused by the point-contact-type step-step attraction may not
be sufficient to imitate the real surfaces. Thus, the volume
diffusion or the surface diffusion is essentially important for
crystal growth. However, if we take the diffusion term into
our model, the results caused by the surface tension cannot
be separated from the results caused by surface or volume
diffusion. This is the reason why the effect of the anomalous
surface tension has not yet been found, neither experimentally
nor theoretically. Therefore, we take only the point-contact-
type step-step attraction into consideration in our model to
obtain the effects of the driving force on the “kink density” of
a vicinal surface through the change of the surface morphology.

This paper is organized as follows. In Sec. II, the model
Hamiltonian and the surface tension calculated with the
DMRG method are shown. In Sec. III, we present the results
obtained from long time Monte Carlo simulation for an
average-sized faceted macrostep 〈n〉 and the growth rate of
the surface V . In Sec. IV, the Monte Carlo results are analyzed
based on the classical 2D heterogeneous nucleation and the
classical 2D heterogeneous multinucleation. The driving force
dependence of the slope of the “terrace” and the step velocity
are also presented. The crossover to a kinetic roughened surface
is discussed in Sec. IV D. Further discussions are given in
Sec. V, and conclusions are presented in Sec. VI.

II. MODEL

A. p-RSOS model

The microscopic model considered in this study is the
p-RSOS model (Fig. 1) [19–25]. In this model, “an atom”
corresponds to a unit cube. The total energy of the (001)
surface, which expresses the microscopic energy for every
surface configuration, can be written as

Hp-RSOS = N εsurf +
∑
n,m

ε[|h(n + 1,m) − h(n,m)|

+ |h(n,m + 1) − h(n,m)|]
+

∑
n,m

εint[δ(|h(n + 1,m + 1) − h(n,m)|,2)

+ δ(|h(n + 1,m − 1) − h(n,m)|,2)], (1)

where N is the total number of lattice points, εsurf is the
surface energy per unit cell on the planar (001) surface, ε is the
microscopic ledge energy. The RSOS condition, which is the
height difference between the NN sites restricted to {0, ± 1},
is required implicitly. Here, δ(a,b) is the Kronecker delta,
and εint is the microscopic step-step interaction energy. The
height difference can be ±1 for typical surface configurations;
therefore, εint does not contribute to the surface energy for such
surface configurations. εint contributes to the surface energy
only at the meeting point of neighboring steps because the
height difference can be ±2 only at the meeting points of
neighboring steps. The summation with respect to (n,m) is
taken over all sites on the square lattice. When εint is negative,
the step-step interaction becomes attractive (sticky steps).

B. Calculation of the surface tension

Here, we outline the calculation of surface tension. Calcula-
tion while maintaining the number of steps constant is tedious;
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FIG. 3. Polar graph of surface tension (Wulff figure [67]) and
Andreev’s free energy (ECS) from DMRG calculations. p-RSOS
model in the step-faceting zone (εint/ε = −0.9). Filled squares: sur-
face tension γ ( p)/ε. Thin black lines: the (001) surface in metastable
states. (Inset) Original RSOS model (εint = 0). kBT /ε = 0.4. Dark
lines or filled squares: surface tension γ ( p)/ε. Pale lines: Andreev’s
free energy calculated using the DMRG method [37–42]. εsurf is
assumed to equal ε.

therefore, a chemical potential η = (ηx,ηy) is introduced for a
step (the Andreev field [65]), so that the number of steps can
be changeable, and the grand partition function (Appendix A)
is then calculated.

First, the thermodynamic grand potential f̃ (ηx,ηy) (An-
dreev free energy [65]) is obtained from the calculated grand
partition function using the DMRG (PWFRG) method. Exam-
ples of the calculated f̃ (ηx,ηy) are shown by the pale lines
in Fig. 3. It should be noted that the profile of f̃ (ηx,ηy) is
similar to the equilibrium crystal shape (ECS) z = z(x,y),
where f̃ (ηx,ηy) = λz(x,y), and (ηx,ηy) = −(λx,λy). Here,
λ represents the Lagrange multiplier related to the crystal
volume.

Next, we exchange external variables from η to the surface
gradient p = (∂z(x,y)/∂x,∂z(x,y)/∂y), similar to the rela-
tionship between the internal energy and the enthalpy. p is
also calculated as the function of η using the PWFRG method
from the equation p = (〈h(m + 1,n) − h(m,n)〉,〈h(m,n +
1) − h(m,n)〉). The surface free energy f ( p) from f̃ (η) is
obtained using the following equation:

f ( p) = f̃ (η) + η · p. (2)

The surface tension is the surface free energy per unit normal
area. The surface tension γsurf ( p) was calculated from the
surface free energy f ( p) per projected x-y area for the vicinal
surface as

γsurf ( p) = f ( p)√
1 + p2

x + p2
y

, (3)

where p = (px,py) is the surface gradient of the vicinal surface
[64].

C. Discontinuous surface tension

The polar graph of the surface tension is shown in Fig. 3.
The surface gradient p is related to the tilt angle (or the off
angle) θ as p = ± tan θ . It should be noted that the Andreev’s
free energy is similar to the ECS, which is the shape with
the least total surface free energy. The ECS is obtained by
the Landau-Andreev method [65,66]. Alternatively, the ECS is
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obtained from the surface tension with the Wulff construction
[8,67–69] based on the Wulff theorem.

In Fig. 3, there are values for the (001) and (111) surfaces
[21]. The vicinal surfaces between the (001) surface and the
(111) surface did not appear because these vicinal surfaces are
thermodynamically unstable. This is the characteristic of the
profile of the faceted macrostep in the step-faceting zone at
equilibrium [24].

Physically, the discontinuity in surface tension γ ( p) is the
result of the first-order transition at the surface free energy
f ( p) [Eq. (3)]. The surface free energy is generally expressed
by f ( p) = es( p) − T ss( p), where es( p) is the surface energy
and ss( p) is the surface entropy. When steps merge, the surface
energy decreases by the number of εint, whereas the surface
entropy caused by the variety of zigzag structures of the steps
also decreases to increase the surface free energy. Therefore,
as in the case of gas-solid transition, the competition between
energy decrease and entropy reduction determines the two-
surface coexistence [21,24].

