
All-Orders Quadratic-Logarithmic Behavior for Amplitudes

Benjamin Basso ,1,* Lance J. Dixon ,2,† Yu-Ting Liu ,2,3,‡ and Georgios Papathanasiou 4,§

1Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université,
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We classify origin limits of maximally helicity violating multigluon scattering amplitudes in planar
N ¼ 4 super-Yang-Mills theory, where a large number of cross ratios approach zero, with the help of
cluster algebras. By analyzing existing perturbative data and bootstrapping new data, we provide evidence
that the amplitudes become the exponential of a quadratic polynomial in the large logarithms. With
additional input from the thermodynamic Bethe ansatz at strong coupling, we conjecture exact expressions
for amplitudes with up to eight gluons in all origin limits. Our expressions are governed by the tilted cusp
anomalous dimension evaluated at various values of the tilt angle.
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Introduction.—For generic kinematics, perturbative scat-
tering amplitudes can be extremely complicated functions
of the kinematic variables. In certain limits, they may
simplify enormously. For general gauge theories, simplify-
ing kinematics include Sudakov regions, where soft gluon
radiation is suppressed, and high-energy or multi-Regge
limits, where Regge factorization holds. In planar N ¼ 4
super-Yang-Mills theory (SYM), the duality of amplitudes
to polygonal Wilson loops [1–4] allows near-collinear
limits to be computed [5,6] in terms of excitations of the
Gubser-Klebanov-Polyakov flux tube [7,8]. Recently, an
even simpler kinematical region for six-gluon scattering in
the maximally helicity-violating (MHV) configuration was
found [9,10], the “origin” where all three cross ratios of the
dual hexagon Wilson loop are sent to zero. In this limit,
the logarithm of the MHVamplitude becomes quadratic in
the logarithms of the cross ratios. The coefficients of the
two quadratic polynomials, Γoct and Γhex, can be computed
for any value of the ’t Hooft coupling λ≡ g2=ð16π2Þ by
deforming the Beisert-Eden-Staudacher (BES) kernel [11]
by a “tilt” angle α, giving rise to a “tilted cusp anomalous
dimension” ΓαðgÞ (see Sec. A of the Supplemental Material
[12]). The usual Beisert-Eden-Staudacher kernel and cusp
anomalous dimension are recovered by setting α ¼ π=4,
Γcusp ¼ Γα¼π=4, while the two hexagon-origin coefficients
are given by Γoct ¼ Γα¼0 and Γhex ¼ Γα¼π=3.

This Letter will explore analogous origins for higher-
point MHV amplitudes, regions where the same quadratic
logarithmic (QL) behavior holds. We will see that there is a
cornucopia of such regions at seven and especially eight
points. The regions need not be isolated points; they can be
one-dimensional lines starting at seven points, and up to
three-dimensional surfaces starting at eight points. They
can be classified by cluster algebras [16,17], which provide
natural compactifications of the space of positive kinemat-
ics [18–21], at the boundary of which these limits are
located. Furthermore, we will provide a master formula that
we conjecture organizes the QL behavior of MHV ampli-
tudes in all of these regions for arbitrary coupling, as a
discrete sum over tilt angles, in which ΓαðgÞ carries all of
the coupling dependence. Our formula is motivated by
studying the thermodynamic Bethe ansatz (TBA) repre-
sentation [5,22–24] of the minimal-area formula [1] for the
amplitude at strong coupling.
Classifying origin limits.—Dual conformal symmetry

[1–4,25] in planar N ¼ 4 SYM implies that MHV ampli-
tudes for n gluons depend on 3ðn − 5Þ independent
kinematical variables. These may be chosen as a subset
of the nðn − 5Þ=2 dual conformal cross ratios,

ui;j ¼
x2i;jþ1x

2
j;iþ1

x2i;jx
2
jþ1;iþ1

; ð1Þ

where xμi;j ≡ pμ
i þ pμ

iþ1 þ � � � þ pμ
j−1 are sums of cyclicly

adjacent gluon momenta, and indices are always mod n.
For n ¼ 6, all cross ratios ui ≡ uiþ1;iþ4, i ¼ 1, 2, 3 are

