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We assess the impact of the very recent measurement of the top-quark mass by the CMS Collaboration
on the fit of electroweak data in the standard model and beyond, with particular emphasis on the prediction
for the mass of the W boson. We then compare this prediction with the average of the corresponding
experimental measurements including the new measurement by the CDF Collaboration, and discuss its
compatibility in the standard model, in new physics models with oblique corrections, and in the dimension-
six standard model effective field theory. Finally, we present the updated global fit to electroweak precision
data in these models.
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The mass of the top quark (mt) plays a crucial role in the
study of standard model (SM) predictions for precision
observables in the electroweak (EW) and flavor sectors,
since several amplitudes are quadratically sensitive to mt.
Indeed, indirect bounds on the top-quark mass were
obtained using EW and flavor observables well before
its direct measurement [1,2]. Nowadays, mt gives the
dominant parametric uncertainty on several EW precision
observables (EWPO) [3], among which is the W-boson
mass (MW). The posterior from a global fit omitting or
including the experimental information on mt and MW is
reported in Fig. 1. (We also show in the same figure
analogous information in the sin2θlepteff vs MW plane.) All
posteriors reported in this Letter are obtained from a
Bayesian analysis performed with the HEPfit code [4],
using state-of-the-art calculations for all EWPO [5–45]. All
inputs used are reported in Table II, while the theory
uncertainties we use are [42]

δthMW ¼4MeV; δthsin2θW ¼5×10−5;

δthΓZ¼0.4MeV; δthσ
0
had¼6 pb;

δthR0
l¼0.006; δthR0

c¼0.00005; δthR0
b¼0.0001: ð1Þ

From Fig. 1 it is evident that mt and MW are tightly
correlated in the SM, so that experimental improvements in
either one might challenge the validity of the SM and

provide us with precious hints on what kind of new physics
(NP) might be present at yet unprobed energy scales.
Indeed, this is precisely the situation once the very recent
measurement of mt from the CMS Collaboration [47],

mt ¼ 171.77� 0.38 GeV; ð2Þ
and of MW from the CDF Collaboration [48],

MW ¼ 80.4335� 0.0094 GeV; ð3Þ
are included in the analysis. This Letter is dedicated to
assessing the impact of these measurements in the SM and
in several parametrizations of physics beyond the SM.
Let us first consider the impact of the new measurement

of mt in Eq. (2). Following Ref. [3], we combine the 2016
Tevatron combination [49]; the 2015 CMS Run 1 combi-
nation [50]; the combination of ATLAS Run 1 results in
Ref. [51]; the CMS Run 2 measurements in the dilepton,
leptonþ jets, all-jet and single-top channels [47,52–54];
and the ATLAS Run 2 result from the leptonþ jet channel
[55], assuming the linear correlation coefficient between
two systematic uncertainties to be written as ρsysij ¼
min fσsysi ; σsysj g=max fσsysi ; σsysj g. In this way we obtain a
new average (compared with Ref. [3]) given by

mt ¼ 171.79� 0.38 GeV; ð4Þ

where the uncertainty is dominated, as expected, by the
very recent CMS measurement [56]. However, since this
average does not take into account the tensions between
individual measurements, we also consider a conservative
average in which the error is inflated to 1 GeV. While by
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following the particle data group (PDG) average method
[57] the error might be rescaled up to 1.7 GeV, we consider
1 GeV to be conservative enough, also in view of the
measurements of mt from cross sections which recently
achieved an accuracy better than 1 GeV [58]. For com-
pleteness, however, in the following we also comment on
the impact of considering a 1.7 GeV uncertainty.
For theW-boson mass, we compute the average of all the

existing measurements from LEP 2, the Tevatron, and the
LHC. The new measurement from CDF gives, when
combined with the D0 one, a Tevatron combination of
ð80.427� 0.0089Þ GeV [48]. This was combined with the
LHC ATLAS [59] and LHCb [60] measurements assuming
a common systematic uncertainty of 4.7 MeV, correspond-
ing to the CDF uncertainty from parton distribution
functions and QED radiation. The resulting number is
combined in an uncorrelated manner with the LEP2
determination, obtaining a new average [61]:

