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Vortex-Glass Superconductivity: A. Possible New Phase in Bulk High-T Oxides
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The possibility of a new thermodynamic phase in the mixed state of bulk, disordered, type-II super-

conductors is suggested: a vortex-glass superconductor. This phase lacks conventional off-diagonal

long-ranged order, yet is argued to be a true superconductor with vanishing dc resistance. In this phase

metastable currents are predicted to decay as (lnt) 't", with p (~ 1) a universal exponent. Relevance

to experiments on bulk high-T, oxides is mentioned.

PACS numbers: 74.60.Ge, 74.60.Ec

It has long been recognized that disorder plays a criti-
cal role in the static and dynamic properties of the mixed
state in type-II superconductors. Disorder pins the vor-
tex lines leading to an unobservably low voltage (creep
rate) at small currents' and destroys the translational
long-ranged order of the Abrikosov flux lattice.

EA'ects of disorder appear to be particularly acute in

the new high-T, oxides. Significant hysteresis and ir-
reversibility is observed in the magnetic response of the
mixed state in Ba-La-Cu-0 powders and Y-Ba-Cu-0
crystals, even at high temperatures comparable to T,.
Moreover, Bitter decorations on some YBaCuO crystals
show only short-range translational order (—2-3 lattice
spacing) in the flux lattice.

Since disorder destroys the translational long-ranged
order of the Aux lattice, a natural question arises. Is
there a sharp equilibrium phase boundary separating the
normal phase at high temperatures and fields, from the
"Aux creep phase" at low T arid H~H, i? The original
Anderson-Kim theory, ' although predicting a strong
crossover from fast to slow dynamics upon cooling, gives
no sharp phase boundary since, even at low T, a nonzero
(flux flow) resistance is predicted, as in the normal
phase. The purpose of this Letter is to argue that in

bulk disordered systems (but not thin films) there does,
in fact, exist a sharp equilibrium phase boundary. Below
this boundary there exists a new thermodynamic phase,
which I refer to as a vortex-glass superconductor (see
Fig. 1).

Glass phases in dirty superconductors have been sug-
gested previously in numerical simulations on Joseph-
son-junction-array models, and within a mean-field
treatment of a granular superconductor. In the latter, a
glass phase, similar to an XV spin-glass, was found when

approximately one magnetic Aux quantum penetrated a
typical plaquette. Studies on XVspin-glasses, however,
indicate that a true glass phase does not exist below
a=4, and so caution is necessary. Moreover, it is not
immediately clear what relevance the above models have
for single-crystal superconductors with microscopic dis-
order. I consider a model in the continuum with micro-
scopic pinning, and by analyzing a lo~-dimensional gen-
eralization, find strong evidence for the existence of a
true vortex-glass phase in 3D (but not 2D). This is not

inconsistent with the 3D XY spin-glass results, since an
applied magnetic field leads to considerably less frustra-
tion: All plaquettes which lie in planes with normals
perpendicular to the field have no threading Aux and are
unfrustrated. As in Ref. 7, the vortex-glass phase is
characterized by a nonzero Edwards-Anderson order pa-
rameter, yet does not have conventional oA'-diagonal
long-ranged order (ODLRO). It is argued herein,
though, to be a true superconductor with zero dc resis-
tance.

Consider the mixed state of an extreme type-II super-
conductor (Ginzburg-Landau parameter tr =X/g» I ) de-
scribed by a standard Ginzburg-Landau Hamiltonian
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with f(y) =a(R) I itrl'+b I yl', B =VxA, and H =Hz
a constant applied field. Quenched disorder is included
in the I y I term. The partition function is Z
=Tr~Aexp( —P/f) with a trace over both y and the
gauge field A.

For temperatures below T, and fields above H, ~, the
important degrees of freedom are the vortex lines thread-
ing the sample. Indeed, there exists a dual representa-
tion of a lattice version of (1) in terms of 2D bosons at
T=O, with the boson world lines r;(r), parametrized by
time, corresponding to the vortex lines r;(z) =(x;(z),
y;(z)), parametrized by z. This dual representation al-
lows a study of disorder on the mixed state, by applying
ideas and techniques from the problem of disordered
superfluids. ' In the continuum the appropriate second
quantized boson Hamiltonian is P =No+ P i+ P„with
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and Z =Tr T, [exp[ —T ' fdz & (z)]j, with T, an
"imaginary time" ordered product. Here &b(r) is a boson
field operator, and B(r) =go+ (r)b(r) (go=bc/2e) is
proportional to the vortex-line (and boson) density, i.e. ,
is the local magnetic field 8, . The modified Bessel func-
tion Ko(x) = (zr/2x)' e (for x large) describes the
interaction between vortex lines (bosons), e|=H, pl/04 n

is the vortex-line tension (boson mass), and V~(r, z) is a
random quenching pinning potential. Note that V~ cor-
responds to a space and "time" dependent potential for
the 2D bosons. For simplicity we take Gaussian disor-
der, uncorrelated in space and "time, " with mean zero
and variance h, , appropriate for microscopic pinning
centers (e.g. , oxygen defects).