III. MONTE CARLO RESULTS

A. Monte Carlo method

To study the nonequilibrium steady state with macrosteps,
a vicinal surface with the following Hamiltonian and a fixed

number Nstep of steps was investigated using the Monte Carlo
method with the Metropolis algorithm:

Hnoneq = Hp-RSOS − �μ
∑
n,m

[h(n,m,t + 1) − h(n,m,t)],

(4)

where t is the time measured by the Monte Carlo steps per site
(MCS/site). When �μ > 0, the crystal grows, whereas when
�μ < 0, the crystal recedes (evaporates, dissociates, or melts).

The explicit procedure for application of the Monte Carlo
method in this study is as follows. At the initial time, the vicinal
surface is set with an initial configuration. The lattice site to
be updated is then randomly selected. The surface structure
is updated nonconservatively using the Monte Carlo method
with the Metropolis algorithm. With the RSOS restriction
taken into consideration, the structure is updated with prob-
ability 1 when �E � 0 and with probability exp(−�E/kBT )
when �E > 0, where �E = Ef − Ei , Ei is the energy
of the present configuration, and Ef is the energy of the
updated configuration. The energy is calculated using the
Hamiltonian (4).

A periodic boundary condition was imposed in the direction
parallel to the steps. In the direction normal to the steps, the
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FIG. 4. Snapshots of the surface from Monte Carlo simulation of a vicinal surface at 4 × 108 MCS/site. The surfaces are inclined towards
the 〈111〉 direction. The initial configuration is a train of elementary steps (TS) with equal distance. (a) |�μ| < �μf (τ,L). (b), (c) �μf (τ,L) <

|�μ| � �μco(L). (d), (e) �μco(L) < |�μ| < �μR(L). (f) �μR(L) < |�μ|. kBT /ε = 0.4. The number of steps (Nstep) equals 180. Size:
240

√
2 × 240

√
2. εint/ε = −0.9. The surface height is represented by brightness with 10 gradations, where brighter regions are higher. The

darkest areas next to the brightest areas represent terraces that are higher by a value of unity because of the finite gradation. The lines of side
view are drawn with respect to the height along the bottom lines in the top-down view.
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lowest side of the structure was connected to the uppermost
side by the addition of a height with a number Nstep of steps.

Two types of initial configuration for the steps were pre-
pared: a train of elementary steps with equal distance (the
TS configuration) and one macrostep with the (111) side
surface (the MS configuration). In both configurations, the
mean surface slope p̄ = Nstep/L is kept constant, where L

is the linear size of the system. Figure 4 shows snapshots
of the vicinal surfaces at 4 × 108 MCS/site, where the initial
configuration is TS.

B. Time evolution of surface height

To study the characteristics of the vicinal surface at the
mesoscopic scale (20–500 nm), the average height of merged
steps [21] and the growth rate of the surface were calculated
using the Monte Carlo method. To evaluate the size of a
macrostep in detail, we consider the number of elementary
steps in a locally merged step n. The average height of the

merged steps is obtained as follows:

〈n〉 =
∑

ỹ

∑
x̃

|nx̃(ỹ)|
/⎡

⎣∑
ỹ

nstep(ỹ)

⎤
⎦ ≈ Nstep/〈nstep〉, (5)

where x̃ is selected as the 〈110〉 direction (normal to the
mean step-running direction), ỹ is the 〈1̄10〉 direction (along
the mean step-running direction), Nstep is the total number
of elementary steps, and nstep is the number of merged
steps. Time evolutions of 〈n〉 are shown in Fig. 5(a). After
2 × 108 MCS/site, 〈n〉 is almost constant for �μ/ε > 0.05.
Therefore, the values obtained within 0−2 × 108 MCS/site
were discarded, and n was averaged over successive 2 ×
108 MCS/site. Figure 6 shows the �μ dependence of 〈n〉.

To estimate the growth rate of the surface V , the average
surface height h̄(t), was calculated, where

h̄(t) = (1/N )
∑
n,m

h(n,m). (6)
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FIG. 6. Average height of merged steps 〈n〉. (a) Initial configuration with a macrostep (MS). (b) Initial configuration with a train of steps (TS)
in equal distance. The inset shows the top view and side view of the initial configuration of the vicinal surface. Mean surface slope: p̄ = 0.530.
kBT /ε = 0.4. εint/ε = −0.9. The initial 2 × 108 MCS/site were discarded. The values are averaged over the following 2 × 108 MCS/site.
Solid lines: Eqs. (29) and (30) with Nstep = 180, 120, and 60 from top to bottom. �μf (τ,L), �μco(L), and �μR(L) are listed in Table I, where
τ = 4 × 108 is the observation time, and L = 240

√
2 is the linear size of the system.
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Time evolutions of h̄(t) are also shown in Figs. 5(b)–5(d).
h̄(t) increases or decreases linearly as t increases for 0.035 �
|�μ|/ε. At 0.025 � |�μ|/ε � 0.035, the surface height in-
creases intermittently. For |�μ/ε| � 0.025, the surface does
not grow/recede.

The growth rate of the surface V is defined as

V = [h̄(tmax) − h̄(t0)]/(tmax − t0), (7)

where t0 and tmax are 2 × 108 MCS/site and 4 × 108 MCS/site,
respectively. Figure 7 shows the �μ dependence of V .

C. Characteristic driving forces

There are several characteristic driving forces in the
nonequilibrium steady state, which are listed in Table I. Each
value is explained in detail in the following sections. Here, we
will explain them briefly.

First, �μR(L) is defined as the minimum |�μ| so that
the macrostep disappears [Fig. 4(f), Sec. IV B 2]. L is the
linear size of the system. In this region, the surface roughens
kinetically. The velocity of the surface V , and the average
height of the merged step 〈n〉, exhibits power-law behavior
with respect to |�μ| − �μco(L) if we introduce �μco(L)
(Sec. IV D). �μco(L) is determined so that the log-log plot
with respect to V versus |�μ| − �μco(L) becomes linear.
The Monte Carlo results show that �μR(L) − �μco(L) is not
significantly dependent on L (Table I).