MW ¼ 80.4133� 0.0080 GeV: ð5Þ

As in the top-quark mass case, there is however a
significant tension between the new CDF measurement
and the other measurements that enter in the calculation of
Eq. (5), with χ2=ndof ¼ 3.59. Therefore in a conservative
average, we rescale the error on MW to 0.015 GeV using
the same method discussed for the case of mt.
We then perform a series of fits to the different EWPO

using both the standard [see Eqs. (4) and (5)] and
conservative assumptions for the uncertainties of the top-
quark andW-boson masses [62]. (Although we will discuss
both scenarios throughout the text, the tables and figures in
the main text will only report the results pertaining to the
standard average. The results for the conservative average

scenario can be found in the Supplemental Material [46]
associated with this Letter.) In particular, we are interested
in comparing the new averages with the corresponding
predictions obtained in the SM. For that purpose we first
perform a pure SM fit of all EWPO, excluding the
experimental input for MW, and from the posterior of such
fit, we compute the SM prediction for MW. The results are
shown in Table I, where we also compare with the
combined MW values in each scenario via the 1D pull,
computed as explained in Ref. [3]. As it is apparent, there
exists a significant 6.5σ discrepancy with the SM in the
standard average, which persists at the level of 3.7σ even
in the conservative scenario [63], due to the large difference
between the new CDF measurement and the SM prediction.
In Table II we consider the standard average scenario

and present, in addition to the experimental values for
all EWPO used, the posterior from the global fit, the
prediction of individual parameters and observables
obtained omitting the corresponding experimental infor-
mation, the indirect determination of SM parameters
obtained solely from EWPO, and the full prediction
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FIG. 1. Posterior from a global fit of all EWPO in the SM in themt vsMW (top) and sin2 θlepteff vsMW (bottom) planes, superimposed to
the posteriors obtained omitting different observables from the fit in the standard average scenario. Dark (light) regions correspond to
68% (95%) probability ranges. Direct measurements are shown in gray. The corresponding results in the conservative average scenario
are presented in the Supplemental Material [46] associated with this Letter.

TABLE I. Predictions (Pred.) and pulls for MW in the SM, in
the oblique NPmodels and in the SMEFT, using the standard and
conservative averaging scenarios. The predictions are obtained
without using the experimental information on MW . See text for
more details on the models listed in the table.

Pred. MW (GeV) Pull Pred. MW (GeV) Pull

Model Standard average Conservative average

SM 80.3499� 0.0056 6.5σ 80.3505� 0.0077 3.7σ
ST 80.366� 0.029 1.6σ 80.367� 0.029 1.4σ
STU 80.32� 0.54 0.2σ 80.32� 0.54 0.2σ
SMEFT 80.66� 1.68 −0.1σ 80.66� 1.68 −0.1σ
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TABLE II. Experimental data, Posterior from the full fit, Indirect determination of individual SM paramers/Prediction of individual
EWPO, Full Indirect determination of all SM parameters simultaneously, and Full Prediction of all EWPO simultaneously in the
standard average scenario. The (Full) Indirect determination/(Full) Prediction is obtained omitting the experimental information on
individual (all) SM parameters/individual (all) EWPO. The previous to the last observables, sin2 θlepteff ðHCÞ denotes sin2θlepteff from hadron-
collider (HC) measurements. The corresponding results in the conservative average scenario are presented in the Supplemental Material
[46] associated with this Letter.

Measurement Posterior Indirect=Prediction Pull Full Indirect Pull Full Prediction Pull

αsðMZÞ 0.1177� 0.0010 0.11762� 0.00095 0.11685� 0.00278 0.3 0.12181� 0.00470 −0.8 0.1177� 0.0010 …
[0.11576, 0.11946] [0.11145, 0.12233] [0.1126, 0.1310] [0.1157, 0.1197]

Δαð5ÞhadðMZÞ 0.02766� 0.00010 0.027535� 0.000096 0.026174� 0.000334 4.3 0.028005� 0.000675 −0.5 0.02766� 0.00010 …

[0.027349, 0.027726] [0.025522, 0.026826] [0.02667, 0.02932] [0.02746, 0.02786]
MZ (GeV) 91.1875� 0.0021 91.1911� 0.0020 91.2314� 0.0069 −6.1 91.2108� 0.0390 −0.6 91.1875� 0.0021 …

[91.1872, 91.1950] [91.2178, 91.2447] [91.136, 91.288] [91.1834, 91.1916]
mt (GeV) 171.79� 0.38 172.36� 0.37 181.45� 1.49 −6.3 187.58� 9.52 −1.7 171.80� 0.38 …

[171.64, 173.09] [178.53, 184.42] [169.1, 206.1] [171.05, 172.54]
mH (GeV) 125.21� 0.12 125.20� 0.12 93.36� 4.99 4.3 247.98� 125.35 −0.9 125.21� 0.12 …