independent, and the origin limit is simply defined as the
kinematic point
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Oð6Þ∶ ui → 0; i ¼ 1; 2; 3: ð2Þ
At higher n, there are ðn − 5Þðn − 6Þ=2 Gram determinant
polynomial relations between the cross ratios, because
there are a limited number of independent vectors in fixed
spacetime dimensions. (For their explicit form for n ¼ 7, 8,
see Sec. B of the Supplemental Material [12].) These
relations raise the question of how to define the appropriate
generalizations of the origin limit.
To answer this question, we consider the “positive

region,” a subregion of Euclidean scattering kinematics
where amplitudes are expected to be devoid of branch
points [19,26]. Thus, the first place to look for simple
divergent behavior is at pointlike limits at the boundary of
the positive region. Such limits may be found systemati-
cally using “cluster algebras” [16,17] associated with the
Grassmannian Grð4; nÞ [27], which provide a compactifi-
cation of the positive region [18–21]; see also [28].
Accordingly, the positive region may be mapped to the
inside of a polytope, whose boundary comprises vertices
connected by edges that bound polygonal faces, that bound
higher-dimensional polyhedra. Cluster algebras, or more
precisely cluster Poisson varieties, consist of a collection of
clusters, each containing 3ðn − 5Þ cluster X-coordinates
X i, corresponding to a coordinate chart describing this
compactification. Setting all X i → 0 yields a vertex at the
boundary of the positive region. Letting all but one X i
vanish gives an edge connecting neighboring clusters,
known as a “mutation.” It is also associated with a bira-
tional transformation between the X coordinates of the
connected clusters, enabling the generation of a cluster
algebra from an initial cluster.
We start with the finite Grð4; nÞ cluster algebras for

n ¼ 6, 7, with Dynkin labels A3 and E6 [17]. We first
observe that in all boundary vertices ui;j ¼ 0 or 1. These
kinematic points contain the n ¼ 6 origin limit, Eq. (2); at
n ¼ 7 we find 28 clusters describing analogous limits
where all but one of the seven ui ≡ uiþ1;iþ4, i ¼
1; 2;…; 7 vanishes,

Oð7Þ
j ∶ ui≠j → 0; uj ¼ 1: ð3Þ

The seven origins are related by a cyclic symmetry,

ui ↦ uiþ1. There are four clusters for each Oð7Þ
j , two with

a different direction of approach to the limit, plus their
parity images.
All of these clusters form a cyclic chain connected by

mutations or lines in the space of kinematics. In terms of

cross ratios, the line connecting Oð7Þ
7 and Oð7Þ

1 is

LINE71∶ ui≪1; i¼2;3;4;5;6; u7þu1¼1; ð4Þ
with u1; u7 ∈ ½0; 1�. The remaining lines are obtained by
cyclic symmetry. Quite remarkably, the amplitude exhibits
exponentiated QL behavior not only on the points, Eq. (3),
but also on these origin lines! This QL behavior also

implies that the value of the amplitude is independent of the
direction or speed of approach to the limit; it remains the
same function of the cross ratios irrespective of the rate
with which they tend to zero.
Inspired by these examples, we define “origin points” at

higher n as vertices where at least 3ðn − 5Þ cross ratios
approach zero. We now classify the n ¼ 8 origin points.
While the corresponding Grð4; 8Þ cluster algebra is infinite-
dimensional, there is a procedure for selecting a finite
subset of clusters [26,29–32] based on tropicalization [33];
see also [34]. Here, we start with a cluster corresponding to
an origin point, and generate new clusters by mutations
until this condition is no longer met. We find 1188 clusters
contained in the finite subset selected in [26,29–32], as
further described in Sec. C of the Supplemental Material
[12] and in an ancillary file. Modding out by parity,
dihedral symmetry, and direction of approach, these
origins belong to the nine classes shown in Table I, where
ui≡uiþ1;iþ4, i ¼ 1; 2;…; 8, and vi≡uiþ1;iþ5, i ¼ 1, 2, 3, 4.
This table may be obtained even more simply by assuming
that all cross ratios approach 0 or 1, and scanning for all
combinations that satisfy the Gram determinant constraints.
This process also identifies one more potential origin,
OX ¼ ð0; 0; 1; 0; 0; 1; 0; 1; 0; 0; 0; 0Þ, in the ðui; vjÞ notation
of Table I. It lies outside of the positive region, and we defer
its study to future work.
At n ¼ 8, there are also higher-dimensional QL surfaces

