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In a system with one conserved charge the charge diffusion is modified by nonlinear self-interactions
within an effective field theory (EFT) of diffusive fluctuations. We include the slowest ultraviolet (UV)
mode, constructing a UV-regulated EFT. The relaxation time of this UV mode is protected from
renormalization, as supported by experimental data in a bad metal system. Furthermore, the retarded
density-density Green’s function acquires four branch points, eventually increasing the range of
applicability. We discuss the fate of long time tails as well as implications for the quark gluon plasma.
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Introduction.—In a system with a single conservation
law, the late-time dynamics is universally described by
hydrodynamic diffusion of the associated conserved
charge. In the effective field theory (EFT) approach to
hydrodynamics [1–4], the linear diffusion equation is
derived as the equation of motion from a classical quadratic
effective action. If the diffusion constant depends on
the transported density, then this equation becomes non-
linear [5]. This is caused by the (self-)interactions encoded
in the corresponding effective action, eventually affecting
the correlation functions [6,7].
The onset of diffusion in a system can be characterized

by the relaxation time τ, the timescale of the relaxation of
that nonconserved quantity which relaxes slowest. In the
limiting case τ ¼ 0, the interacting EFT of hydrodynamics
predicts long time tails [10] and large renormalization
effects for the transport coefficients [11]. In this limit,
which corresponds to the instantaneous response of the
current to the source, hydrodynamic equations fail to
satisfy the commutation sum rules [12]. Therefore, a finite
relaxation rate 1=τ has to be considered to regulate the
theory of diffusion discussed above. Such a relaxation rate
has been recently measured in ultracold gas of 6Li in a
two-dimensional lattice, an example of a “bad metal,” as the
testing ground for the Fermi-Hubbard model [13].

The aforementioned relaxation time τ characterizes the
timescale of the establishment of local thermal equilibrium
in a U(1) static system [14,15]. Since the local equilibration
cannot happen arbitrarily quickly, it is expected for τ to be
subject to a lower bound [14]. It is then important to
understand how this bound is affected by fluctuations. This
can be investigated via studying the effect of self-inter-
actions in the EFT framework, in particular, the renorm-
alization effects. In fact, we need to increase the EFT cutoff
of [6,7] to include at least the slowest UV mode. Indeed,
this leads us to derive, for the first time, a UV-regulated
theory of nonlinear diffusion with a physical gapped mode.
Another motivation manifests itself in the long time tails.

It is well known that in a many body system, at late times,
the autocorrelation functions feature long time tails [18,19].
Now the question is what happens to these tails when the
local thermalization is not instantaneous. Does the thermal-
ization occur exponentially fast [20]? If not, would it
possibly lead to a longer tail for correlation functions,
thereby delaying the global thermalization?
Keeping these questions in mind, in the following,

we construct the EFT including fluctuations for a self-
interacting system with a single conserved density together
with a single gapped mode; the longest-lived gapped mode,
acting as a UV-regulator for the EFT. Our effective action is
consistent with the general framework of [1], however,
derived through the traditional Martin-Siggia-Rose (MSR)
formalism [22]. Explicitly calculating the one-loop retarded
density-density Green’s function, we discuss how the
renormalization of the diffusion constant at τ ¼ 0, per-
formed in [6,7], is affected by the gapped mode. In
particular, we discuss the renormalization of the relaxation
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time which was not included in [6,7]. The renormalized
Green’s functions then will be used to study the effect of the
gapped mode on long time tails. We conclude by discussing
the application of our results to a bad metal [13], expanding
quark gluon plasma (QGP) and also to the QGP droplet
near the QCD critical point. Natural units, kB ¼ 1 ¼ ℏ,
are implied.
Setup.—Beginning in the absence of interactions, we

consider a U(1) conserved charge with a nonrelativistic
nonconserved current as follows:

∂tnþ ∇ · J ¼ 0; τ∂tJþ JþD∇n ¼ 0; ð1Þ

withD being a constant. For finite τ, the combination of the
two equations in (1) leads to

