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The changes in mean-squared charge radii of neutron-deficient gold nuclei have been determined using
the in-source, resonance-ionization laser spectroscopy technique, at the ISOLDE facility (CERN). From
these new data, nuclear deformations are inferred, revealing a competition between deformed and spherical
configurations. The isotopes 180;181;182Au are observed to possess well-deformed ground states and, when
moving to lighter masses, a sudden transition to near-spherical shapes is seen in the extremely neutron-
deficient nuclides, 176;177;179Au. A case of shape coexistence and shape staggering is identified in 178Au
which has a ground and isomeric state with different deformations. These new data reveal a pattern in
ground-state deformation unique to the gold isotopes, whereby, when moving from the heavy to light
masses, a plateau of well-deformed isotopes exists around the neutron midshell, flanked by near-spherical
shapes in the heavier and lighter isotopes—a trend hitherto unseen elsewhere in the nuclear chart. The
experimental charge radii are compared to those from Hartree-Fock-Bogoliubov calculations using the
D1MGogny interaction and configuration mixing between states of different deformation. The calculations
are constrained by the known spins, parities, and magnetic moments of the ground states in gold nuclei and
show a good agreement with the experimental results.
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The shape of the atomic nucleus is a result of the
interactions between its proton and neutron constituents
[1]. At “magic” shell closures, nucleons arrange themselves
in energetically stable configurations, producing spherical
ground states (except for extreme cases of neutron-proton
ratios which form, e.g., the island of inversion [2–6]).
However, if one moves just a few nucleons away, residual,
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deformation-driving interactions between valence protons
and neutrons come into play. These interactions scale with
the number of valence particles, peaking at proton and
neutron midshells, where they compete with the stabilizing
effects of nearby shell closures. This produces coexisting
spherical and deformed structures, creating striking vari-
eties of nuclear shape phenomena.
Characterizing these coexisting structures and their

evolution across regions of the nuclear chart is important
for furthering our understanding of the governing inter-
actions. In this respect, isotope shift (IS) and hyperfine
structure (hfs) measurements, from which changes in
nuclear mean-squared charge radii (δhr2i) and magnetic
dipole moments (μ) can be deduced, have proven a
powerful tool [28–30]. While μ provides insight into the

orbitals occupied by unpaired nucleons, the δhr2i value is
sensitive to the radial charge distribution of the nucleus and,
hence, to changes in its shape.
The nuclei surrounding the Z ¼ 82 shell closure have

been the focus of an extensive campaign of such IS and hfs
measurements and display some of the best-known exam-
ples of nuclear shape coexistence. Notably, while the
ground states of semimagic lead nuclei remain near
spherical [25,26], those of the mercury (Z ¼ 80) [21–24]
and the bismuth (Z ¼ 83) [27] isotopic chains are seen to
stagger dramatically between strongly deformed and near-
spherical shapes around the N ¼ 104 neutron midshell,
where a strong competition between coexisting spherical
and prolate configurations takes place. Above Z ¼ 82,
departures from spherical ground states are observed in

FIG. 1. (a) Examples of hfs spectra collected during the experiment (black data points) fitted with Voigt profiles (solid lines), along
with the transition centroid frequencies (vertical dashed lines) and the measuring device used. The red and blue colors represent the fits
and centroids for ground and isomeric states and the low- and high-spin states in 176Au, respectively. The y axis is the number of α
decays, or the number of ions detected per laser step, in the WM and MR TOF MS, respectively. (b) The δhr2iA;197 values for gold
ground (solid symbols) and isomeric (hollow symbols) states deduced from the IS extracted from the data in (a) (experimental error bars
are smaller than the data points). The red and black data points are the results from the present work and literature, respectively [7–13].
The diagonal dotted lines indicate δhr2iA;197 for fixed deformations predicted by the droplet model (hβ22i1=2DM) [14], using the second

parametrization in Ref. [15] and assuming β2ð197AuÞ ¼ 0.11 [9]. The dotted lines are labeled with their corresponding hβ22i1=2DM
values. (c) Comparison of ground-state δhr2i values near N ¼ 104, for iridium (purple diamond) [16,17], platinum (teal right-pointing
triangle) [17–20], gold (red square), mercury (green up-pointing triangle) [21–24], lead (black circle) [25,26], and bismuth (blue down-
pointing triangle) [27] isotopes—the chains are arbitrarily offset for the comparison. Error bars are omitted for clarity but are typically
smaller than or the same size as the data points.
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the polonium (Z ¼ 84) [31,32] and astatine (Z ¼ 85)
isotopes [33], with smooth but rapid onsets of deformation
occurring when moving away from N ¼ 126. Meanwhile,
below the proton shell closure, spherical ground states
coexist with low-lying, deformed isomers in the thallium
(Z ¼ 81) chain [34,35].
In this work, we present our results from IS and hfs