[124.97, 125.44] [82.92, 102.89] [100.8, 640.4] [124.97, 125.45]

MW (GeV) 80.4133� 0.0080 80.3706� 0.0045 80.3499� 0.0056 6.5 80.4129� 0.0080 0.1 80.3496� 0.0057 6.5
[80.3617, 80.3794] [80.3391, 80.3610] [80.3973, 80.4284] [80.3386, 80.3608]

ΓW (GeV) 2.085� 0.042 2.08903� 0.00053 2.08902� 0.00052 −0.1 2.09430� 0.00224 −0.2 2.08744� 0.00059 0.0
[2.08800, 2.09006] [2.08799, 2.09005] [2.0900, 2.0988] [2.08627, 2.08859]

sin2 θlepteff ðQhad
FB Þ 0.2324� 0.0012 0.231471� 0.000055 0.231469� 0.000056 0.8 0.231460� 0.000138 0.8 0.231558� 0.000062 0.7

[0.231362, 0.231580] [0.231361, 0.231578] [0.23119, 0.23173] [0.231436, 0.231679]

Ppol
τ ¼ Al

0.1465� 0.0033 0.14742� 0.00044 0.14744� 0.00044 −0.3 0.14750� 0.00108 −0.3 0.14675� 0.00049 −0.1
[0.14656, 0.14827] [0.14657, 0.14830] [0.1454, 0.1496] [0.14580, 0.14770]

ΓZ (GeV) 2.4955� 0.0023 2.49455� 0.00065 2.49437� 0.00068 0.5 2.49530� 0.00204 0.0 2.49397� 0.00068 0.6
[2.49329, 2.49581] [2.49301, 2.49569] [2.4912, 2.4993] [2.49262, 2.49531]

σ0h (nb) 41.480� 0.033 41.4892� 0.0077 41.4914� 0.0080 −0.3 41.4613� 0.0303 0.4 41.4923� 0.0080 −0.4
[41.4741, 41.5041] [41.4757, 41.5070] [41.402, 41.521] [41.4766, 41.5081]

R0
l 20.767� 0.025 20.7487� 0.0080 20.7451� 0.0087 0.8 20.7587� 0.0217 0.2 20.7468� 0.0087 0.7

[20.7329, 20.7645] [20.7281, 20.7621] [20.716, 20.801] [20.7298, 20.7637]
A0;l
FB

0.0171� 0.0010 0.016300� 0.000095 0.016291� 0.000096 0.8 0.016316� 0.000240 0.8 0.01615� 0.00011 1.0
[0.016111, 0.016487] [0.016102, 0.016480] [0.01585, 0.01679] [0.01594, 0.01636]

Al (SLD) 0.1513� 0.0021 0.14742� 0.00044 0.14745� 0.00045 1.8 0.14750� 0.00108 1.6 0.14675� 0.00049 2.1
[0.14656, 0.14827] [0.14656, 0.14834] [0.1454, 0.1496] [0.14580, 0.14770]

R0
b 0.21629� 0.00066 0.215892� 0.000100 0.215886� 0.000102 0.6 0.215413� 0.000364 1.2 0.21591� 0.00010 0.6

[0.215696, 0.216089] [0.215688, 0.216086] [0.21469, 0.21611] [0.21571, 0.21611]
R0
c 0.1721� 0.0030 0.172198� 0.000054 0.172197� 0.000054 −0.1 0.172404� 0.000183 −0.1 0.172189� 0.000054 −0.1

[0.172093, 0.172302] [0.172094, 0.172303] [0.17206, 0.17278] [0.172084, 0.172295]
A0;b
FB

0.0996� 0.0016 0.10335� 0.00030 0.10337� 0.00032 −2.3 0.10338� 0.00077 −2.1 0.10288� 0.00034 −2.0
[0.10276, 0.10396] [0.10275, 0.10400] [0.10189, 0.10490] [0.10220, 0.10354]

A0;c
FB

0.0707� 0.0035 0.07385� 0.00023 0.07387� 0.00023 −0.9 0.07392� 0.00059 −0.9 0.07348� 0.00025 −0.8
[0.07341, 0.07430] [0.07341, 0.07434] [0.07275, 0.07507] [0.07298, 0.07398]

Ab 0.923� 0.020 0.934770� 0.000039 0.934772� 0.000040 −0.6 0.934593� 0.000166 −0.6 0.934721� 0.000041 −0.6
[0.934693, 0.934847] [0.934693, 0.934849] [0.93426, 0.93491] [0.934642, 0.934801]