τ∂2t nþ ∂tn −D∇2n ¼ 0: ð2Þ

This equation describes the dynamics of the diffusive
density mode together with a gapped mode

ω1;2 ¼ −
i
2τ

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4τDk2

p �
: ð3Þ

The theory has two timescales: τUV ≡ −i=ω1 is the time-
scale of the thermalization while τD ≡ −i=ω2 is the
diffusion time of the mode with momentum k. For the
long wavelength modes with τ ≪ ðDk2Þ−1:

ω1 ¼ −iDk2; ω2 ¼ −
i
τ
þ iDk2; ð4Þ

which gives τD ¼ ðDk2Þ−1 and τUV ¼ τ. This can be
compered to Fick’s law of diffusion, ∂tn −D∇2n ¼ 0,
which encodes one single diffusion mode ω ¼ −iDk2.
Since ω2 is a UV mode for Fick’s law, we refer to (2) as the
(phenomenological) theory of diffusion, UV regulated with
a physical gapped mode.
Our intent is to make Eq. (2) nonlinear. When n does

not couple to any dynamical field, this is achieved by
including the self-interactions of n [8]. These enter by
promoting D to be a function of small fluctuations
about n ¼ 0: DðnÞ ¼ Dþ λDnþ ðλ0D=2Þn2 þ � � �, where
λD ¼ dDðnÞ=dn, λ0D ¼ d2DðnÞ=dn2;…. Dropping terms
with orders higher than 2, the nonlinear version of (2) is
found to be

E½n�≡ τ∂2t nþ ∂tn − ∇2

�
Dnþ λD

2
n2 þ λ0D

6
n3
�

¼ 0: ð5Þ

In general τ could be a function of J in (1). However, since
there is no other vector involved in the setup, the scalar τ
cannot depend on the vector J at linear order; the first
contribution is quadratic in J and turns out not to
contribute to any of our results. We take τ constant in

what follows. Note also that if n refers to a charge density,
then under its changing sign, λD → −λD but D and λ0D
remain the same.
Our goal is to study correlations between fluctuations of

n. For this, we construct an effective action for n whose
equation of motion is (5). We do this in the framework of
MSR formalism [22]. The idea is to put a noise term on the
right side of (5) and then impose the fluctuation-dissipation
theorem to fix its strength. Finally, exponentiating this
stochastic equation yields the effective action Seff ¼R
dt ddxL. As we show in Supplemental Material [23],

the effective action takes the form

L ¼ iTσðnÞð∇naÞ2 − naðτ∂2t nþ ∂tn − ∇DðnÞ∇nÞ þ � � � ;
ð6Þ

where the charge conductivity σðnÞ ¼ σ þ λσnþ
ðλ0σ=2Þn2 þ � � �, is related to the diffusion constant D at
the leading order in n by the Einstein relation σ ¼ χD via
the charge susceptibility χ. To quartic order in fields this
becomes

L ¼ iTσð∇naÞ2 − naðτ∂2t nþ ∂tn −D∇2nÞ

þ iTχλσnð∇naÞ2 þ
λD
2
∇2nan2

þ 1

2
iTχλ0σn2ð∇naÞ2 þ

λ0D
6
∇2nan3: ð7Þ

Here, na is an auxiliary field, analogous to the a field in the
Schwinger-Keldysh framework [6]. In the limit τ ¼ 0, (7)
reduces to the theory of diffusive fluctuations [6]. At τ ≠ 0,
(7) defines our novel theory of nonlinear diffusion with a
physical gapped mode.
In order to study the leading effects caused by the

nonlinear terms in (5), we investigate the effect of one-loop
corrections on the retarded Green’s function in the EFT
described by (7). At one-loop order, only cubic interactions
in (7) contribute. This is why we dropped higher order
terms when expanding DðnÞ and σðnÞ. Even λ0D and λ0σ are
not needed.
Results.—The retarded Green’s function at one loop

can be parametrized by

GR
nnðω;kÞ ¼

iðσ þ δσðω;kÞÞk2

−iτω2 þ ωþ iDk2 þ Σðω;kÞ : ð8Þ

The self-energy is given by

ð9Þ
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where from the first line in (7) we have Gð0Þ
nna ¼

