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We develop a method for lattice QCD calculation of the two-photon exchange contribution to the
muonic-hydrogen Lamb shift. To demonstrate its feasibility, we present the first lattice calculation with a
gauge ensemble at mπ ¼ 142 MeV. By adopting the infinite-volume reconstruction method along with an
optimized subtraction scheme, we obtain with statistical uncertainty ΔETPE ¼ −28.9ð4.9Þ μeVþ
93.72 μeV=fm2 · hr2pi, or ΔETPE ¼ 37.4ð4.9Þ μeV, which is consistent with the previous theoretical
results in a range of 20–50 μeV.
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Introduction.—Lamb shift is an important observable,
whose discovery laid the foundation for the modern
quantum electrodynamics. A decade ago, measurements
of muonic-hydrogen (μH) Lamb shift [1,2] yielded the
most precise determination of the proton charge radius
hr2pi, but raised a 7σ discrepancy from the CODATA-2010
value [3], known as the proton radius puzzle. In 2019, two
experiments reported results which agree with the μH
measurements [4,5] and represented a decisive step towards
solving the puzzle. In the theoretical understanding of both
spectroscopy and scattering, the two-photon exchange
(TPE) contribution is of special interest. It introduces the
largest theoretical uncertainty in extracting hr2pi from the
μH Lamb shift [6] and plays an important role in resolving
the proton electric to magnetic form factor ratio puzzle [7].
Several approaches have been proposed to calculate the

TPE correction to the μH Lamb shift [8–19], where the
correction is usually divided into Born and non-Born
pieces. The former is well constrained by the experimental
data, while the latter contains a subtraction function, which
is poorly constrained and relies on model, thus leading to a
large systematic uncertainty. It was proposed recently that
the subtraction function can be further constrained by the
dilepton electroproduction [20]. To date, the theoretical
results of the TPE correction ΔETPE are summarized in

Fig. 1. These results are rather consistent but still vary in a
range of 20–50 μeV.
The total 2S − 2P Lamb shift is given by [6]

ΔEtheory
LS ¼ 206033.6ð1.5Þ − 5227.5ð1.0Þhr2pi þ ΔETPE:

ð1Þ
In Eq. (1) and through out the Letter we assume radii
to be in fm, resulting energies in μeV. Using ΔETPE ¼
33.2ð2.0Þ μeV from Ref. [16] and the experimental

value ΔEexp
LS ¼ 202370.6ð2.3Þ μeV, one obtains

ffiffiffiffiffiffiffiffiffi
hr2pi

q
¼

0.84087ð39Þ fm, which causes the radius puzzle [2]

compared to the CODATA-2010 value
ffiffiffiffiffiffiffiffiffi
hr2pi

q
¼

0.8775ð51Þ fm [3]. To resolve the puzzle, ΔETPE is

FIG. 1. Theoretical results for ΔETPE. From top to bottom, the
results are referred to Refs. [10–12,16,17,19], respectively.
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required to be ∼300 μeV, 10 times larger than the current
theoretical results. Although ΔETPE is unlikely responsible
for such a large discrepancy, it causes the largest theoretical
uncertainty in the determination of hr2pi. More refined hr2pi
would inevitably require an improved determination of
ΔETPE, particularly from lattice QCD to avoid the uncer-
tainties induced by model assumptions.
In this Letter, we develop a lattice QCD method to

calculate ΔETPE and perform a realistic calculation at the
pion mass mπ ¼ 142 MeV.
Two-photon exchange contribution.—We start with the

spin-averaged forward doubly virtual Compton scattering
tensor defined in Euclidean space,

T μνðP;QÞ ¼ 1

8πM

Z
d4xeiQ·xhpjT½JμðxÞJνð0Þ�jpi

¼
�
−δμν þ

QμQν

Q2

�
T 1ðν; Q2Þ

−
�
Pμ −

P ·Q
Q2

Qμ

��
Pν −

P ·Q
Q2

Qν

�

×
T 2ðν; Q2Þ

M2
; ð2Þ

where ν ¼ P ·Q=M with P ¼ ðiM; 0Þ and Q ¼ ðQ0;QÞ
the Euclidean proton and photon four-momenta. M is the
proton mass, Jμ;ν are the electromagnetic quark currents,
and T 1;2 are the Lorentz scalar functions.
The relative energy shift to the nS state is given by [8]

E ¼ 8mα2

π
jϕnð0Þj2

Z
d4Q

×
ðQ2 þ 2Q2

0ÞT 1ðiQ0; Q2Þ − ðQ2 −Q2
0ÞT 2ðiQ0; Q2Þ

Q4ðQ4 þ 4m2Q2
0Þ

;

ð3Þ
with m the lepton mass and jϕnð0Þj2 the square of the
nS-state wave function at the origin, known from literature,
e.g., Ref. [10]. Note that the nP-state wave function
vanishes at the origin, hence it does not receive any
corrections from TPE at this order.
The TPE correction to the μH Lamb shift has no infrared