There are (at least) three important energy scales in

(2). The pinning energy for a microscopic impurity is a
fraction p of the condensation energy"' H, g, i.e. ,—pH, ]go. [Therefore 5—(pH, ~) n~, where n~ is the
density of pinning centers. l Normally"' p —10, but
in the high-T, oxides with g comparable to the atomic
scale one expects p —1. This energy is then roughly
comparable to the (interaction energy)/length between
vortices separated by X (or less): po/), -H, 1 po. The en-

tropic contribution per length to the free energy of a vor-
tex line confined by its neighbors to a region of, say, k,
is roughly T /e~X —T /po (i.e. , the boson kinetic energy
h /mX ). Thus as emphasized by Nelson, high-T, ox-
ides with large T, 's and modest H, &'s are likely to be
affected by entropic effects well below T, .

The Meissner phase, (B(r))=0, corresponds to an ab-
sence of vortex lines (bosons) in (2), i.e. , H (H, ~. For
H & H, [ an Imry-Ma' argument indicates that pinning
destroys the translational (and presumably orientational)
order of the Aux lattice since, at large scales L ~ L„Auc-
tuations in the bulk pinning energy (—A'i L i ) always
dominate the crystal elastic energy ( —H, ~L /L ).
Equating these two energies gives L, —(n~p ) '. Thus,
consistent with experiment, the flux lattice in high-T,
oxides (p —1) should typically be more disordered than
in normal superconductors (p —10 ).

For H & H, ] there is a competition between thermal
fluctuations, which enhance vortex-line density Auctua-
tions, and the pinning disorder and repulsive intervortex
interactions which tend to minimize such Auctuations.
At high temperatures thermal fluctuations will dominate
and should result in an unpinned vortex-liquid phase.
This phase (which is dual to the boson superfiuid phase)
has no ODLRO ' due to the thermal motion of the vor-
tex lines. As suggested in Ref. 13, the vortex-liquid
phase provides a particularly apt description of high-T,
oxides in the temperature range below the mean-field
H, 2 line (where y first attains a non-negligible amplitude
and a description in terms of vortex lines is appropriate),
yet, due to large fluctuations, above the Abrikosov phase
or the "irreversibility" line where the flux lines are
effectively pinned. Below we argue that this pinned

Hc
0

0
Hc,
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FIG. 1. Schematic phase diagram for a bulk dirty supercon-
ductor. The presence of a vortex-liquid regime, between the
(mean-field) 8,2 line and the vortex-glass phase, requires large
fluctuations.

(3)

with a, P replica indices and the n 0 limit understood.
Equation (3) described n species of vortex lines (bosons)
interacting by an attractive interreplica interaction.

A vortex-glass instability is evident if one considers n a
positive integer greater than one. In the dilute limit, bo-
sons in different replicas should bind together to form an
n-molecule bound state. ' Since the dual Bose system is
at T=O, these molecules should undergo an n-boson con-
densation, indicative of a disorder-dominated vortex-
glass instability. In thin films, this instability will be ab-
sent, since the inverse film thickness corresponds to tem-
perature in the dual boson problem and thermal fluc-
tuations will "ionize" the n molecules. It remains to
show that this instability survives the n 0 limit.

To see this we consider a low-dimensional generaliza-
tion of (2), corresponding to vortex lines x;(z) restricted
to lie in the x-z plane. This model can be studied by em-
ploying methods introduced by Haldane' to describe 1D
boson systems. Haldane writes the Bose density operator
as

B(x) = [Bo+rI(x)]gexp[imi(x)], (4)

where Bo is the mean (vortex-line) density and 11 a small

phase is really a vortex glass (see Fig. 1).
At low temperatures pinning disorder and interactions

should dominate thermal effects. To search for a vor-
tex-glass phase in this regime, consider ensemble averag-
ing in (2). After replacing and employing a path-
integral representation of Z, the ensemble average over

V~ can be performed, yielding an effective replicated bo-
son Hamiltonian '
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fluctuation. The choice |1„A=Bo+II=—Bo+ tl„A cap-
tures the discrete nature of the boson field, since the sum
in (4) is nonzero for integer A/2tr only. Thus the condi-
tion A(x, z) =2trl for l integer specifies the location of
the vortex lines. The partition function can be written as
a functional integral over the field A (x,z): Z
=Tr~exp( —S). In the absence of disorder the effective
action is

T fO

So = „dxdz [v(B„A) '+ v '(8,A) '], (5a)

S, = —wg (sb)
p~ X,Z

with S„=Q,So +Sp. Here A=A(BO/T) . The action
(5) can be viewed as a 2D analog of the gauge theory
(1). Indeed, the scalar field A(x, z) plays the role of the
vector potential, with B—(|1,A, B„A).