ðωþ iDk2 − iτω2Þ−1. Considering a hard momentum cut-
off, we evaluate the loop integrals. The cutoff-dependent
parts of Σ can be absorbed into the bare values of
coefficients D and τ. The cutoff-independent parts turn
out to be nonanalytic, that are given in d ¼ 1, 2, 3
dimensions by

Σdðω;kÞ ¼ αdðω;kÞðτDÞð2−dÞ=2 Tχ
D2

k2½f1dλ2D þ f2dλDλσ�:
ð10Þ

Here and below, fid are analytic functions of ω and k. The
nonanalyticity is encoded in

αdðω;kÞ¼
ð−Fðω;kÞÞðd=2Þ−1
ð16πÞd=2Γðd

2
Þ ·

�iπ d odd;

log 1
Fðω;kÞ d even;

ð11Þ

with Fðω;kÞ¼fð1− iτωÞ2ðDk2τ− iωτð2− iτωÞÞ=½Dk2τþ
ð1− iτωÞ2�g. Having found Σ, the next step is to calculate

the loop correction to the numerator ofGR;ð1Þ
nn . Similarly, we

find (see Supplemental Material [23])

δσdðω;kÞ
σ

¼ αdðω;kÞðτDÞð2−dÞ=2 Tχ
D2

k2½f3dλ2D þ f4dλDλσ�:
ð12Þ

The two expressions (10) and (12) fully specify (8).
Rewriting it in the form

GR
nnðω;kÞ¼

iσk2

−iðτþδτðω;kÞÞω2þωþ iðDþδDðω;kÞÞk2

ð13Þ

we find that

δDðω;kÞ ¼ λ2DTχ
4D2

ð−iωÞðτDÞ2−d2 αdðω;kÞ

× ð1 − iτωÞ
�
2þDk2τ − τωð3iþ τωÞ

−Dk2τ þ ðiþ τωÞ2
�

2

;

ð14Þ

and δτðω;kÞ ¼ 0. The latter answers the first question
raised in the Introduction: our theory, Eq. (7), predicts that
the bound on local thermalization time τ (and thus the onset
of diffusion) [14] is protected from renormalization caused
by the fluctuations. In the Discussion, we show that this
result is supported by the experimental data associated with
the bad metallic system of [13]. Note that at τ ¼ 0, (14)
reduces to the results found in [6,7].
Causality implies that GR is analytic in the upper half of

the complex frequency plane. However, the structure of

Fðω;kÞ indicates that, due to the interactions, four
branch point singularities are induced in the lower half
plane (Fig. 1):

ω̃11;22 ¼ −
i
τ

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Dk2τ

p �
;

ω̃12;21 ¼ −
i
τ
� jkj

ffiffiffiffi
D
τ

r
: ð15Þ

These branch points correspond to the minimum energy for
generating two on-shell excitations with the dispersion (3)
in the loops, as explained in Supplemental Material [23].
The location of branch points will be important when
finding the inverse Fourier transform of momentum space
correlation functions.
As the last formal result, we find Gnnðt;kÞ ¼R ðdω=2πÞGnnðω;kÞe−iωt. Note that Gnnðω;kÞ can be

simply calculated from GR
nnðω;kÞ via the fluctuation-

dissipation theorem. While at τ ¼ 0 one finds Gnnðt;kÞ
analytically [38], at τ ≠ 0 we were not able to represent
Gnnðt;kÞ in terms of known special functions. Thus, we
find this function numerically.
The results for λ2eff ≡ ½Tχ=ðτD5Þ1=2�λ2D ¼ 1

