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Master-Equation Approach to the Glass Transition
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From a simple master-equation description of viscous liquids it is shown that there exist two difterent
kinds of glass transitions. Slow glass transitions lead to a Gaussian, while fast glass transitions lead to an
exponential, distribution of frozen-in energies in the glass. It is argued that amorphous semiconductors
prepared by a fast glass transition have exponential band tails of localized states.

PACS numbers: 64.70.Pf

By sufficiently rapid cooling, glasses may be formed
from any liquid, whether bonded by covalent, ionic, me-

tallic, or molecular forces. The glass transition is thus a
universal phenomenon. ' lt continues to attract atten-
tion both from a purely scientific and from a practical
point of view. As a fundamental physical problem, the
glass transition is interesting because it somehow in-

volves a breakdown of ergodicity. Technologically, an

understanding of the glass transition is important be-
cause glass properties depend on exactly how the liquid
structure is frozen at the glass transition.

Since glasses are formed from viscous liquids, a better
understanding of glasses and the glass transition must
derive from a better understanding of viscous liquids.
The properties of simple liquids can be calculated from
first principles today, but this is not the case for
viscous liquids. Though recently there have been in-

teresting attempts to extrapolate the theory of simple
liquids into the viscous and glassy regime, ' '' we here
take the different point of view in which viscous liquids
are regarded as qualitative. el@ different from nonviscous
liquids. The idea is the following. A high viscosity im-

plies a small diffusion constant. This means that most
molecular motion goes into vibrations so that a viscous
liquid spends most time in potential-energy minima. '

Occasionally, effective displacements of the molecules do
take place, however. Since one molecule cannot move
without having its neighbors move too, these "flow
events" must be highly cooperative. This is an old idea;
the small parts of the viscous liquid in which the flow

events take place have been referred to as "cooperatively
rearranging regions,

"' "quasi-independent units, "'

"thermokinetic structures, " ' or just "regions. "' This
picture of viscous flow is simple and attractive. There is

evidence in favor of it from extensive computer simula-
tions. Also, from a comparison of dielectric relaxation
and Kerr-effect measurements it can be shown that dipo-
lar reorientation in viscous liquids occurs cooperatively
via large-angle jumps and does not take place by rota-
tional diffusion. ' '

The cooperatively rearranging regions are believed to
be fairly small but large enough to be considered as mu-
tually noninteracting. The viscous liquid may therefore
be regarded as an ensemble of regions, each of which

where ~0 is a microscopic time and Boltzmann's constant
is put equal to unity. In a recent very interesting paper
Brawer has shown that Eq. (I) in the region picture is
able to explain all observed features of relaxation in
viscous liquids and glasses. ' These features include the
nonlinearity, the broad distributions of relaxation times,
and the fact that glassy relaxation proceeds with a small-
er activation energy than relaxation in viscous liquids.

The "fluid" state must have a structure much different
from the lower-lying states. It is reasonable to assume
that, once excited into this state, a region has forgotten
which state it came from and may end up in any other
state. This is consistent with the observed large-angle di-
polar reorientations. ' Under this assumption, a simple
master equation describes the time evolution of the ener-

gy probability density, P (E, t ):

eP(E, t)
Bl

P(E, t)
r(E)

"'""dE (2)r(E')

where r is given by Eq. (I), n(E) is the normalized den-
sity of states, and the lowest possible region energy is
zero. Equation (2) is equivalent to Brawer's kinetic
equation. '

Since each region consists of many molecules, thermo-
dynamic concepts may be applied. In thermal equilibri-
um, P(E, t) is approximately a Gaussian, centered
around the mean energy E(T). If the temperature is

lowered, the Gaussian is displaced towards lower ener-
gies. For a finite cooling rate, however, the system will
fall out of equilibrium sooner or later for continued cool-
ing. This is, of course, the glass transition; it takes place
around the temperature where the time to relax to equi-

spends most time in a potential-energy minimum.
Henceforth, potential energy is referred to as energy and
energy minima as states. Now, to describe the dynamics
of the regions, it is natural to use transition-state
theory. ' ' Goldstein has suggested that the transition
state corresponds to the high-temperature, more-fluid,
liquid. ' If we denote the energy of this "fluid" state by
Ep, the relaxation time, r(E), for transitions from a state
with energy E is given by

r(E) = rpe ' (E & Ep),(E,—F. )/T
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Ed =Ep T In(t p/rp). (3)