connecting the Oi, which generalize the seven-point
LINE 71, Eq. (4). Motivated by this line, which also defines
an A1 subalgebra of the E6 cluster algebra, we searched
for maximal subalgebras of the Grð4; 8Þ cluster algebra that
move one solely from origin to origin. Two A3 subalgebras
correspond to two cubes, CUBE 6789 and CUBE 5678 [35].
Two A2 subalgebras correspond to PENTAGON 345 and
PENTAGON 234. An A1 × A1 corresponds to SQUARE 456.
An A1 subalgebra SUPERLINE 1 connects two super-
origins O1. These high-dimensional spaces interpolating
between origins are summarized in Table II and are
depicted in Fig. 1.

TABLE I. All dihedrally inequivalent origin classes for n ¼ 8.
Zeros represent infinitesimal values. There are nine infinitesimal
cross ratios for all origins except for the “super-origin” O1, which
has ten. All nonzero cross ratios are close to unity.

Origin class u1 u2 u3 u4 u5 u6 u7 u8 v1 v2 v3 v4

O1ðsuperÞ 0 0 0 0 0 0 0 0 0 1 0 1
O2 0 0 0 0 0 0 0 1 0 1 0 1
O3 0 0 0 0 0 0 0 1 0 0 1 1
O4 0 0 0 0 0 0 1 1 0 0 1 0
O5 0 0 0 0 0 1 0 1 0 0 1 0
O6 0 0 0 0 1 0 0 1 0 1 0 0
O7 0 0 0 0 1 0 0 1 0 0 1 0
O8 0 0 0 1 0 0 0 1 0 1 0 0
O9 0 0 0 1 0 0 0 1 0 0 0 1
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Perturbative data and bootstrap.—In this Letter, we
work with the n-point remainder function Rn, related to the
MHV amplitude by

exp Rn ≡ AMHV
n =ABDS

n ;

where the known, infrared-divergent normalization factor
ABDS
n is essentially the exponential of the one-loop ampli-

tude [36–38]. The remainder function is infrared-finite
and invariant under dual conformal symmetry as well as the
n-gon dihedral symmetry group Dn.
Using perturbative data through seven loops, R6 was

found to simplify drastically [9] at the origin, Eq. (2): To
Oðu0i Þ, it becomes the sum of two QL polynomials,

R6¼ −
Γ0 − Γπ=4

24
ln2 ðu1u2u3Þ−

Γπ=3 − Γπ=4

24

X3
i¼1

ln2
�

ui
uiþ1

�
;

ð5Þ

where each polynomial is multiplied by the tilted cusp
anomalous dimension Γα evaluated at different angles
α ¼ 0, π

4
, π
3
[10]. For n ¼ 6, D6 acts on the ui as arbitrary

S3 permutations. The origin preserves this symmetry, so
only S3-symmetric quadratic polynomials are allowed,
which are exhausted by those of Eq. (5).
For n ¼ 7, QL behavior was observed for R7 through

four loops at the dihedrally equivalent origins Oð7Þ
j [39].

More generally, a four-loop computation along the lines of
Ref. [39] reveals that the remainder function R7 on LINE 71,
Eq. (4), is given by,

R7ðLINE 71Þ ¼
X3
i¼1

ciP
ð7Þ
i ; ð6Þ

where

Pð7Þ
1 ¼

X6
i¼1

liliþ1 þ
X5
i¼1

liliþ2;

Pð7Þ
2 ¼ −l1l7 þ

X7
i¼1

l2i þ
X4
i¼1

liliþ3;

Pð7Þ
3 ¼

X7
i¼1

liliþ2 −
X3
i¼1

liliþ4 ð7Þ

are quadratic polynomials in the logarithms, li ≡ ln ui. In
Eq. (6) and in the following, we give only the leading QL
behavior in the given limit. We never find any linear-
logarithmic terms. There are constant terms followed by
subleading power corrections, which we do not study.
Through four loops, the coefficients ci in Eq. (6) are

given by

c1 ¼ g4ζ2 −
37

2
g6ζ4 þ g8

�
1975

8
ζ6 − 2ζ23

�
þOðg10Þ;

c2 ¼ −
5

2
g6ζ4 þ g8

�
413

8
ζ6 − 2ζ23

�
þOðg10Þ;

c3 ¼ −
35

8
g8ζ6 þOðg10Þ; ð8Þ

where ζn ¼
P∞

k¼1 k
−n is the Riemann zeta value.