Ac 0.670� 0.027 0.66796� 0.00021 0.66797� 0.00021 0.1 0.66817� 0.00054 0.1 0.66766� 0.00022 0.1
[0.66754, 0.66838] [0.66755, 0.66839] [0.66712, 0.66922] [0.66722, 0.66810]

As 0.895� 0.091 0.935678� 0.000039 0.935677� 0.000040 −0.4 0.935716� 0.000098 −0.5 0.935621� 0.000041 −0.5
[0.935600, 0.935755] [0.935599, 0.935754] [0.935523, 0.935909] [0.935541, 0.935702]

BRW→lν̄l 0.10860� 0.00090 0.108388� 0.000022 0.108388� 0.000022 0.2 0.108291� 0.000109 0.3 0.108386� 0.000023 0.2
[0.108345, 0.108431] [0.108345, 0.108431] [0.10808, 0.10851] [0.108340, 0.108432]

sin2 θlepteff (HC) 0.23143� 0.00025 0.231471� 0.000055 0.231474� 0.000056 −0.2 0.231460� 0.000138 −0.1 0.231558� 0.000062 −0.5
[0.231362, 0.231580] [0.231363, 0.231584] [0.23119, 0.23173] [0.231436, 0.231679]

Ruc 0.1660� 0.0090 0.172220� 0.000031 0.172220� 0.000032 −0.7 0.172424� 0.000180 −0.7 0.172212� 0.000032 −0.7
[0.172159, 0.172282] [0.172159, 0.172282] [0.17209, 0.17279] [0.172149, 0.172275]
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obtained using only the experimental information on SM
parameters. For the individual prediction, indirect deter-
mination and for the full prediction we also report the pull
for each experimental result. In this regard, from the
individual indirect determination of the SM parameters
in Table II, one can observe how the tensions introduced by
the new measurements in the SM fit result in sizable pulls
for the different SM inputs, at the level of 4σ (6σ) for

Δαð5ÞhadðMZÞ and mH (MZ and mt). Each pull can be
converted in a p value, and the global consistency of the
SM in the EWPO domain can be tested by looking at the
distribution of p values. From Table II, in the indirect
determination case, we find an average p value of 0.43 with
a 0.36 standard deviation, while for the full prediction we
obtain an average p value of 0.56 with a 0.30 standard
deviation. Both values are compatible with the expectation
of a flatly distributed p value between 0 and 1.
Furthermore, we evaluate the global p value from the full
prediction, taking into account all theoretical and exper-
imental correlations. We obtain p ¼ 2.45 × 10−5, corre-
sponding to a global pull of 4.2σ, in the standard averaging
scenario, and p ¼ 0.10, corresponding to a global pull of
1.6σ, in the conservative averaging scenario [64].
In view of the significant discrepancy between the SM

prediction and the experimental average for MW, we
discuss next the implications of the new Tevatron result
on scenarios of NP beyond the SM. In particular we discuss
the case of NP models which mainly introduce sizable EW
oblique corrections (here denoted as oblique models) and
the case in which NP is described at the EW scale by more
general effective interactions, taking as a prototype exam-
ple the dimension-six SM effective field theory (SMEFT).
Let us first consider a class of NP models in which the
dominant contributions to EWPO are expected to arise as
oblique corrections, i.e., via modifications of the EW
gauge-boson self-energies, and can thus be parametrized
in terms of the S, T, and U parameters introduced in
Refs. [65,66] (or equivalently by the ε1;2;3 parameters
introduced in Refs. [67–69], although, for the sake of
brevity, we consider here only the former set of parame-
ters). The explicit dependence of the EWPO on S, T, and U

can be found in Appendix A of Ref. [70]. If one assumes
NP contributions toU to be negligible, then a prediction for
MW can be obtained from all other EWPO, as reported in
Table I, and could reduce the SM discrepancy with the
experimental value of MW to a tension at the 1.5σ level.
This scenario, U ≪ S, T, (here defined as model ST) is
expected in extensions with heavy new physics where the
SM gauge symmetries are realized linearly in the light
fields, in which case U is generated by interactions of mass
dimension eight, and is then suppressed with respect to S
and T, which are given by dimension-six interactions.
Alternatively, to describe scenarios where sizable contri-
butions to U are generated (here defined as models STU),
we also consider the case where this parameter is left
free [71]. In this case, since U is only very loosely
constrained by ΓW, MW cannot be predicted with a
reasonable accuracy. At the same time, this means that
the apparent discrepancy with the new MW measurement
can be solved by a nonvanishing U parameter. In Table III
we report the results of a global fit, including MW , for the
oblique parameters, while the corresponding probability
density functions (p.d.f.) are presented in Fig. 2 We also
report the value of the information criterion (IC) [73] of the
fits, compared to the SM one. The posterior for the EWPO
is reported in Table IV.
We then relax the assumption of dominant oblique NP

contributions and consider generic heavy NP within the
formalism of the dimension-six SMEFT. Here we work in
the so-called Warsaw basis [74] assuming fermion univer-
sality, and as in the fits presented above, we use the