2
are displayed

in Fig. 2. For t ≫ τD, r ¼ τUV=τD has no significant effect;
the two solid line curves converge similarly. However, the
effect of r is significant at t ≪ τD. As shown in the inset, for
r ¼ ð1=10Þ, the correlation function around t ¼ ð1=10ÞτD
decays slower than for r ¼ ð1=100Þ. This is related to the
second branch point in Fig. 1, i.e., w̃22. As mentioned
earlier, we did not find Gnn analytically; but one would
expect that when evaluating the Fourier integral, among
other contributions, picking up the pole w̃22 would yield
a term ∝ e−iω̃22t ∼ e−t=τUV . This would give a finite con-
tribution at t≲ τUV ∼ rτD, which justifies the excess
shown in the inset. Obviously, when τUV → 0 [6,7],

FIG. 1. Contour plot of the phase angle φ of the complex-
valued α1 ¼ jα1jeiφ. Any discontinuous transition between two
distinct colors represents a branch cut of the retreaded Green’s
function in the complex w ¼ ωτ plane. For comparison, we have
schematically illustrated the range accessible to the diffusive
theory of Ref. [6] by a dashed semicircle in the top panel, while
our theory of nonlinear diffusion (UV regulated) with a physical
gapped mode is valid in the entire range displayed.
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w̃22 becomes −i∞, so the effect disappears. We emphasize
that this feature is valid in static systems. In a dynamical
background, the perturbations may not decay solely by an
exponential term [39].
In the limit τD ≪ t, we find the asymptotic behavior of

Gð1Þ
nn ðt;kÞ analytically. This “longtime tail,” illustrated in

red (r ¼ ð1=10Þ) and yellow (r ¼ ð1=100Þ) in Fig. 2,
comes from integration over the region surrounded by
the dashed semicircle in Fig. 1. For t > 0 and d ¼ 1:

Gð1Þ
nn ðt;kÞ ¼ g

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τDk2

p �
4

ð1 − τDk2Þ1=4
eð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−τDk2

p
Þtτffiffiffiffiffiffiffiffiffiffiffi

2πDt
p ; ð16Þ

where g ¼ ðλ2D=16D2ÞT2χ2. This answers the second
question raised in the Introduction: the fast thermalization
of the nonconserved current J does not affect the fractional
power of the longtime tail. We find t−1=2, which is identical
to the known behavior t−d=2 without UV regulator [10]. But
the exponential decay associated with diffusive fluctuations
changes. When τ ¼ 0, the late-time behavior is given by
e−

1
2
Dk2t [40]. The effect of the gapped mode is to decrease

this factor at any k. We emphasize that this exponential
decay is specific to static systems near equilibrium. See
Ref. [39] for a discussion on the existence of late-time
universal attractors in a longitudinally expanding QGP.
Applications and discussion.—Bad metal: Let us check

the results of our theory against data from the bad metallic
system [13] mentioned in the Introduction. In [13], the
charge density nðt;kÞ is identified with twice the exper-
imentally measured atomic density of one spin component.
The data from [13] consist of eight groups of points,
each group of points contains ten nðt;kÞ values, with a
fixed value of k. Reference [13] fits the data using
the analytical solution of (2) to determine Γ, D and
δn≡ nð0;kÞ. However, at high temperatures, which is

the case in [13], the thermalization length becomes short,
on the order of the lattice spacing, and fluctuation correc-
tions are of order one [6]. Therefore, instead of fitting data
to the linear equation (2), as done in [13], we propose the
nonlinear equation (5). Figure 3 illustrates the results of this
fit (blue) compared to the results of the linear equation
fit (orange and red). For the sake of consistency, in both
cases we fit data with the numerical solution of the
equation. For the linear case we find three parameters as
in [13], while in the nonlinear case we also find a fourth
parameter: λD. Our nonlinear fit procedure and the depend-
ence of our results on it are detailed step by step in
Supplemental Material [23].
As shown in the top panel, the linear fit of blue dots (blue

line) is coincident with the linear fit of orange dots (orange
line). Since each pair of orange-blue dots is associated with
a specific k, this coincidence implies δΓðkÞ ≈ 0. This may
be regarded as the realization of our earlier statement that
τ ¼ Γ−1 is protected from the nonlinear corrections in
our model.
The bottom panel of Fig. 3 indicates that δDðkÞ is