For �μco(L) < |�μ| < �μR(L), elementary steps detach
from macrosteps and successively attach to the macrostep
[Figs. 4(d) and 4(e), Sec. IV B].

Next, we define �μf (τ,L), where τ is the observation
time. �μf (τ,L) is defined as the maximum |�μ| so that
growth/recession is inhibited during the observation time. In
the region |�μ| < �μf (τ,L), the growth/recession of the
vicinal surface freezes due to the finite-size and -time effect
(Sec. IV A). The surface does not reach the true nonequilibrium
steady state; therefore, the surface morphology is dependent

on the initial configuration of the surface. 〈n〉 in Figs. 6(a) and
6(b) for |�μ| < �μf (τ,L) is strongly dependent on the initial
configuration.

For �μf (τ,L) < |�μ| < �μco(L), the surface
grows/recedes intermittently in the manner of 2D
heterogeneous nucleation [Sec. IV A, Figs. 4(b) and 4(c)].
〈n〉 for the TS initial condition is smaller than 〈n〉 for the MS
initial configuration. On the other hand, the growth rates with
the TS initial configuration agree well with those for the MS
initial configuration. An island on the (001) surface or an
island on the (111) surface is formed at the edge of the faceted
macrostep, as shown in Figs. 4(b) and 4(c).

Finally, we define �μy(L) (Sec. IV B 2). �μy(L) is defined
as the minimum value of |�μ| so that steps are spontaneously
and successively detached from a macrostep. �μy(L) is deter-
mined by the extrapolation of p1, which is the surface slope
contacted with the (111) faceted surface. For |�μ| < �μy(L),
the (001) surface (p1 = 0) contacts with the (111) surface as
a “terrace,” whereas for |�μ| > �μy(L), the surface with a
slope of p1 �= 0 contacts with the (111) surface as a “terrace.”

IV. STEP DETACHMENT

A. 2D heterogeneous nucleation

1. Growth/recession rate of the surface

For �μf (τ,L) < |�μ| < �μco(L) (Table I), the sur-
face grows/recedes by step detachment through 2D “het-
erogeneous” nucleation (Fig. 8). This means that the
growth/recession of the surface occurs intermittently. Nuclei
are created at the lower/upper side of the macrostep edge
[Figs. 4(b) and 4(c)] in the growth/recession mode, respec-
tively. We describe the side length of the critical nucleus on
the (001) surface as lc, and that on the (111) surface as l′c
(Fig. 8). Figure 8 shows lc ∼ l′c of the 2D critical nucleus for
step detachment with the growth of the surface (�μ > 0). For

TABLE I. Characteristic driving forces.

Symbol Value/ε L/(
√

2a)a

�μy(L)b 0.018 ± 0.006 240
0.020 ± 0.006 160
0.023 ± 0.004 80

�μf (τ,L)c 0.023 ± 0.007 240
0.025 ± 0.007 160
0.027 ± 0.007 80

�μco(L)d 0.050 ± 0.007 240
0.051 ± 0.007 160
0.054 ± 0.007 80

�μR(L)e −�μco(L) 0.071 ± 0.005

aL is the linear size of the system. a = 1.
bYield point of the self-detachment of steps from a macrostep
(Sec. IV B 2).
cFreezing point of step detachments. τ = 4 × 108 MCS/site is the
observation time (Sec. IV A).
dCrossover point from 2D nucleation mode to successive step-
detachment mode (Sec. IV D).
eCrossover point between the step-detachment mode and kinetically
roughened mode (Sec. IV B 2).
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FIG. 8. Schematic figure of 2D critical nuclei under growth
conditions. (a) A critical nucleus on the (001) surface. lc is the linear
size of the critical nucleus. (b) A critical nucleus on the (111) surface.
l′c is the linear size of the critical nucleus. Gray lines: elementary steps
on a surface. Light blue line: a step containing a “bridge” that runs
across the terrace. During growth, the 2D nuclei appear at the lower
section line of the (001) and (111) surfaces of a macrostep, whereas
during recession, the 2D nuclei appear at the upper section line of the
(001) surface and at the (111) surface side of a macrostep.

�μ < 0, an elementary step detaches from the upper side of
the (111) surface by forming a critical negative nucleus. The
shape of the critical negative nucleus is similar but reversed to
the shape shown in Fig. 8(c) [also see Fig. 4(c)].

The Gibbs free energy G(l) [or G(l′)] of the island attached
to the faceted macrostep is expressed as

G(l) = −|�μ|S(l) + �(l) − lγ
(110)
2 , (8)

where S(l) is the area of the island, �(l) is the total step free
energy at the edge of the island of the elementary step, and
γ

(110)
2 is the step free energy of the doubly merged step. For

the critical nucleus, the Gibbs free energy is a minimum with
respect to the shape, but is a maximum with respect to the
size [11]. The shape of the critical nucleus is similar to the
equilibrium island shape [Fig. 8(c)]. The size of the critical
nucleus is determined as explained in Appendix B, i.e.,

lc = lc,0ε/|�μ|, G(lc) = G(lc,0)ε/�μ, (9)

where lc,0 and G(lc,0) are lc and G(lc) for |�μ|/ε = 1 obtained
by Eqs. (B5) and (B6) as

G(lc,0) = [
�(lc,0) − lc,0γ

(110)
2

]
/2 = εS(lc,0). (10)

From the classical nucleation theory [6,11,12], the nucle-
ation frequency In is expressed as follows:

In = ZN0/C exp[−G(lc)/kBT ], (11)

where Z is the Zeldovich factor, N0 = 1/(
√

2a) is the lattice-
point density, and C is a coefficient relating to the geometry.
The waiting time for a single nucleation tn is

tn = 1/(InL) =
√

2C

ZL
exp[g∗/�μ], (12)

where g∗/�μ = G(lc)/(kBT ). In the limit of L → ∞, tn
reduces to zero because 2D nuclei are formed somewhere at
the step edge of the macrostep. The growth rate V is expressed
using tn as

|V | = a/tn = LZ√
2C

exp[−g∗/�μ]. (13)
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0 40
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n>
−−1

)
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(|v
|)

1/|Δμ/ε|

1/|Δμ/ε|

Δμco

Δμco

ΔμR

ΔμR

FIG. 9. (a) Semilogarithmic plot of 〈n〉 − 1. Solid lines: Eqs. (24)
and (29) with Nstep = 180, 120, and 60 from the top to the bottom.
(b) Semilogarithmic plot of the absolute value of the surface growth
rate. Dotted line: Eq. (14). Solid lines: V = p1vstep with Eqs. (24)
and (26), where Nstep = 180, 120, and 60 from the top to the bottom.
Crosses show the Monte Carlo results obtained with the TS initial
configuration. kBT /ε = 0.4. εint/ε = −0.9. Values were averaged
over 2 × 108 MCS/site after first discarding 2 × 108 MCS/site.

ln(|V |) is shown with the horizontal axis being 1/(|�μ|/ε) in
Fig. 9(b). The Monte Carlo results gave

|V | = 1.07 exp[−0.509/(|�μ|/ε)], (14)

by fitting a line in Fig. 9(b) to the values of �μy(L) < |�μ| <

�μco(L) with L = 240
√

2. Therefore, we have g∗
MC = 0.509ε.

This line is shown by the dotted line in Fig. 9(b). Z/(
√

2C) =
4.5 × 10−3 was also obtained from the prefactor on the right-
hand side of Eq. (13). Using this value with Eq. (12), we show
the explicit values for tn with L = 240

√
2 for several driving

forces (Table II).
To numerically obtain lc, lc,0 and G(lc,0) were calcu-

lated using the 2D Ising model [70–72] at kBT /ε = 0.4.
The results were �(lc,0) = ∫ B

A
γ (θ )dl ≈ 1.165ε and γ

(110)
2 =√

2(ε + εint/2) ≈ 0.7778ε/a, where θ is the mean tilt angle
of an elementary step relative to the 〈010〉 direction. From
Eq. (10), we obtain

lc,0 ≈ 1.0649a, G(lc,0) = 0.1686ε. (15)
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TABLE II. Characteristic lengths and times.

lc/a tn (MCS/site)a

Eqs. (9) Eqs. (12) ld/a
b td (MCS/site)

�μ/ε and (15) and (14) Eq. (19) Eq. (20)

0.01 106 8.3 × 1021 3.2 × 109 1.7 × 1012 c

0.02 53 7.4 × 1010 1.2 × 104 3.1 × 107

0.03 35 1.4 × 107 4.4 × 103 7.6 × 105

0.04 27 2.2 × 105 884 1.1 × 105

0.05 21 1.7 × 104 345 3.5 × 104

0.06 18 3.2 × 103 188 1.6 × 104

0.1 11 106 60 3.0 × 103

0.15 7.1 19 37 1.2 × 103

aL = 240
√

2a. a = 1.
bvt is assumed to be given by Eq. (27).
cUnderlined values show the border values that exceeds the system
size or the observation time in the present study (See Sec. V).

g∗ obtained from Eq. (15) is

g∗
Ising = G(lc,0)|�μ|/kBT = 0.4218ε. (16)

Table II shows the size of the lc for several �μ.
g∗

Ising is slightly smaller than g∗
MC obtained by the Monte

Carlo method. The reason for this seems to be a reduction of
the entropy due to the finite size of the critical island. The values
of lc in Table II indicate the size of the critical island to be less
than approximately 100 in the present simulations. With such
a short length, the entropy term in the step tension becomes
smaller than the entropy term in the step tension with infinite
length. Therefore, g∗

MC becomes larger than g∗
Ising calculated

for the infinite length of the domain boundary line.
Due to the long waiting time for the 2D heterogeneous nu-

cleation at the edge of the faceted macrostep, the surface growth
occurs intermittently. The intermittent growth/recession can be
observed explicitly in the case of |�μ/ε| = 0.03, as shown in
Fig. 5(c).

From tn in Table II, the waiting time exceeds 4 ×
108 MCS/site for |�μ| � �μf (τ,L). Therefore, for |�μ| <

�μf (τ,L), the surface cannot grow/recede due to this finite-
time effect.

2. Average height of merged steps

To understand the �μ dependence of the vicinal sur-
face morphology we consider a step–attachment–detachment
model for the time evolution of 〈n〉 [73]:

∂〈n〉
∂t

= n+ − n−, (17)

where n+ is the rate when the elementary steps catch up to a
macrostep, and n− is the rate when the elementary steps detach
from a macrostep. When n+ < n−, a macrostep dissociates,
whereas when n+ > n−, 〈n〉 increases up to Nstep, where Nstep

is the total number of elementary steps on the surface. In this
case, n− limits the growth/recession rate of the surface. At
steady state, n+ = n− = V/a, where a is the height of the
elementary step.

In the region of �μf (τ,L) < |�μ| < �μco(L), n+ is con-
sidered to be n+ ≈ ρ1v1, where ρ1 is the density of elementary
steps on the “terrace” and v1 is the step velocity of an

ld

FIG. 10. Schematic figure of multinucleation under growth
conditions.

elementary step perpendicular to the mean running direction
of the step. On the other hand, n− is proportional to the 2D
heterogeneous nucleation rate. Therefore, n+ > n− is expected
because the growth rate of an elementary step v1, is relatively
large (for example, Sec. IV B 3, Fig. 12). Therefore, after a
sufficiently long time, elementary steps merge to form a single
macrostep [Figs. 4(b) and 4(c)].

It is noted that the morphology of the surface also freezes
for |�μ| < �μf (τ,L). 〈n〉 is strongly dependent on the initial
configuration of the surface [Figs. 4(a), 6(a), and 6(b)].