The model (5) has been studied by Cardy and Ost-
lund' ' in the context of a 2D random-field AY model
with all vortices excluded. A perturbative renormaliza-
tion group in A about the fixed line described by (5a) can
be performed, and the n~ 0 limit taken. The resulting
flow equation to linear order is 86/Bi =2(1 —T/T~)d.
For T) Tg, the pinning disorder scales to zero at long
length scales and the vortex-liquid phase described by
(5a) results. For T & Ts, however, 6 grows under renor-
malization, driving the system into a new disorder-
dominated phase, which I call a vortex glass. Since ther-
modynamic phases are generally more stable in higher
dimensions, this 2D result provides strong evidence for
the existence of a vortex-glass phase in bulk systems.

When 5 grows in (5b), replicas A, and A~ tend to
lock, suggesting that a Higgs-type mass term (2,—A&)
is generated. An analogous term would be generated in
(1) were the expectation value qE&—= (y,*@~) nonzero
[where y(x) =y(x)exp[f iA dl] is a gauge-invariant
order parameter. Thus in the vortex-glass phase, al-
though there is no ODLRO I expect there is a nonzero
Edwards-Anderson order parameter (with V the volume)

cos [A,(x,z) —A p(x, z)],

fO

qEA =—
~
&p(x)& ~'wO. (6)

To study the dynamics of the vortex-glass phase, it is
convenient to reinterpret the symmetry breaking (6) in
terms of the vortex lines. Note that the action (5) is in-
variant under 4, A +2nN, for integer N. Under this
transformation, any given vortex line, specified say by
the condition A (x,z) =2+i, is transferred over and takes
the place of the vortex line specified originally by A (x,z)
=2m(l+N). In other words, A, A, +2trN corre-

where T~v=(BBD/BH) ' and T~/v=H, ~/Bo. With dis-
order, after replicating and ensemble averaging a term
proportional to A is generated, as in (3). Inserting B
from (4) into (3) and retaining only the most important
(m = ~ 1) terms one has

sponds to a global center-of-mass shift by N in the ath
replica, arriving at a configuration which, up to relabel-
ing of vortex lines, is identical to the original one. It is
this symmetry which is broken in the vortex-glass phase.
The vortex center of mass is thus eff'ectively pinned by
the disorder. Although only one pure glass phase is ex-
pected' in (5), it is convenient to treat the equivalent
but shifted (or relabeled) phases as distinct and labeled
by N. Symmetry breaking then implies that an infinite
free-energy barrier separates each "phase" N from its
neighbors N ~ l. A (Lorentz) force which acts to in-
crease N, will tend to create drops of the N+1 phase in
the metastable N phase. As pointed out by Huse, ' the
perimeter of such a drop can conveniently be viewed as a
directed vortex loop, superimposed on the reference
phase N. The loop will have an energy which grows
without bound as its size L

In the physically relevant 3D case a current J, which
produces a Lorentz force on the vortex lines, will tend to
nucleate such vortex loops leading, in the steady state, to
a finite flux-flow velocity v. Following arguments in Ref.
19, one expects v —exp( E,/T), —where E, is the energ. y
of a critical nucleating vortex loop. Assuming that vor-
tex-loop formation of size L typically requires passing
over energy barriers which (at J=O) scale as a positive
power ((1)of L implies E,—(1/J)", with p((1) a
universal exponent characterizing the T=O vortex-glass
fixed point. ' ' Thus a nonlinear voltage response is ex-
pected:

V-exp[ —(J,/J) "] . (7)

Equation (7) indicates that the linear dc resistance will
vanish. The vortex-glass phase is a true superconduc-
tor. Since a metastable current (or magnetization BM)
will relax as BJ/rit —V, integration of (7) implies J(t)
—6M(t) —(lnt) ' " as t

ac magnetic-susceptibility measurements on bulk Y-
Ba-Cu-0 crystals, in the presence of a dc field, indicate
a set of frequency-dependent "irreversibility" lines
T;„,(H). For T & T;„ flux lines have insufficient time to
penetrate the sample in the period of the ac field. A col-
lapse onto a nonzero curve T~(H)—=T;„(H;co~0) in

the co 0 limit would be indicative of a true vortex-glass
superconductor for T & Tz. [In the flux-creep picture
T;„,(H, to) 0 as ro 0.] For T) Tg, one would then
expect, from scaling arguments, ' T;„(ro)—Ts

' ' for small co, with z the dynamical and v the
correlation-length critical exponents, respectively, associ-
ated with the vortex-liquid to vortex-glass transition.

Many experimentally relevant quantities, such as the
critical behavior of the vortex-glass transition and finite-
frequency response functions in the glass phase remain
as theoretical challenges.

I thank D. S. Fisher and D. Huse for a critical reading
of the manuscript and numerous clarifying conversa-
tions, and D. H. Lee, A. Malozemoff, and J. Toner for
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