nonzero for almost all values of k in the experiment of [13].
In other words, the diffusion constant is significantly
renormalized by nonlinear effects. This is in agreement
with the prediction of our theory.
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FIG. 3. Variation of fitting parameters Γ (top), D (bottom)
versus the amplitude of the solution, namely nð0;kÞ. Orange and
red dots are obtained by fitting the data of [13] to the linear
Eq. (2) while blue dots stem from fitting the data to the nonlinear
Eq. (5). The orange, red, and blue dashed lines are the
corresponding linear fits. Γ and D are normalized by the
extrapolated zero-amplitude values Γ0 andD0, respectively. Error
bars indicate the standard error of the mean value resulting from
our fits.
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FIG. 2. Solid blue and green curves showGð0Þþð1Þ
nn while dashed

curves correspond to Gð0Þ
nn . With blue and green, we illustrate

distinct values of r ¼ τUV=τD: 1=100 and 1=10, respectively. The

red and yellow curves show the longtime tail ofGð0Þþð1Þ
nn for these

two values of r.
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As pointed out in [13], their fit of large-initial-amplitude
data with the linear equation is merely an attempt to
evaluate the possibility of nonlinear effects. We now see
from Fig. 3 that the data are also consistent with our
nonlinear equation (5). From Fig. 3 and with the data
currently available to us, it is not possible to judge if the
nonlinear fit is a better fit to the data. However, based
on [6], we can assume that large fluctuations exist in the
system and thus nonlinearities must be taken into account.
Therefore, our nonlinear fit is preferred to the linear fit
from [13], having at least two quantitative advantages:
First, the value ofD obtained here is more reliable than that
of [13]. Second, the value of λD ¼ dDðnÞ=dn can only
be extracted from the nonlinear fit of the data (see
Supplemental Material [23]).
Bjorken expansion: A simple dynamical system to

study the effect of a UV regulator on diffusive fluctuations
is the Bjorken flow, which is a hydrodynamic model for the
longitudinal expansion of the QGP.
The effect of nonlinear fluctuations in Bjorken flow

has been studied in Ref. [41]. Developing a set of
hydrokinetic equations, the first fractional power correction
to the longitudinal pressure at late times was found as
∝ 1=ðτpTÞ3=2 (τp is the proper time and 1=τp the expansion
rate of the Bjorken flow). If the expanding flow has a U(1)
charge, the fluctuations also result in a fractional power
correction of the U(1) current. This is the consequence of
nonlinear mode coupling between the currents and the
hydrodynamic variables [42]. In contrast to previous
studies, our model also features a UV regulator, i.e., τ.
Without deriving hydrokinetic equations, we estimate the
effect of the UV regulator on the late-time nonlinear
correction to the single charge density, ΔhnðτpÞi, in
“nonfluctuating” Bjorken flow. In contrast to [42], the
effect comes from the self-interactions of n. We find
(Supplemental Material [23])

ΔhnðτpÞi ¼ aTχ2μ
λ2D
D2

1

ðDτpÞ3=2
�
1 −

11

8

τ

τp
þ � � �

�
: ð17Þ

The leading correction is similar to Eq. (78a) in [42]. In fact
this term can be found through the work of [6,7]. However,
the subleading term is found entirely from the theory
proposed in this Letter, representing the effect of the UV
regulator. This is important, but if τ ≪ τp it will be smaller
than the leading non-linear effects. In order to make the
above results more accurate in a more realistic scenario, it
would be interesting to investigate the effect of the UV
regulator on the hydrokinetic setup of [42].
Another aspect of our theory of nonlinear diffusion,

worthy of future exploration, is its application near a critical
point, such as, for example, the critical point expected in
the QCD phase diagram. Near such critical point charge
fluctuations, the correlation length, and the relaxation time
of our UVmode all become large [43], such that it has to be

included into the long-wavelength description [44], making
our nonlinear theory of diffusion relevant to the search for
the critical point [45–47]; see Supplemental Material [23].
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