B. Successive step detachment

1. Multinucleations

From Fig. 9(b) for the growth/recession rate of the surface
for �μco < |�μ| < �μR(L), the slope of the line changes at a
crossover point �μco. In addition, 〈n〉 is no longer constant but
decreases as 1/|�μ| decreases. In this section, we will apply
the classical multiple heterogeneous nucleation theory to the
Monte Carlo results.

We assume some critical nuclei arise at the edge of a
macrostep with a mean equal distance ld (Fig. 10). The step-
detachment time td is then approximated as

td = ld/(2vt ) = 1/(Inld ), (18)

where vt is the step unzipping velocity. From Eq. (18), ld is
expressed using vt and In as

ld =
√

2vt

In

=
√

2
√

2vtC

Z
exp[g∗/(2�μ)]. (19)

By substituting Eq. (19) into Eq. (18), we obtain

td = 1/
√

2vt In =
√

C√
2vtZ

exp[g∗/(2�μ)]. (20)

The explicit values of ld and td are calculated using Eqs. (19)
and (20) with g∗ being g∗

Ising and Z/(
√

2C) being 4.5 × 10−3,
where vt is assumed to equal vstep,RSOS(|�μ|) [Sec. IV B 3,
Eq. (27)], which are given in Table II.

The growth/recession rate of the surface is then obtained by

|V | = a/td = a
√

2vt In

=
√√

2vtZ

C
exp[−g∗/(2�μ)]. (21)
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From vt ∝ �μ, we expect

|V | ∝
√

�μ exp[−g∗/(2�μ)] (22)

approximately for �μco(L) < |�μ| < �μR(L). In Fig. 9(b),
the slope of the Monte Carlo results in this region seems
to be smaller than the slope for |�μ| < �μco(L). However,
the Monte Carlo results for |V | bend around �μco < |�μ| <

�μR(L).
It is interesting that td � tn for �μco(L) < |�μ|. The

2D nuclei are randomly formed relatively often at the
edge of the macrostep. The elementary step formed by
2D nucleation advances/recedes by detachment from the
macrostep. After a certain time, the elementary step may
be pulled back to the facet edge with some probability.
Therefore, for �μco(L) < |�μ| < �μR(L), the detachment
of an elementary step from the edge of the macrostep limits
the growth/recession rate of the vicinal surface.

In this manner, classical 2D heterogeneous multinucleation
is found to explain the phenomena roughly. However, with a
slight modification, agreements between the Monte Carlo re-
sults and the expressions based on classical 2D heterogeneous
multinucleation with respect to |V | and 〈n〉 are significantly
improved, as demonstrated in the following sections.

2. Surface slope of the “terrace”

Let us call the surface that contacts the faceted macrostep
the “terrace.” At equilibrium in the step-faceting zone, the
“terrace” is the (001) surface, which characterizes the profile
of the faceted macrostep [26]. In the case of a nonequilibrium
steady state, the change of the “terrace” slope changes the
dynamics of the vicinal surface. In this section, we explain
how the surface slope p1 is connected to the size of the merged
step 〈n〉, the yielding point �μy(L), and the crossover point to
a kinetically roughened surface �μR(L).

For every td , an elementary step is detached from the
macrostep at the edge of the macrostep (Fig. 10). The detached
elementary steps form a vicinal surface with the slope p1,
which contacts the macrostep. After several calculations (Ap-
pendix C), the surface slope is described by 〈n〉, as follows [73]:

p1 =
√

2

/(√
2 − p̄

p̄z
+ 1

)
,

z = 1

〈n〉 − Nm

Nstep
, (23)

where Nm is the number of macrosteps in the simulated system.
Using Eq. (23) with the assumption Nm = 1.75, p1 is

calculated from 〈n〉 obtained from the Monte Carlo calcu-
lation [Fig. 11(a)]. Keeping Eq. (22) in mind, we present
ln[p1

√|�μ/ε|] versus 1/|�μ/ε| [Fig. 11(b)]. Here, the Monte
Carlo results are not straight lines. In addition, for small |�μ|,
the Monte Carlo results reveal the size dependence.

Here, let us introduce �μy(L) so that the Monte Carlo
results are well reproduced by a straight line [Fig. 11(c)]. For
μco(L) < |�μ| < μR(L), the best fitted line is obtained as

p1 = cp√|�μ/ε| exp

[ −g∗
p/2

|�μ/ε| − �μy(L)/ε

]
,

g∗
p = 0.423ε, cp = 0.604. (24)
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FIG. 11. (a) �μ dependence of the surface slope p1 of the
“terrace.” (b) ln[p1

√|�μ/ε|] vs 1/|�μ/ε|. (c) ln[p1
√|�μ/ε|] vs

1/|�μ/ε| − �μy(L)/ε. p1 for the Monte Carlo data is calculated
using Eq. (23) with 〈n〉. Crosses indicate the Monte Carlo results
obtained with the TS initial configuration. Dark solid lines: Eq. (24)
with L = 240

√
2. Pale solid lines in (a), and dashed lines in (b) and

(c): p1 = V/vstep with Eqs. (33) and (32). Pale solid lines in (b):
Eq. (24) with L = 160

√
2 (upper) and L = 80

√
2 (lower). kBT /ε =

0.4. εint/ε = −0.9.
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�μy(L) for respective L are shown in Table I. It should be
noted that g∗

p is very close to g∗
Ising.

The lines for Eq. (24) with L being 240
√

2a are shown by
the dark solid lines in Fig. 11(b). The lines for Eq. (24) with
L being 160

√
2a and 80

√
2a are shown as pale solid lines in

Fig. 11(b). Although the only modification is the introduction
of �μy(L), the lines for Eq. (24) reproduce the p1 based on the
Monte Carlo results quite well for �μco < |�μ| < �μR(L).

For large |�μ|, p1 based on the Monte Carlo results depart
from Eq. (24). The departing point |�μ|/ε = 0.12 agrees well
with �μR(240

√
2a) in Table I.