(ir) divergence because the binding energy serves as an ir
regulator. By treating the proton as a pointlike particle with
the corrections from hr2pi, one can calculate such contri-
bution using bound-state QED [8,21,22]. However, more
precise comparison between theory and experiment is
limited due to ignorance of the proton structure. The
energy shift E defined in Eq. (3) contains all the required
structure information, but is unfortunately ir divergent as
the lepton in the Compton scattering is not bounded. Here,
the idea is to obtain the structure-dependent TPE correction
from Eq. (3) by subtracting the contributions from a
pointlike proton and the third Zemach moment [10].
The former is described by pointlike scalar functions

T pt
1 ¼ M

π

ν2

Q4 − 4M2ν2
; T pt

2 ¼ M
π

Q2

Q4 − 4M2ν2
; ð4Þ

and the latter is given by

EZ ¼ α2jϕnð0Þj2
Z

dQ2

Q2

8mM
3ðM þmÞQ hr2pi: ð5Þ

After the subtraction of Ept and EZ, one obtains the ir-finite
TPE contribution ΔE ¼ E − Ept − EZ. The desired ΔETPE
shown in Eq. (1) is defined as the difference between
energy shifts to the nP and nS states and thus we
have ΔETPE ¼ −ΔE.
In a realistic lattice QCD calculation, the first difficulty

to conquer is to write ΔETPE in terms of the hadronic
functions calculable via lattice simulations and maintain the
ir cancellation automatically.
Lattice QCD methodology.—On the lattice, we prefer to

rewrite Eq. (3) in terms of T1 ¼ T 00 and T2 ¼
P

i T ii as

E ¼ −16mα2jϕnð0Þj2
Z
ε

dQ2

Q4

Z π
2

−π
2

dθðα1T1 þ α2T2Þ; ð6Þ

with

α1ðQÞ ¼ 1 − sin4θ
1þ sin2θ=τl

; α2ðQÞ ¼ sin2θcos2θ
1þ sin2θ=τl

;

τl ¼ Q2

4m2
: ð7Þ

Here the angle θ is defined as Q0 ¼ Q sin θ and
jQj ¼ Q cos θ. The notation

R
ε indicates that the integral

is performed in the region of Q2 ≥ ε2 with an ir regulator ε.
Combining Eqs. (2) and (6) yields

E ¼ 2mα2

πM
jϕnð0Þj2

X
i¼1;2

Z
d4xω̄iðx; tÞHiðx; tÞ; ð8Þ

where the hadronic functions are defined as

H1ðx; tÞ ¼ hpjT½J0ðx; tÞJ0ð0Þ�jpi;
H2ðx; tÞ ¼ hpjT½Jðx; tÞ · Jð0Þ�jpi: ð9Þ

The weight functions ω̄iðx; tÞ are given by

ω̄iðx; tÞ ¼ −
Z
ε

dQ2

Q4

Z π
2

−π
2

dθαiðQÞfðQ; xÞ ð10Þ

with

fðQ; xÞ ¼ cosðQ0tÞj0ðjQjjxjÞ: ð11Þ
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Here an average over the spatial directions is taken and
jnðxÞ are the spherical Bessel functions.
Using the infinite-volume reconstruction method [23],

we split the time integral in Eq. (8) into the regions jtj < ts
and jtj ≥ ts, and have

E ¼ E<ts þ E≥ts : ð12Þ

Both ground state, i.e., proton, and excited states such as
the Δ resonance, pþ π, and pþ 2π can contribute to E. At
sufficiently large ts, ground-state dominance allows us to
relate Hiðx; tÞ at jtj ≥ ts to Hiðx; tsÞ. Thus, E≥ts can be
written as

E≥ts ¼ 2mα2

πM
jϕnð0Þj2

X
i¼1;2

Z
d3xL̄iðx; tsÞHiðx; tsÞ; ð13Þ

where the weight function L̄i is defined as

L̄iðx; tsÞ ¼ −
Z
ε

dQ2

Q4

Z π
2

−π
2

dθαiðQÞgðQ;x; tsÞ ð14Þ

with

gðQ;x; tsÞ ¼ 2

Z
∞

ts

dtfðQ; xÞe−ð
ffiffiffiffiffiffiffiffiffiffiffiffi
M2þQ2

p
−MÞðt−tsÞ: ð15Þ

We originally hope that the ir divergent part is isolated by
E≥ts and thus only the weight function L̄i is divergent when
ε → 0. However, the situation is more complicated than
expected as E<ts is also ir divergent. [Although associated
with Hiðx; tÞ at small t, ω̄i receives significant long-
distance contributions from the leptonic part and thus is
ir singular.] To solve this difficulty, we split the weight
functions into two parts:

ω̄i ¼ ω̂i þ δωi; L̄i ¼ L̂i þ δLi; ð16Þ

where the divergent part is absorbed by δωi and δLi with

δωi ¼ −
Z
ε

dQ2

Q4

Z π
2

−π
2

dθαiðQÞ;