We can derive the decomposition, Eq. (6), to all loop
orders via a “baby” amplitude bootstrap, using the following
conditions. (1) We assume that R7 is QL. (2) Continuity—

the result at Oð7Þ
7 (Oð7Þ

1 ) is obtained from that on LINE 71 by
setting l7 → 0 (l1 → 0). (3) The following three conditions
from dihedral symmetry: (i) The full D7 is broken on the
line but a single reflection (flip) survives: ui ↔ u8−i. It
exchanges the two end points u7 ¼ 1 and u1 ¼ 1. (ii) There
is a flip symmetry at u7 ¼ 1: ui ↔ u7−i. (iii) The behaviors
at the two endpoints are related by cycling ui ↦ uiþ1.
(4) The final-entry (FE) condition.
MHV amplitudes obey a FE condition, which controls

their first derivatives [40]. For n ¼ 6 and general kinemat-
ics, the FE condition removes three of the nine symbol
letters [41], namely 1 − ui, but at the origin these letters are
irrelevant because they approach 1. Hence, the six-point FE
condition trivializes at the origin.
In contrast, the seven-point FE condition allows 14

symbol letters for general kinematics [42], which collapse
on LINE 71 to six letters out of a total of seven. We obtain a
single constraint,

½u7∂u7 þ u1∂u1 − u4∂u4 �R7 ¼ 0; ð9Þ
where derivatives for ln u7 are taken independently of ln u1,
despite the constraint u7 þ u1 ¼ 1 on LINE 71. Combining

6

8

5
8

7
6

8

7
5

4

9

7
6

4

3

5

3

2

2

1 1

FIG. 1. The system of eight-point origins exhibiting QL
behavior. We omit many origins that are related to the ones
shown by dihedral symmetry. The node numbers correspond to
Oi in Table I or their dihedral images. The behavior on the lines
and surfaces shown in the figure is also QL, except for the dashed
line between O1 and O2.

TABLE II. Relations among the finite cross ratios for the
octagon boundaries. All the cross ratios unspecified in the
relations are implicitly infinitesimal.

Boundary Relations

CUBE 6789 u3 þ u4 ¼ u7 þ u8 ¼ v1 þ v4 ¼ 1
CUBE 5678 u1 þ u2 ¼ u4 þ u5 ¼ v2 þ v3 ¼ 1
SQUARE 456 u1 þ u2 ¼ u7 þ u8 ¼ v4 ¼ 1
PENTAGON 345 u8 þ u1u7 ¼ u7 þ u8v4 ¼ v4 þ u7v3 ¼ 1
PENTAGON 234 u1 þ u8v3 ¼ v3 þ u1v4 ¼ u8 þ u1v1 ¼ 1
SUPERLINE 1 v1 ¼ 1 − v2 ¼ v3 ¼ 1 − v4
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all constraints, the only allowed QL polynomials are
exactly the three given in Eq. (7), and no linear-logarithmic
structures survive. That is, the possible kinematic depend-
ence of R7 is already saturated by Eq. (7) at four loops. We
will see that the TBA at strong coupling leads to precisely

the same three Pð7Þ
i , and to a natural conjecture for all

higher-loop corrections to the coefficients, which matches
Eq. (8) through four loops.
The symbol of the eight-point remainder function R8 is

known at two and three loops [43,44]; it vanishes at all
the origins and interpolating surfaces, as it must to be QL.
For all the kinematics in Table II, we computed the full
functions at two loops [45] and, in some cases, up to five
loops using the pentagon operator product expansion
(OPE) [6]. In all cases, we found that the remainder
function R8 is QL [47].
Furthermore, we repeated the all-loop seven-point analy-

sis at eight points, starting on CUBE 6789, and then going on
to other adjacent regions, using continuity at the boundaries
between regions; see Fig. 1. In all cases, we found precisely
five independent QL polynomials obeying the restrictions.
On CUBE 6789, see Table II, they have the form,