For �μy(L) < |�μ|, the “terrace” has a slope p1, so that
the profile of the faceted macrostep becomes similar to that in
the step droplet zone at equilibrium. That is, the characteristic
profile of the faceted macrostep in the step-faceting zone
changes to that in the step droplet zone. This �μy(L) indicates
a yielding point with respect to the self-detachment of steps
from the macrostep.

It is interesting that p1 is singular at the point �μy(L).
�μy(L) is a candidate for the nonequilibrium phase transition
point. However, �μy(L) < �μf (τ,L) in this study, so that the
vicinal surface freezes around the yielding point. Therefore,
phenomena regarding �μy(L) were not realized.

3. Step velocity

In the steady state, n+ = n− = V/a and n+ = p1vstep/a,
where a is the height of the elementary step. Therefore, we
obtain another key quantity vstep calculated with

vstep = V/p1 (25)

using the Monte Carlo results for V and 〈n〉. The step velocity
vstep is approximately proportional to �μ for �μco(L) <

|�μ|. Figure 12 shows the �μ dependence of vstep/|�μ/ε|.
vstep based on the Monte Carlo results can be fit by the

following equations:

vstep/(�μ/ε) = 0.094 + 3.2 × 10−3 exp[0.18/|�μ/ε|],
(�μco < |�μ/ε| < �μR(L)), (26)

0.4

0.2

0
0.30 0.2

240  2 × 240  2 
160  2 × 160  2 

80  2 × 80  2 

(ε    = 0)int

80  2 × 80  2 

0.1

,

|Δμ/ε|

Δμco

ΔμR

|V
 /(

p 
 Δ

μ/
ε)

|
1

Δμf

FIG. 12. Absolute value of the step velocity |vstep| ≡ |(V/p1)|
divided by |�μ/ε|. Crosses indicate the Monte Carlo results obtained
with the TS initial configuration. Dark solid line: Eq. (26). Pale solid
line: Eq. (33). Dashed line: Eq. (27). The values were averaged over
2 × 108 MCS/site. kBT /ε = 0.4. εint/ε = −0.9.

vstep,RSOS/(�μ/ε) = 0.442 − 0.498|�μ|,
(εint = 0, RSOS model). (27)

These lines are shown in Fig. 12. The reason for the steep
decrease in the step velocity as |�μ| increases is the meeting of
steps, which inhibits the growth/recession of steps substantially
[22]. Figures 4(d) and 4(e) show that the detached steps meet
at several sites on the surface due to thermal fluctuations. The
sticky character of the steps merges these steps locally. The step
velocity of the merged steps is substantially small [22,23], so
that the merged steps pin the growth/recession of the steps.
The density of steps becomes larger as |�μ| increases because
td becomes shorter. The steps then meet and are pinned more
frequently for large |�μ|. Therefore, the step velocity becomes
smaller as |�μ| increases.

It is interesting that the phases of the waves on the detached
steps (meandering) are often coherent, although the surface
does not contain dislocations or impurities. The present model
does not take surface diffusion into account. Nevertheless, the
phases of the waves on the detached steps appear coherent. This
is because the advance/recession of the embryo formed at the
edge of the macrostep is blocked more often by the preceding
step when the location of the embryo is nearer to the unzipping
point of the preceding step. The embryo formed at almost the
center between the two unzipping points of the preceding step
is more likely to survive.

For |�μ| < �μco, ld exceeds the linear size of the system
L (Table II). Therefore, the successive nucleation at the step
edge breaks. The surface moves intermittently through 2D
heterogeneous nucleation at the step edge, which is consistent
with the interpretation in the previous subsection (Sec. IV A 1).
In this region, V/p1 does not indicate vstep because n− <

vstepp1. vstep in this region should be the lesser of the two values
obtained by Eqs. (26) and (27).

C. Consistency

Using the equations for p1 and vstep [Eqs. (24)–(26)], we
can reproduce 〈n〉 and V for �μco(L) < |�μ| < �μR(L). V

is then expressed as follows:

V = cp

√
|�μ/ε| exp

[ −g∗
p/2

|�μ/ε| − �μy(L)/ε

]

×{0.094 + 3.2 × 10−3 exp[0.18/|�μ/ε|]},
g∗

p = 0.423ε, cp = 0.604. (28)

Equation (28) is shown in Figs. 7 and 9(b), where the curves
reproduce the Monte Carlo results well.

On the other hand, 〈n〉 is inversely expressed by p1 from
Eq. (23):

〈n〉 =
(

z + Nm

Nstep

)−1

,

z = (
√

2 − p̄)

p̄

(√
2

p1
− 1

)−1

. (29)

In the limit of p1 → 0, 〈n〉 converges to Nstep/Nm. The
Nstep/Nm values also reproduce constant values of 〈n〉 for
�μf (τ,L) < |�μ| < �μco(L).
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In the case of p1 �= 0, z is expressed by

z−1 = p̄

(
√

2 − p̄)

{√
2|�μ/ε|

cp

× exp

[
g∗

p/2

|�μ/ε| − �μy(L)/ε

]
− 1

}
(30)

using Eqs. (24) and (29). The lines of 〈n〉 are shown in Figs. 6
and 9(a). These lines also reproduce the Monte Carlo results
well.

D. Kinetic roughening

For �μR(L) < |�μ|, the vicinal surface is kinetically
roughened and the faceted macrostep disappears [Fig. 4(f)]. Al-
though there is no large-scale macrostep, the inhomogeneous
bumpy structure remains on the surface. This bumpy structure
is formed by thermal noise [Fig. 4(f)].