Regions with energy less than Ed are frozen. Ed, the
so-called demarcation energy, was originally introduced
in the theory for excited charge-carrier thermalization in

amorphous semiconductors. ' ' As the temperature is
lowered, Ed increases while at the same time the equilib-
rium Gaussian is displaced towards lower energies.
When the Gaussian meets Ed the glass transition takes
place.

We have studied the glass transition for systems with

librium is comparable to the cooling time. Suppose the
system is cooled at a constant rate to zero temperature in

time to, from a state of thermal equilibrium at high tem-
perature where the liquid relaxation time is small com-
pared to to. At any temperature during the cooling the
equation r(E) =tp defines a characteristic energy, Ed,
given by

constant specific heat c. The solution of Eq. (2) is plot-
ted in Fig. 1 for c =3,9, 27, 81 at a cooling rate given by
In(tp/Tp) =9. The full curve is P(E, t), the dotted curve
is the equilibrium P(E), and the vertical line marks Ed.
For each value of c four snapshots are given, starting at
almost thermal equilibrium and ending showing the
frozen-in energy distribution which will be denoted by
Pp(E). Figure 1 gives an idea of the physics of the glass
transition according to Eq. (2). The figure shows that
Pp(E) is essentially a Gaussian for small c's while it is

asyrnrnetric for large c values.
It is not hard to understand what happens at the glass

transition in two limiting cases. Consider first small
cooling rates: ln(tp/rp) )&c. In this case Ed moves fast
towards higher energies while the equilibrium Gaussian
almost does not move at all. When Ed sweeps past the
Gaussian it simply freezes it, so that Pp(E) is just the
equilibrium Gaussian at the glass transition temperature,
Tg

(E —E, ) '
Pp(E) =- [2tr((AE)')f ' 'exp

2((WE )') (slow cooling ), (4)

where E~ = cTg, ((hE ) ) =cT~, and Tg is determined
f'rom Ed(T~) =cT~, i.e. ,

Tg =Ep/[c + ln (t p/rp ) 1. (s)

In the case of fast cooling rates, In(tp/rp) «c, something
different happens. Then Ed moves only very slowly com-
pared to the Gaussian, so that Ed is almost constant dur-

ing the glass transition. Approaching the glass transi-
tion, the regions jump in energy according to Eq. (2) un-

til they, with probability ~n (E), happen to hit an energy
E below Ed. There will be only a few states left above

Eg =cTg in the glassy state, where the glass transition
temperature is again given by Eq. (5). Since n(E) is ap-
proximately exponential around E~ with a slope of I/T~,
we find

T 'exp[(E —E )/T j, E & E,
Pp E

0, E & Eg (fast cooling). (6)

An illustration of this result is provided by the inset of
the c =81 case in Fig. 1. There will, of course, always be
some states left above Eg' note also that Eg Eo as

We conclude that, insofar as Eq. (2) does describe
viscous liquids, there exist two different kinds of glass
transitions: slow and fast glass transitions. Since glasses
are thermally arrested liquids, it is generally believed
that the glass structure is nearly the same as the struc-
ture of the equilibrium liquid at temperatures just above
Tg . According to the present theory, however, this is
true only if the glass is prepared by a slow glass transi-
tion. Curiously enough, a slow glass transition freezes
the equilibrium structure because Ed moves fast across
the equilibrium Gaussian.