TABLE III. Results of the global fit of the oblique parameters to
all EWPO in the standard average scenario. The corresponding
results in the conservative average scenario are presented in the
Supplemental Material [46] associated with this Letter.

Result Correlation Result Correlation

(ICST=ICSM ¼ 25.0=80.2) (ICSTU=ICSM ¼ 25.3=80.2)

S 0.100� 0.073 1.00 0.005� 0.096 1.00
T 0.202� 0.056 0.93 1.00 0.040� 0.120 0.91 1.00
U … … … 0.134� 0.087 −0.65 −0.88 1.00
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FIG. 2. P.d.f.s for oblique parameters from a global fit to all EWPO for the standard average scenario. Left: scenario with U ¼ 0.
Center and right: scenario with U ≠ 0. Dark (light) regions correspond to 68% (95%) probability ranges. The corresponding results in
the conservative average scenario are presented in the Supplemental Material [46] associated with this Letter.

PHYSICAL REVIEW LETTERS 129, 271801 (2022)

271801-4



fα; Gμ;MZg EW input scheme [75]. In the Warsaw basis,
there are a total of ten operators that can modify the EWPO
at leading order, but only eight combinations of the
corresponding Wilson coefficients can be constrained by
the data in Table II [76,77]. Using the notation of Ref. [74],
these combinations can be written as, e.g. [76],

Ĉð1Þ
φf ¼ Cð1Þ

φf −
Yf

2
CφD; f ¼ l; q; e; u; d; ð6Þ

Ĉð3Þ
φf ¼ Cð3Þ

φf þ c2w
4s2w

CφD þ cw
sw

CφWB; f ¼ l; q; ð7Þ

Ĉll ¼
1

2
½ðCllÞ1221 þ ðCllÞ2112� ¼ ðCllÞ1221; ð8Þ

where sw, cw are the sine and cosine of the weak mixing
angle, Yf denotes the fermion hypercharge, and we have
absorbed the dependence on the cut-off scale of the
SMEFT, Λ, in the Wilson coefficients, i.e., the above
coefficients carry dimension of ½mass�−2. Furthermore,
the effective EW fermion couplings always depend on
Ĉll via the following combinations, fixed by the corre-
sponding fermionic quantum numbers (see, e.g., Ref. [78]),

Ĉð3Þ
φf −

c2w
2s2w

Ĉll and Ĉð1Þ
φf þ YfĈll; ð9Þ

such that the effects of Ĉll cannot be separated from other
operators using only Z-pole observables. The flat direction

can be broken by the W-boson mass, which depends on

Ĉð3Þ
φl − Ĉll=2, or any observable sensitive to its value, e.g.,

theW-boson width ΓW . The comparatively low precision of
the experimental measurement of ΓW (∼2%) thus results in
a weak prediction for MW from the SMEFT fit, with an
uncertainty somewhat below 2 GeV [79] (see Table I),
which can easily fit the experimental measurement, via a

nonzero value of the combination Ĉð3Þ
φl − Ĉll=2. Indeed, as

can be seen in Table V, the two operators involved in the
combination are strongly correlated between them, but also

TABLE IV. Posterior distributions for the global fit to all EWPO in the standard average scenario for the NP scenarios discussed in the
text. For the reader’s convenience we also report experimental data in the first column. The measurements interpreted as determinations
of the effective leptonic weak mixing angle, namely sin2θlepteff ðQhad

FB Þ and sin2 θlepteff (HC), are not included in the SMEFT fits. The
corresponding results in the conservative average scenario are presented in the Supplemental Material associated with this Letter.