In this region, 〈n〉 and V exhibit power-law behavior
(Fig. 13):

〈n〉 = 0.0310[|�μ|/ε − �μco(L)/ε]−ζ + n∞,

ζ = 1.57 ± 0.07, n∞ = 1.33 ± 0.08, (31)

|V | = 0.0677[|�μ|/ε − �μco(L)/ε]β,

β = 1.19 ± 0.05. (32)

Here, the choice of β as the symbol for the exponent is in
accordance with Ref. [74]. The Monte Carlo results for all sizes
agree with the two lines of Eq. (28) or Eq. (32), as shown in
Fig. 13(b). From the cross point of the two lines, �μR(L)/ε −
�μco(L) is determined as 0.071 ± 0.005. For L = 240

√
2a,

we have �μR(240
√

2a)/ε = 0.121 ± 0.012.
The step velocity is obtained from the Monte Carlo results

in Fig. 12. The results are fitted to the following equation:

vstep/(�μ/ε) = 0.096 + 0.055|�μ/ε|,
(�μR(L) < |�μ|), (33)

as represented by the pale solid line in Fig. 12. Using Eqs. (33)
and (32), we obtain p1 from p1 = V/vstep:

p1 = 0.0652(|�μ|/ε − �μco/ε)β

(�μ/ε)(0.096 + 0.055|�μ/ε|), (34)

which is shown by pale solid lines in Fig. 11. The lines
reproduce the Monte Carlo results for p1 well.

The crossover from the vicinal surface with the faceted
macrostep to the kinetically roughened surface is essen-
tially caused by the change of the |�μ| dependence of p1

[Fig. 11(a)]. By definition (Appendix C), p1 indicates the
density of the elementary steps. The meeting of steps occurs
more frequently when the step density is larger. In Eq. (24),
the merging of steps is not taken into consideration; hence, the
increase of the locally merged steps contributes to a decrease
in p1, i.e., it changes the |�μ| dependence of p1.

Due to the locally merged steps, |V | in the kinetically rough-
ened region [Eq. (32)] becomes smaller than that expected from
Eq. (28) [Figs. 7 and 13(b)]. In contrast, 〈n〉 in the kinetically
roughened region [Eq. (31)] becomes larger than that expected
from Eq. (29) [Figs. 9(a) and 13(a)].
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FIG. 13. (a) Log-log plot of 〈n〉. Dark solid line: Eq. (31). Pale
solid lines: Eqs. (29) with (30) with L = 240

√
2, 160

√
2, and 80

√
2

from the top to the bottom, respectively. (b) Log-log plot of the
absolute value of the surface growth rate. Dark solid line: Eq. (32).
Pale solid line: Eq. (28). Crosses indicate the Monte Carlo results
obtained by the TS initial configuration. kBT /ε = 0.4. εint/ε = −0.9.
Averaged over 2 × 108 MCS/site.

V. DISCUSSION

Near equilibrium, the finite-size effect is prominent. The
following question then arises: What happens with the infinite
system size? The underline in Table II shows the border
value that exceeds the system size or the observation time
in this study. From Eq. (12), the waiting time tn for 2D
heterogeneous nucleation converges to zero as L → ∞. We
then have limL→∞ �μf (τ,L) = 0. However, tn increases so
rapidly as |�μ| decreases that the system size should be
approximately 1014 or more for tn < 108 with |�μ|/ε = 0.01.
Therefore, in an actual system with a length of about 1 mm,
the non-negligible frozen region with respect to the surface
growth/recession remains near equilibrium.

For ld and td , there is no explicit size dependence. The
waiting time td for the step detachment seems to be linked
to �μy(L). The Monte Carlo results in this study show a
slight L dependence on �μy(L). If �μy(L) converges to a
nonzero value �μy(∞), in the limit of infinite system size,
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then the point may be a nonequilibrium phase transition point.
However, to clarify whether �μy(∞) is finite or zero is a future
problem.

In our previous work [73], we studied the �μ dependence
of the size for faceted merged steps 〈n〉, and the growth
rate of the vicinal surface V , in the step droplet zone I for
the nonequilibrium steady state. Some results are similar to
the results of this study. 〈n〉 decreases as |�μ| increases. In
addition, for |�μ| > �μR(L), the vicinal surface with faceted
macrosteps crosses over to the kinetically roughened surface
without a macrostep. In the results of the previous study, the
freezing region lacks near at equilibrium, and the elementary
step self-detaches by thermal noise without 2D nucleation
processes. The morphology of the kinetically roughened sur-
face is somehow different from that of this study. The bumpy
structures on the vicinal surface that were obtained in the
previous study were so small that they cannot be discerned
in the images of the simulated surface without magnification
of the images [73]. Therefore, the scaling behavior in the
kinetically roughened surface is slightly different from that
in this study.

It is interesting that the figure for V (Fig. 7) is analogous
to Fig. 4(b) in Ref. [74], which shows the velocity of the
particles where plastic depinning occurs. The system has a
depinning threshold V ∝ (FD − Fc)β with β = 1.5, where V

is the average velocity of the particles, FD is the driving force,
and Fc is the depinning threshold. The plasticity is said to be
relevant to charge-density wave systems [74,75]. As noted in
Secs. IV B 3 and IV C, the elementary steps that detach from
the faceted macrostep meet neighboring steps due to thermal
noise. The steps are sticky, so that they merge at the meeting
point. The locally merged steps with substantially low velocity
then pin the motion of the elementary steps. Therefore, the step
attachment-detachment motion is analogous to the motion of
particles with plastic depinning. This begs the following ques-
tion: Is there a common mathematical framework? However,
this question has yet to be answered.

To clearly elucidate the effect of the anomalous surface
tension, we exclude surface diffusion [18,43], volume diffusion
[44,45], elastic interaction [46–58], long-range attractive inter-
action [59,60], and Ehrlich-Schwoebel effects [61,62] from the
model. Nevertheless, the p-RSOS model in the step-faceting
zone shows a wide variety of surface dynamics. Combinations
with the effect of the anomalous surface tension and other
effects are future problems to be considered.

VI. CONCLUSIONS

(i) Steps on the vicinal surface self-assemble to form
faceted macrosteps in the steady state for |�μ| < �μR(L).

(ii) For |�μ| < Max[�μy(L),�μf (τ,L)], the vicinal sur-
face does not grow/recede. The “terrace” surface contacted
with the (111) side surface of the faceted macrostep is the
(001) surface [Fig. 4(a)].