measurements for neutron-deficient gold (Z ¼ 79)
nuclides, using the in-source, resonant-ionization laser
spectroscopy technique. The study was performed at the
ISOLDE facility in CERN, for which partial results for the
nuclear spin (I), μ values, and decay properties of some
gold isotopes have been presented [36–41]. Previous IS
studies of gold isotopes found a remarkable transition from
near-spherical ground states in 187–199Au (N ¼ 108–120),
to strongly deformed, presumably prolate configurations in
183–186Au (N ¼ 104–107) [7–13]. However, questions
remain; What happens to the ground states in the lightest
isotopes of gold? Do they remain strongly deformed, or do
they return toward sphericity? This Letter will answer these
questions.
The gold nuclei were produced in spallation reactions

induced by impinging a beam of protons with an energy of
1.4 GeV and a maximum current of 2.1 μA, onto a
50 g=cm2 UCx target. After proton impact, reaction prod-
ucts diffused out of the target matrix and effused toward a
hot cavity ion source [42], kept at a temperature of
≈2300 K. Inside the cavity, gold isotopes were selectively
ionized using the three-step ionization scheme shown in
Fig. 1 in [43] (see also Supplemental Material [44]). The
ions were extracted by a 30 kV potential and mass
separated by the ISOLDE general purpose separator
(GPS) [51], before transportation to either the windmill
(WM) system [52,53] or ISOLTRAP’s [54] multireflection
time-of-flight mass spectrometer (MR TOF MS) [55] for
ion counting. To construct hfs spectra, the number of
characteristic alpha or gamma decays measured in the
WM or of mass-resolved ions of interest detected by the
MR TOF MS were recorded for each frequency step
(see Ref. [33] for details). The IS measurements were
made by scanning the 267.6 nm atomic transition
(6s2S1=2 → 6p2Po

1=2), using a frequency-tripled titanium
sapphire laser operated in a narrow-band mode
(≈600 MHz bandwidth before frequency tripling), with
the laser wavelength recorded using a high-finesse/
Angstrom WS7 wave meter. References for the IS mea-
surements were made regularly, using a Faraday cup to
record hfs spectra of stable 197Au.
Examples of the measured hfs spectra are shown in

Fig. 1(a). Voigt profiles are fitted to the different compo-
nents, with positions determined by the standard rela-
tion [28] and intensities using the procedure described in
Ref. [53] (see Supplemental Material [44] for further
details). The fits were made assuming fixed I values taken
from available data [56] and our previous studies [36–41],

while the IS relative to stable 197Au (δνA;197 ¼ νA − ν197)
and the magnetic hfs constants for the atomic levels of the
scanned transition (a6s and a6p) were left as free
parameters.
The measured δνA;197 value is related to the δhr2iA;197

via δνA;197 ¼ ðkNMS þ kSMSÞ½ð1=MAÞ − ð1=M197Þ� þ
Fδhr2iA;197, where the field shift constant F and the
normal (kNMS) and specific (kSMS) mass shift constants
needed to be calculated and MA is the atomic mass of the
isotope with mass number A.
For this work, new atomic physics calculations have

been performed employing relativistic coupled cluster
theory, using the Dirac-Coulomb Hamiltonian, with a
correction on the Gaunt interelectron interaction. Up to
perturbative quadruple cluster amplitudes are taken into
account for the correlation treatment, which is quite new for
IS problems [57–61]. The constants kNMS and kSMS are
calculated using fully relativistic operators [44,62–65]. In
the calculations, the locally modified relativistic electronic
structure codes [66–75] have been used as well as our
method of constructing compact basis sets [59,76].
The results give F ¼ −40.1ð11Þ GHz=fm2, kNMS ¼
600ð40Þ GHz u, and kSMS ¼ 103ð93Þ GHz u, giving a total
mass shift constant is kNMS þ kSMS ¼ 703ð101Þ GHz u.
Our δνA;197 and corresponding δhr2iA;197 results for gold