The relevant parameter characterizing the glass tran-
sition is the ratio K =ln(tp/rp)/cz Here cg is .the region
specific heat at Tg, allowing for the more general case of
a temperature-dependent specific heat. The region ener-
gies are distributed according to a Gaussian or an ex-
ponential, depending on whether K&&1 or K(&1. This
has important consequences for the properties of glasses.
By expanding to first order, one finds that any physical
property which is a function of E will be Gaussian or ex-
ponentially distributed depending on the value of K.
This may explain the ubiquitous appearance of Gaussian
and exponential energy-barrier distributions for linearly
and nonlinearly relaxing degrees of freedom in glassy
solids. For instance, amorphous semiconductors
prepared by a fast glass transition are likely to have ex-
ponential band tails: It is reasonable to assume that the
region energy is a function of density, where low densi-
ties correspond to large energies. ' The transfer in-

tegral, t, for electron jumps depends exponentially on the
distance between neighboring atoms, but for suSciently
small distance fiuctuations t may be expanded to first or-
der. Expanding also the region energy E to first order in

r, the average atom-atom distance within a region, one
finds f'rom Eq. (6) for the distribution of average transfer
integrals within a region p(t) ~exp( —t/Tp), where
Tp = T~(dF/dE)

~
dt/dF ~. This implies an exponentially

decreasing distribution of band widths for the bands of
electron states within each region. With allowance for
electron jumps between the regions, the midband states
will delocalize but the tail states will probably remain lo-
calized within each region. It is not hard to show then
that the bulk solid will have exponential band tails of lo-
calized states.
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FlG. 1. Solution of Eq. (2) showing the glass transition for various values of the specific heat of the cooperatively rearranging re-
gions in the viscous liquid. The cooling time, tp, is given by ln(tp/tp) =9. Th'e full curve is P(E, t), the dotted curve is the thermal
equilibrium energy probability density which is approximately Gaussian, and the line shows the demarcation energy Ed. All states
below Ed are frozen. The glass transition takes place when, upon cooling, Ed meets the equilibrium Gaussian. For each value of c,
four snapshots of the cooling are shown, the lowest subfigure showing the frozen-in energy distribution, Pp(E). Figure I is meant to
illustrate Eqs. (4) and (6) according to which Pp(E) is a Gaussian for slow cooling [c« ln(to/ro)] and an exponential for fast cool-
ing [c))ln(tp/rp)]. If T, denotes the starting temperature for the cooling process, the parameters for the figure are, for c=3,
T, =0.111Ep, 0 & E & Ep, for c =9, T, =0.097Ep, 0 & E & Ep, for c =27, T, =0.045Ep, 0 & E & Ep, for c =81, T =0.020Ep,
Ep/2&E&Ep
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The present approach to the glass transition differs in

important respects from that of Adam and Gibbs. ' In
their model, the size of the regions is temperature depen-
dent and this is ultimately the cause of the slow relaxa-
tion near the glass transition. Also, it is assumed that
each region only contains a few states, while here a re-
gion has many available states. Despite these
differences, the present theory is not necessarily incon-
sistent with the beautiful idea of an underlying second-
order phase transition to a state of zero configurational
entropy at a finite temperature. As shown by Gold-
stein, even a finite region may have a rather sharp transi-
tion to a state of almost zero entropy. ' There will be a
transition at T = To if n (E)~ exp(E/ To) as E 0. '

The state of zero configurational entropy of the bulk
equilibrium viscous liquid simply corresponds to having
each region in its "ground state. "

Throughout this Letter, by a glass transition is meant
cooling from a temperature so high that the liquid relax-
ation time, r„ is small compared to the cooling time.
But another scenario is also possible, namely the cooling
in a short time compared to r„e.g. , by sudden cooling of
a well annealed very viscous liquid. This is a true
quench; obviously it leads to a Gaussian Po(E). The
glassy state may thus be reached in three different ways:
by slow glass transitions, by fast glass transitions, and by
quenches. Slow glass transitions and quenches lead to a
Gaussian Po(E), while fast glass transitions lead to an
exponentially increasing, abruptly decaying Po(E).

The author gratefully acknowledges numerous fruitful
discussions with T. Christensen and N. B. Olsen.
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