Measurement ST STU SMEFT

MW (GeV) 80.4133� 0.0080 80.4100� 0.0077 80.4133� 0.0080 80.4133� 0.0080
ΓW (GeV) 2.085� 0.042 2.09214� 0.00072 2.09251� 0.00075 2.0778� 0.0070
sin2 θlepteff ðQhad

FB Þ 0.2324� 0.0012 0.23142� 0.00013 0.23147� 0.00014 …

Ppol
τ ¼ Al

0.1465� 0.0033 0.1478� 0.0011 0.1474� 0.0011 0.1488� 0.0014
ΓZ (GeV) 2.4955� 0.0023 2.49812� 0.00099 2.4951� 0.0022 2.4955� 0.0023
σ0h (nb) 41.480� 0.033 41.4910� 0.0077 41.4905� 0.0077 41.481� 0.032
R0
l 20.767� 0.025 20.7506� 0.0084 20.7510� 0.0084 20.769� 0.024

A0;l
FB

0.0171� 0.0010 0.01638� 0.00023 0.01630� 0.00024 0.01659� 0.00032
Al (SLD) 0.1513� 0.0021 0.1478� 0.0011 0.1474� 0.0011 0.1488� 0.0014
R0
b 0.21629� 0.00066 0.21591� 0.00010 0.21591� 0.00010 0.21632� 0.00065

R0
c 0.1721� 0.0030 0.172198� 0.000054 0.172200� 0.000054 0.17159� 0.00099

A0;b
FB

0.0996� 0.0016 0.10362� 0.00075 0.10336� 0.00077 0.1008� 0.0014

A0;c
FB

0.0707� 0.0035 0.07407� 0.00058 0.07387� 0.00059 0.0734� 0.0022
Ab 0.923� 0.020 0.934812� 0.000097 0.934779� 0.000099 0.903� 0.013
Ac 0.670� 0.027 0.66815� 0.00052 0.66796� 0.00053 0.658� 0.020
As 0.895� 0.091 0.935710� 0.000096 0.935676� 0.000097 0.905� 0.012
BRW→lν̄l 0.10860� 0.00090 0.108386� 0.000022 0.108380� 0.000022 0.10900� 0.00038

sin2 θlepteff (HC) 0.23143� 0.00025 0.23142� 0.00013 0.23147� 0.00014 …

Ruc 0.1660� 0.0090 0.172220� 0.000032 0.172222� 0.000032 0.17161� 0.00098

TABLE V. Results from the dimension-six SMEFT fit in the
standard average scenario. The values of the Wilson coefficients
Ĉi are given in units of TeV−2. The corresponding results in the
conservative average scenario are presented in the Supplemental
Material [46] associated with this Letter.

Result

Correlation Matrix

(ICSMEFT=ICSM ¼ 31.8=80.2)

Ĉð1Þ
φl

−0.007� 0.011 1.00

Ĉð3Þ
φl

−0.042� 0.015 −0.68 1.00

Ĉφe −0.017� 0.009 0.48 0.04 1.00

Ĉð1Þ
φq

−0.018� 0.044 −0.02 −0.06 −0.13 1.00

Ĉð3Þ
φq

−0.113� 0.043 −0.03 0.04 −0.16 −0.37 1.00

Ĉφu 0.090� 0.150 0.06 −0.04 0.04 0.61 −0.77 1.00

Ĉφd −0.630� 0.250 −0.13 −0.05 −0.30 0.40 0.58 −0.04 1.00

Ĉll −0.022� 0.028 −0.80 0.95 −0.10 −0.06 −0.01 −0.04 −0.05 1.00
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with Ĉð1Þ
φl . The latter correlation can be understood from the

fact that the combination Ĉð1Þ
φl þ Ĉð3Þ

φl is the one that directly
corrects the left-handed electron couplings, which is
measured to the per-mil level. The extraction of this
coupling from the data, however, is typically correlated
with the one on the right-handed coupling, sensitive to Ĉφe,
slightly complicating the correlation pattern more in the
output of the global fit. It is, in fact, in the information of
the leptonic operators where one observes the main differ-
ence between the fits using the standard and conservative
averages of the experimental values. This is reflected in
changes in their correlations as well as mild changes, of
order ten percent, in their uncertainties, whereas the central
values of the Wilson coefficients stay approximately the
same. The posterior for the EWPO in this case is also
reported in Table IV.
In conclusion, recent measurements of mt [47] and MW

[48] are introducing some tensions in global fits of EW
precision observables. In this Letter we have studied their
impact on electroweak precision fits both in the SM and in
some prototype scenarios of NP beyond the SM. Future
EW precision measurements at both the LHC and the
HL-LHC will add to this picture and contribute to confirm
or resolve potential tensions in the SM.
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