R8ðCUBE 6789Þ ¼
X5
i¼1

diP
ðCÞ
i ; ð10Þ

where

PðCÞ
1 ¼

X8
i¼1

l2i − 2
X4
i¼1

liliþ4 − 2ðl3 − l7Þðl4 − l8Þ; ð11Þ

PðCÞ
2 ¼ 2

X4
i¼1

liliþ4 þ ðl3 − l7Þðl4 − l8Þ þ ðl1 þ l5Þðl1 þ l4Þ

þ ðl3 þ l4 þ l7 þ l8Þl3 þ ðl2 þ l6Þl2 þ
X4
i¼1

l2
i ;

ð12Þ

with li ≡ ln ui and li ≡ ln vi. The lengthier PðCÞ
3;4;5 are

provided in Sec. D of the Supplemental Material [12].
One has d3 ¼ d4 ¼ ζ2g4 through two loops; the remaining
coefficients start at higher orders. The same form, Eq. (10),
applies in the other QL-connected regions, with the same
di’s but different polynomials. Similarly, the baby bootstrap
yields a five-polynomial ansatz for SUPERLINE 1; since it is
disconnected from the other regions, it comes with its own
set of coefficients, fi. We give the expressions for all five
polynomials in all possible regions, along with weak
coupling expansions of the di and fi coefficients through
eight loops, in the ancillary files octagon_QL_
formula.txt and octagon_QL_coefs.txt.
Master formula from TBA.—Additional insight into the

QL behavior of the amplitudes may be found at strong
coupling using the AdS/CFT-dual string theory description,
which maps the problem to computing the minimal

world-sheet area for a string anchored on a null polygonal
contour at the boundary of AdS [1]. Using the integrability
of the classical string theory [48], it boils down to solving a
set of nonlinear TBA integral equations [22,23]. We will
now outline how the TBA equations can be linearized near
origins. A (weighted) Fourier transformation from the TBA
spectral parameter θ to a variable z, related to the tilt angle,
converts the integral equations to a simple matrix equation,
and allows us to express the minimal area (the logarithm of
the strong-coupling amplitude) as a single integral over z.
The crux of our finite-coupling conjecture is to move the
’t Hooft coupling

ffiffiffi
λ

p
inside the integral and absorb it into

the tilted cusp anomalous dimension. The resulting master
formula, Eq. (20), can be evaluated either at finite coupling
or at weak coupling where it agrees with all the perturbative
data reviewed above.
For the TBA analysis, we use coordinates fσs; τs;φsg,

s ¼ 1;…; n − 5, originally developed for analyzing the
OPE [5,6]. The TBA equations are for a family of 3ðn − 5Þ
functions Ya;sðθÞ, with a ¼ f0;�1g [5,24]

lnYa;sðθÞ

¼ Ia;sðθÞ þ
X
b;t

Z
kaðθÞdθ0
2πkbðθ0Þ

Kb;t
a;sðθ− θ0Þ ln ½1þ Yb;tðθ0Þ�;

ð13Þ
where the sum runs over b ¼ 0;�1, t ¼ s, s� 1, with
kaðθÞ ¼ ia sinh ð2θ − iπa=2Þ and for some kernels K. The
driving terms Ia;s encode the cross ratios, and are given
explicitly in terms of the OPE coordinates,

Ia;sðθÞ ¼ aφs −maτs cosh θ þ ð−1Þsimaσs sinh θ; ð14Þ
with ma ¼ 2 cos ðaπ=4Þ. The dependence on the hyper-
bolic angle θ corresponds to a collection of interacting
relativistic particles, of mass ma and charge a, coupled to
various temperatures 1=τs and chemical potentials φs.
Drawing inspiration from the hexagon (n ¼ 6) analysis

[10,49], we expect origins to map to extreme limits where
the particles are subject to large chemical potentials,
jφsj → ∞, and to small temperatures, τs → ∞. There are
several ways of taking limits for n > 6. We may send
each φs to either þ∞ or −∞, with each case labeled by
a sequence Σn ¼ ðh1;…; hn−5Þ with hs ¼ φs=jφsj. In such
limits, we expect the particles with a ¼ hs to condense, and
the remaining ones to decouple. Namely, for a given choice
Σn, we assume that Ya;sðθÞ ≫ 1 if a ¼ hs and Ya;s ¼ 0

otherwise, and linearize Eq. (13) using ln ð1þ Yb;tÞ →
δb;ht lnYht;t. We also assume that the above conditions hold
over the entire real θ axis.
The problem may then be solved by going to Fourier