nuclei are given in Table I. The accompanying hβ22i1=2DM
values are root-mean-squared deformation parameters
based on comparison of our δhr2iA;197 values with droplet
model (DM) predictions, using the second parametrization
in Ref. [15] and assuming β2ð197AuÞ ¼ 0.11 [9].
Our new δhr2iA;197 values are plotted in Fig. 1(b), along

with literature values for 183–199Au taken from [9–11,13,39].
The literature values display a large jump in deformation at
186Au, followed by a plateau of strongly deformed ground
states for 183–186Au, extending down toN ¼ 104. Our results
show that this plateau continues down to 180Au, with a large
and sudden step back toward sphericity at 179Au (N ¼ 100).
Apart from 178Aug;m, which display a case for shape
coexistence and shape staggering relative to their spherical
neighbors [77], the lightest gold isotopes evolve toward near
sphericity, down to the extremely neutron-deficient case
176Au (N ¼ 97).
In Fig. 1(c), we compare the δhr2i for ground states of

gold, bismuth, mercury, iridium, and platinum nuclides
(isomeric states are omitted for clarity) to those of the
spherical lead isotopes. The data for thallium ground states
are not included here, as they follow the same trend as the
lead isotopes (see Refs. [34,35]). The gold, mercury, and
bismuth chains display dramatic changes in ground-state
deformation relative to the lead nuclides around N ¼ 104,
with large increases in δhr2i indicating sudden transitions
from near-spherical to strongly deformed configurations.
Though the staggering patterns in the mercury and bismuth
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radii bear a resemblance, the trend followed by the gold
nuclei is notably different. Here, similar to the platinum
and iridium isotopes, the increase in δhr2i values around
N ¼ 104 indicates a transition to deformed ground-state
configurations for both the odd- and even-N gold isotopes.
However, the observed step in the charge radii in the gold
chain is significantly larger than that in the platinum and
iridium cases. Furthermore, the transition from spherical to
strongly deformed shapes is much sharper in the gold
compared to that seen in the platinum chain, and, while a

prominent odd-even staggering is observed in the latter, the
trend followed by the strongly deformed gold cases is much
flatter. This sharp and large jump between near-spherical
ground states, to a plateau of strongly deformed ones at the
neutron midshell, is a pattern that is unique to the gold
isotopes within the chart of nuclides.
As well as δhr2iA;197 values, Table I gives values

for μ, most of which were published in our previous
works [36–41] but are included for completeness. All μ
values have been calculated using the approach to the
hyperfine anomaly (hfa) described in [41], including
μð177;179AuÞ which have been recalculated from [36].
Our value for μð83AuÞ agrees reasonably with μð183AuÞ ¼
1.972ð23ÞμN [10], with the small difference due to the
different treatment of the hfa. Our new result for 181Au
assumes I ¼ 3=2, which gives an experimental μ in good
agreement with that expected of a single-particle πh9=2
state (μeffðπh9=2Þ ¼ 1.185, using an effective spin g factor
gs;eff ¼ 0.6gs).
To further explore our experimental results, we have

performed Hartree-Fock-Bogoliubov (HFB) calculations
following the protocol of Ref. [78]. The candidates for
the empirical ground states are chosen from the calculations
for having (i) the same Iπ as that assigned experimentally;
(ii) the value of μ in best agreement with the experimental
data; and (iii) an excitation energy of < 1 MeV relative to
the theoretical ground state. Note that similar selection
criteria were recently used successfully for modeling the
radii of mercury isotopes using the Monte Carlo shell
model (MCSM) [23,24]. However, odd-odd nuclei such as
those in the gold chain remain a challenge for the MCSM
approach.
Our HFB calculations use the D1M Gogny interaction

[79] with the equal filling approximation for the odd-A
and odd-odd gold nuclei. Similarly to our recent works
[27,78,80,81], potential energy surfaces are calculatedwhile
blocking quasiparticles that are compatible with the Iπ for
the ground and isomeric states deduced from experiment,
and, for 183;185Au, the known Kπ ¼ 1=2− assignments were
used (see Ref. [82] and references therein).
Magnetic moments are calculated with the method

described in Ref. [78], using an effective operator μ̂eff ¼
0.82gsŝþ 1.25glbl, where gl is the orbital g factor for the
free nucleon. Effective coefficients are used to account for
beyond mean-field and core-polarization effects [83],
which are required to reproduce experimental values. For
strongly deformed cases, rotational contributions are also
included.
The calculated and experimental δhr2iA;197 values for

gold isotopes are compared in Fig. 2 (a similar comparison
for μ is provided in Supplemental Material [44]). The main
features of the experimental results are reproduced well:
moving from heavier to lighter masses, the jump from near-
spherical to well deformed at A ¼ 186; a retention of