(iii) For Max[�μy(L),�μf (τ,L)] < |�μ| < �μco(L),
the vicinal surface grows/recedes intermittently in the manner
of classical 2D heterogeneous nucleation at the macrostep
edge [Figs. 4(b) and 4(c)]. The critical size of the nucleus lc,
and the mean waiting time tn, decrease as |�μ| increases,
according to Eqs. (9) and (12), respectively. V and p1 are

described by Eqs. (14) and (24), respectively. 〈n〉 ≈ Nstep/Nm

is constant, where Nm = 1.75. vstep is the smaller of Eqs. (26)
and (27).

(iv) For �μco(L) < |�μ| < �μR(L), the vicinal surface
grows/recedes in the manner of attachment-detachment of
steps at the macrostep edge [Figs. 4(d) and 4(e), Fig. 10].
The attachment-detachment of steps is understood based on
successive classical 2D heterogeneous multinucleation at the
edge of the macrostep. The absolute value of the step velocity
|vstep|, the absolute value of the surface velocity |V |, and
the slope of the “terrace” p1 increase with |�μ| according
to Eqs. (26), (28), and (24), respectively. The characteristic
length ld , the step-detachment time td , and the average height
of the merged step 〈n〉 decrease as |�μ| increases according
to Eqs. (19), (20), and (29), respectively.

(v) For �μR(L) < |�μ|, the vicinal surface roughens
kinetically due to locally merged steps [Fig. 4(f)]. The surface
quantities exhibit power-law behavior, i.e., |vstep|, |V |, and p1

increase as |�μ| increases according to Eqs. (33), (32), and
(34), respectively. In contrast, 〈n〉 decreases as |�μ| increases,
according to Eq. (31).

(vi) The finite-size and the finite-time effects are distinctive
for |�μ| � �μco(L).
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APPENDIX A: CALCULATION OF THE
SURFACE FREE ENERGY

To evaluate the surface free energy of the vicinal surface,
the terms related to the Andreev field [65] were added: η =
(ηx,ηy). The Hamiltonian for the grand canonical ensemble
with respect to the number of steps is [76]

Hvicinal = Hp-RSOS − ηx

∑
n,m

[h(n + 1,m) − h(n,m)]

− ηy

∑
n,m

[h(n,m + 1) − h(n,m)]. (A1)

The Andreev field behaves similar to a chemical potential with
respect to a single step. The surface free energy introduced
by Bhattacharjee [56] corresponds to the Andreev free energy
[65,77].

From a statistical mechanics perspective, the grand partition
function Z is calculated as Z = ∑

{h(m,n)} exp[−βHvicinal],
where β = 1/kBT . The summation with respect to {h(m,n)}
is taken over all possible values of h(m,n). The Andreev free
energy f̃ (η) [65] is the thermodynamic grand potential and is
calculated from the grand partition function Z , as [76]

f̃ (η) = f̃ (ηx,ηy) = − lim
N→∞

1

N kBT lnZ, (A2)
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where N is the number of lattice points on the square lattice. p
is also calculated using the PWFRG method from the equation
p = (〈h(m + 1,n) − h(m,n)〉,〈h(m,n + 1) − h(m,n)〉).

Using the inverse Legendre transform with respect to f̃ (η),

f ( p) = f̃ (η) + η · p, (A3)

we obtained the surface free energy f ( p) per unit xy area.

APPENDIX B: 2D CRITICAL NUCLEUS

The excess free energy for an island that contacts the faceted
macrostep G(l) is expressed by Eq. (8). For the critical nucleus,
the Gibbs free energy is a minimum with respect to the shape,
but is a maximum with respect to the size. The shape of
the critical nucleus is similar to the equilibrium island shape
[Fig. 8(c)]. As for the size, we can derive Eq. (9) in this
appendix.

If the length l is replaced with λl, where λ is a scaling param-
eter, then we haveG(λl) = −λ2�μS(l) + λ�(l) − λlγ

(110)
2 for

an island with a compact shape. dG(λl)/dλ = 0 at the critical
nucleus, so that we have

dG(λlc)

dλ

∣∣∣∣
λ→1

= [ − 2λ�μ1S(lc) + �(lc) − lcγ
(110)
2

]|λ→1

= 0. (B1)

Then,

�(lc) − lcγ
(110)
2

S(lc)
= 2�μ1. (B2)

For different �μ2,[
�(lc) − lcγ

(110)
2

]
λ2S(lc)

= 2�μ1/λ2

= 2�μ2. (B3)

Therefore, we have λ2 = �μ1/�μ2. �μ can be selected
arbitrarily, so that �μ can be one, i.e.,

λ2 = ε/�μ2. (B4)

If lc,0 is calculated so that it satisfies

�(lc,0) − lc,0γ
(110)
2 = 2εS(lc,0), (B5)

then the Gibbs free energy is obtained by

G(lc,0) = (
�(lc,0) − lc,0γ

(110)
2

)/
2. (B6)

Therefore, for �μ, we have lc = lc,0ε/|�μ| and G(lc) =
G(lc,0)ε/�μ.

APPENDIX C: RELATIONSHIP BETWEEN p1 AND 〈n〉
Let us consider a vicinal surface with the configuration of

Figs. 4(b)–4(d). 〈n〉 is then approximated as

〈n〉 ≈ Nstep/(N1 + Nm), (C1)

where N1 is the number of single steps on the surface in contact
with the (111) surface, and Nm is the number of macrosteps.
At the temperature kBT /ε = 0.4, we assume Nm ≈ 1.75. Next,
let us introduce z and x so that

N1 = zNstep, Nmacro = (1 − z)Nstep,

L1 = xL, Lmacro = (1 − x)L, (C2)

where Nmacro is the number of elementary steps that compose
macrosteps, L1 is the linear length of the “terrace,” and Lmacro is
the linear length of the macrosteps. N1 = zp̄L/a = xp1L/d,
so that

zp̄ = p1x, (C3)

and Nmacro = (1 − z)p̄L/a = √
2(1 − x)L/a, so that

1 − x = (1 − z)p̄/
√

2. (C4)

From Eqs. (C1)–(C4), we obtain Eq. (23).
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