space. One defines

f̂ðzÞ ¼
Z∞
−∞

dθ
2π cosh ð2θÞ z

2iθ=πfðθÞ; ð15Þ
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with a measure introduced to eliminate the weight in
Eq. (13) and with the Fourier variable ð2 ln zÞ=π, with
z > 0, introduced to rationalize all expressions. Setting
Ys ¼ Yhs;s; Is ¼ Ihs;s, Eq. (13) yields

dlnYsðzÞ ¼
Xn−5
t¼1

½1 − KnðzÞ�−1s;t ÎtðzÞ; ð16Þ

with the square matrix ½KnðzÞ�s;t¼
R ðdθ=2πÞKht;t

hs;s
ðθÞz2iθ=π .

At strong coupling,
ffiffiffi
λ

p ¼ 4πg ≫ 1, the remainder function
is given by the TBA free energy [5,22,23], which becomes

Rstring
n ¼ −

ffiffiffi
λ

p

π2

Z
∞

0

dz
z
SnðzÞ þ…; ð17Þ

SnðzÞ≡
Xn−5
s¼1

Îsð1=zÞdlnYsðzÞ: ð18Þ

The ellipses stand for a simple term ∝ Γcusp, to which we
shall return shortly. Importantly, the integrand SnðzÞ is a
rational function of z. For any limit Σn, it may be cast into
the form (see Sec. E of the Supplemental Material [12]
for details)

SnðzÞ ¼
zð1 − z3ÞPΣ

nðzÞ
ð1þ zÞð1þ z2Þ½1 − z3ðn−4Þ� ; ð19Þ

where PΣ
nðzÞ ¼ z3n−14PΣ

nð1=zÞ is a polynomial of degree
3n − 14 in z and is quadratic in fσs; τs;φsgs¼1;…;n−5.
Equation (17) may be turned into an all-order conjecture

by bringing
ffiffiffi
λ

p
under the integral sign and promoting it to a

full function of the variable z. To be precise, we conjecture
that Rn takes at finite coupling the form of a contour
integral in the dual variable z,

Rn ¼ −
1

2

I
Cn

dz
2πiz

ðz − 1=zÞG̃ðz; gÞSnðzÞ; ð20Þ

with G̃ðz; gÞ ¼ Gðz; gÞ − ΓcuspðgÞ and with Gðz; gÞ the tilted
cusp anomalous dimension, viewed here as a function
of z ¼ −e2iα,

Gðz; gÞ ¼ ΓαðgÞ: ð21Þ
Equation (20) neatly factorizes the coupling dependence,
which resides in Gðz; gÞ, and the kinematics, which sits in
the string integrand SnðzÞ. The contourCn is a sum of small
circles around the singularities of SnðzÞ; from Eq. (19)
they are poles on the unit circle jzj ¼ 1, mapping to real
angles α. The original string formula is recovered by using
the strong-coupling behavior [10]

Γα ≈
2α

ffiffiffi
λ

p

π2 sin ð2αÞ ⇒ GðzÞ ≈ −
2

ffiffiffi
λ

p
log ð−zÞ

π2ðz − 1=zÞ : ð22Þ

The integral in Eq. (17) follows from the term ∝ GðzÞ, by
wrapping the contour on the logarithmic cut along z > 0,
whereas the term ∝ Γcusp ¼ Γπ=4 accounts for the ellipses
in Eq. (17).

At finite coupling, one may calculate Eq. (20) by
residues, around the poles in Eq. (19), and write

Rn ¼
X
α

Γ̃αðgÞ × PΣn
α ðfσs; τs;φsgÞ; ð23Þ

with Γ̃α ¼ Γα − Γcusp and with the sum running over

α ¼ π

2
−
πp
3

−
πk

3ðn − 4Þ ; ð24Þ

with k ¼ 1;…; n − 5 and p ¼ 0, 1, 2. The associated
polynomials PΣn

α follow straightforwardly from the TBA
analysis, but are too bulky to be shown here (see Eq. (26) of
the Supplemental Material [12]). At last, one may eliminate
the OPE parameters in favor of the cross ratios, using
general formulae in Ref. [50]. In the limit jφsj ≫ τs ≫ 1,
with σs held fixed, these relations reduce to simple
mappings between the OPE parameters and the logarithms
of the cross ratios.
For illustration, when n ¼ 6, one finds