TABLE I. Values for the IS (δνA;197) and δhr2iA;197 relative to
197Au extracted from the experimental data, assuming different I
assignments. The I values in parentheses represent cases where
the assignment is not certain or has not been directly measured.
Statistical uncertainties from fits to the data are given in round
parentheses, while systematic uncertainties stemming from the
atomic calculations are given in curly brackets. The hβ22i1=2DM
values are taken from comparison to predictions from the DM.
Our values of μð181;183AuÞ are presented here for the first time,
while the other values are included for completeness—all μ
values are calculated taking the hyperfine anomaly into account
as described in [41].

Isotope I δνA;197 (MHz) δhr2iA;197 (fm2) hβ22i1=2DM μ (μN)

176Auls (3) 43340(640) −1.091ð16Þf31g 0.17 −0.823ð48Þ [40]
(4) 42860(660) −1.079ð16Þf31g 0.17 −0.853ð54Þ [40]
(5) 42520(700) −1.071ð16Þf31g 0.17 −0.873ð55Þ [40]

176Auhs (8) 42580(310) −1.072ð8Þf31g 0.17 5.14(20) [40]

(9) 43070(370) −1.085ð9Þf31g 0.17 5.18(20) [40]
177Aug 1=2 39290(220) −0.990ð5Þf29g 0.18 1.257(64)a

177Aum (11=2) 37860(250) −0.954ð6Þf28g 0.19 6.519(38) [41]
178Aug (2) 24650(260) −0.624ð7Þf18g 0.24 −0.884ð68Þ [38]

(3) 23800(260) −0.603ð7Þf18g 0.25 −0.962ð77Þ [38]
178Aum (7) 9790(140) −0.254ð3Þf8g 0.30 4.84(8) [38]

(8) 10300(140) −0.266ð3Þf9g 0.30 4.89(8) [38]
179Au 1=2 31570(200) −0.796ð5Þf23g 0.19 1.050(30)a

180Au (1) 10650(200) −0.274ð5Þf9g 0.28 −0.830ð90Þ [37]
181Au (3=2) 7820(230) −0.203ð6Þf7g 0.28 1.238(67)b

182Au (2) 7160(200) −0.186ð5Þf6g 0.27 1.664(91) [37]
183Au (5=2) 5620(120) −0.147ð3Þf5gc 0.27 2.057(39)d

187Aum (9=2) 5380(160) −0.139ð4Þf4ge 0.23 3.529(53) [39]
191Aum (11=2) 7950(180) −0.201ð4Þf6g 0.16 6.326(37) [41]
193Aum 11=2 4780(180) −0.121ð4Þf4g 0.15 6.320(37) [41]
195Aum 11=2 1760(220) −0.045ð5Þf1g 0.13 6.316(37) [41]

aRecalculated from the experimental hfs a constants from [36].
bDerived from experimental data a6s ¼ 22900ð100Þ MHz,

a6p=a6s ¼ 0.1155ð45Þ (present work).
cOur value differs to δhr2iA;197ð183AuÞ ¼ −0.130ð9Þ [10],

partially due to the different electronic factors used.
dDerived from experimental data a6s ¼ 23037ð40Þ MHz,

a6p=a6s ¼ 0.1148ð15Þ (present work). The small difference
between ours and the literature value of 1.972ð23ÞμN [10] is
due to the treatment of the hyperfine anomaly.

eδhr2iA;197ð187AumÞ is calculated using the new electronic
factors, with δνA;197ð187AumÞ taken from [39].
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strongly deformed ground states for A ¼ 180–186; a return
toward sphericity for 176;177;179Au; and the shape staggering
and large isomer shift in 178Au.
However, at points, there remain discrepancies between

experiment and theory which may be due to configuration
mixing (CM) between states of different deformation, as
was recently seen in the bismuth isotopes [27]. The
possible influence of CM in the gold isotopes was explored
following the same method used in Ref. [27], taken from
statistical physics [84,85]. Here, several states of different
deformations (q) are mixed, and the average value of an
observable (O) is calculated using the expression

hOi ¼
R
O exp½EðqÞ=T�dqR
exp½EðqÞ=T�dq ; ð1Þ

where EðqÞ is the HFB energy of the potential energy
surface at deformation q and T is a parameter which allows
mixing between low-lying states. For our calculations, a
value of T ¼ 0.5 MeV was used.
The calculated results including CM are shown in Fig. 2.

An improved agreement is observed in the region of strong
ground-state deformation, while the description of the near-
spherical cases remains comparable to those without CM.
Overall, though differences remain, a good agreement
between experiment and calculation is observed, especially
considering the odd-A and odd-odd nature of gold isotopes.
The general applicability of our approachwas investigated

by performing calculations for neutron-deficient nuclei from
mercury (Z ¼ 80) to astatine (Z ¼ 85). These nuclides are a
hotbed of shape phenomena, transitioning from the stagger-
ing in ground-state deformation of the mercury isotopes

that lie below spherical lead nuclei [25,26] to the
polonium [31,32] and astatine nuclides [33] with their early
onsets of deformation as the neutron number moves away
from N ¼ 126. All of this comes in addition to the cases of
shape coexistence that are commonplace throughout this
region. This variety in behavior poses a significant challenge
to any theoretical approach, particularly when attempting to
tackle them in a consistent manner.
For these calculations CM was included, and the same

Iπ , μ, and excitation energy (< 1 MeV) selection criteria
were used. The results are compared to experimental data in
Fig. 3. A good overall agreement is seen across the region;
however, there are large discrepancies between for some
thallium and mercury isotopes. For the former, strong
deformations are calculated in a number of the lightest
isotopes that are known to have near-spherical shapes,
while for the latter, the dramatic staggering is not
reproduced.
Closer inspection of the calculations for thallium iso-

topes show that, when a state with strong deformation is
selected, it has only a fractionally better μ relative to
experiment than a spherical candidate. Thus, our selection
criteria do not work in these particular cases. For the
mercury chain, it was shown in Ref. [78] that the staggering
was reproducible only by selecting states in the even-even
isotopes with correct deformations. In our calculations, the
staggering can be reproduced only if an extra constraint on
the δhr2i is used for state selection (see Supplemental
Material [44]). This indicates that there are candidates
present at low excitation energies in the HFB calculations
with a set of properties consistent with experimental data;
however, the present ingredients of the D1M Gogny
interaction are not sufficient to correctly predict them as
ground states.

FIG. 2. Comparison between experimental δhr2iA;197 values
(black circle) for gold isotopes with HFB calculations without
(red square) and with (blue up-pointing triangle) CM included.
The filled symbols connected by lines indicate ground states,
while the hollow symbols represent the isomers in 178;187Au and
the high-spin state in 176Au. The 11=2− isomers have been
excluded for clarity.

FIG. 3. Comparison between experimental (black circle) and
theoretical (red square) results for ground-state δhr2i values along
isotopic chains. The isotopic chains are arbitrarily offset from
each other for clarity and are labeled with their chemical symbol
and proton number.
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In summary, the δhr2i values of ground and isomeric
states in neutron-deficient gold isotopes have been mea-
sured using the in-source, resonant-ionization technique.
Advanced atomic calculations of the electronic factors with
the refined correlation treatment enable us to decrease
systematic theoretical uncertainties in δhr2i down to 2.7%,
which is comparable in many cases to the experimental
uncertainties. An end to the region of strongly deformed
ground states has been observed, and a move toward
sphericity is seen in 176;177;179Au. Our results reveal a
unique pattern in the ground-state shape evolution of gold
isotopes that so far has not been observed elsewhere in the
nuclear chart.
HFB calculations were performed for gold isotopes using

theD1MGogny interaction and a schematic approach toCM
between states of different deformations, with the exper-
imental μ and Iπ used as criteria for selecting candidate
states. A good agreement between these calculations and
experimental results was obtained. Further δhr2i calcula-
tions were performed for the ground states of neutron-
deficient nuclides near Z ¼ 82. A good agreement with
experiment was observed, with candidates for ground states
with correct Iπ and μ values found for almost all cases across
the region. However, the criteria needed for selecting
appropriate states from the calculations highlight that further
refinement of the present interaction is required. In this
respect, δhr2i and μ values can play an important role in
constraining the development of future interactions. In
addition, though the schematic statistical approach toward
CMusedwas successful, it indicates the necessity to include
such mixing at a microscopic level in the future works.
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