u1 ≈ eτþσ−jφj; u2 ≈ e−2τ; u3 ≈ eτ−σ−jφj; ð25Þ
and Eq. (23) and PΣ6

α give

R6 ¼ −
X

α¼0;�π=3

Γ̃αðgÞ
24

jl1 þ e2iαl2 þ e4iαl3j2; ð26Þ

in perfect agreement with Ref. [10], using Γ̃−α ¼ Γ̃α. For
n ¼ 7, one gets

u1≈eτ2−σ2−jφ2j; u2≈e−2τ2 ; u3u7≈eτ2þσ2−jφ2j;

u6≈eτ1−σ1−jφ1j; u5≈e−2τ1 ; u4u7≈eτ1þσ1−jφ1j; ð27Þ
with u7 ¼ 1 for Σ7 ¼ ðþ;þÞ, and u3 þ u4 ¼ 1 for
Σ7 ¼ ðþ;−Þ, corresponding, respectively, to the origin

Oð7Þ
7 and a cyclic image of LINE 71. Using PΣ7

α , we find a
perfect agreement with the general decomposition for the
heptagon line, Eq. (6), with c3 ¼ a3 − a1=2; c2 ¼ −a3;
c1 ¼ a2 − a1=2, where

aj ¼
ð−1Þj
3

ffiffiffi
3

p
X3
k¼1

ð−1Þk sin ð2αkÞ cos ð2ðj − 1ÞαkÞΓ̃αkðgÞ;

ð28Þ
and α1;2;3 ¼ fπ=18; 5π=18; 7π=18g. The coefficients agree
with the perturbative results, Eq. (8), taking into account
the weak-coupling expansion of the tilted cusp anomalous
dimension [10], ΓαðgÞ ¼ 4g2 − 16ζ2g4 cos2 αþOðg6Þ, as
discussed further in Sec. A of the Supplemental
Material [12].
One may proceed similarly for n ¼ 8 using Σ8 ¼

ðþ;þ;þÞ; ðþ;þ;−Þ; ðþ;−;þÞ and find three domains
describing, respectively, the origin O9, a line O3 − O4,
and a square ending on O8, O9, and two images of O7. In all
of these cases, we found perfect agreement with the
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perturbative results, with the coefficients matching the
two-loop predictions and the five-loop OPE results.
This analysis does not exhaust all the origins and domains

given in Table II. For example, for (an image of) CUBE 6789 it
covers but a single face. To reach the missing domains, one
should look at a broader class of scalings, where not only φs
and τs are allowed to be large but also σs. These scalings are
harder to address in general because the limit jσsj → ∞
generates large fluctuations in the Y functions, making it
hard to decide which of them are large and which are small.
It may also trigger new exceptional solutions, with more
particle species condensing simultaneously. In Sec. F of the
Supplemental Material [12], we argue that this happens at
n ¼ 8 for SUPERLINE 1; we conjecture that its QL behavior is
captured by a system of linearized TBA equations based on
four large Y functions.
Conclusions.—In this Letter, we initiated a systematic

exploration of origins: kinematical points and interpolating
higher-dimensional surfaces where high-multiplicity MHV
scattering amplitudes in planar N ¼ 4 SYM simplify
dramatically and can be predicted (conjecturally) at finite
coupling. Cluster algebras provide a road map to the
kinematics, while the TBA and the tilted cusp anomalous
dimension ΓαðgÞ both play a central role in the master
formula for the leading singular behavior. We expect
further kinematical richness to emerge for n > 8, based
on the appearance of the super-origin O1 at n ¼ 8, which is
not connected (by any QL lines) to the other eight-point
origins. We also have not ruled out the possibilities of even
more kinematic boundaries of the positive region with QL
behavior, especially for n ≥ 8. The behavior in all these
regions will certainly play a key role in constraining the all-
orders behavior of MHVamplitudes for generic kinematics.
Our findings may also have implications for other planar
N ¼ 4 observables, such as correlators of large-charge
operators, which exhibit QL behavior for small cross
ratios [51–54]. The great similarity between the two
problems suggests that a similar origin story, with a rich
pattern of limits and tilted cusp anomalous dimensions,
may be uncovered for all these higher-point functions.
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