δLi ¼ −
Z
ε

dQ2

Q4

Z π
2

−π
2

dθαiðQÞg0ðQ;x; tsÞ; ð17Þ

and

g0ðQ;x; tsÞ ¼
1

M
cos2 θ

τp þ sin2 θ
− 2ts; τp ¼ Q2

4M2
: ð18Þ

One can confirm that ω̂i and L̂i are now ir finite.
Accordingly, the energies E<ts and E≥ts are written as

E<ts ¼ Ê<ts þ δE<ts ; E≥ts ¼ Ê≥ts þ δE≥ts : ð19Þ

Through the low-momentum expansion of TiðQÞ [24], we
obtain for the large ts

Ki ≡ 1

2M

Z
ts

−ts
dt

Z
d3xHiðx; tÞ ¼

�
2ts; i ¼ 1;
3
M ; i ¼ 2:

ð20Þ

This relation allows us to rewrite δE<ts in a structure-
independent form

δE<ts ¼−
4mα2

π
jϕnð0Þj2

X
i¼1;2

Z
ε

dQ2

Q4

Z π
2

−π
2

dθαiðQÞKi: ð21Þ

The last step is to perform the subtraction of ΔE ¼
E − Ept − EZ as mentioned earlier. Here Ept can be
calculated using the pointlike proton contributions

Tpt
1 ¼M

π

Q2−Q2
0

Q4þ 4M2Q2
0

; Tpt
2 ¼M

π

3Q2
0

Q4þ 4M2Q2
0

: ð22Þ

The same ir regulator ε shall be introduced to make Ept and
EZ finite. One can relate 1 and hr2pi to H1ðx; tsÞ as [25]

1 ¼
Z

d3xL0ðx; tsÞH1ðx; tsÞ;

hr2pi ¼
Z

d3xLrðx; tsÞH1ðx; tsÞ; ð23Þ

with ts sufficiently large for ground-state dominance and

L0ðx; tsÞ ¼
1

2M
; Lrðx; tsÞ ¼

1

4M

�
x2 −

3þ 6Mts
2M2

�
:

ð24Þ

These relations allow us to write Ept and EZ as an integral
of H1ðx; tsÞ. Finally, we obtain

ΔE ¼ 2mα2

πM
jϕnð0Þj2

�X
i¼1;2

�Z
ts

−ts
d4xωiðx; tÞHiðx; tÞ

þ
Z

d3xLiðx; tsÞHiðx; tsÞ
�

−2M
Z
ε

dQ2

Q4

Z
dθα2ðQÞðK2 − 4πTpt

2 Þ
�
: ð25Þ

Although the weight functions ω̄i, ω̂i, L̄i, and L̂i are
introduced in the intermediate steps, in the master for-
mula (25)ωi and Li are used instead.ωi for i ¼ 1, 2, and L2

can be directly related to the ir-finite ones ω̂i and L̂2 as
ωiðx; tÞ ¼ ω̂iðx; tÞ, L2ðx; tsÞ ¼ L̂2ðx; tsÞ. The subtlety
appears in L1. Since the subtraction EZ appears only in
terms of H1 and not H2, thus L1 is now a linear
combination of L̂1 and Lr as
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L1ðx; tsÞ ¼ L̂1ðx; tsÞ −
Z
ε

dQ2

Q2

4πM2

3ðM þmÞQLrðx; tsÞ

¼ −
Z
ε

dQ2

Q4

�Z π
2

−π
2

dθα1ðQÞ½g − g0�ðQ;x; tsÞ

þ 4πM2Q
3ðM þmÞLrðx; tsÞ

�
: ð26Þ

After the ir cancellation, the limit ε → 0 can be taken for
Eqs. (25) and (26) now. The third line of Eq. (25) does not
depend on Hiðx; tÞ and thus can be calculated directly. It
contributes −0.60 μeV to ΔE.
Optimized subtraction scheme.—The master for-

mula (25) allows us to calculate ΔE directly, but it suffers
from both the finite-volume effects and the signal-to-noise
problem due to the fact that L1ðx; tsÞ increases rapidly at
large jxj. To solve this difficulty, we define a reduced

weight function LðrÞ
1 ðx; tsÞ as

LðrÞ
1 ðx; tsÞ ¼ L1ðx; tsÞ − c0L0ðx; tsÞ − crLrðx; tsÞ: ð27Þ

After the replacement of L1 → Lr
1, the energy shift ΔE is

now given by

ΔE¼−0.60þ 2mα2

πM
jϕnð0Þj2ðc0þ crhr2piÞþΔElat; ð28Þ

withΔElat computed using the first two lines of Eq. (25) but

with L1 replaced by LðrÞ
1 .

Using the least squares method, we determine the
coefficients c0 and cr by minimizing the following integral

Iðc0; crÞ ¼
Z

Rmax

Rmin

djxjð4πjxj2ÞjLðrÞ
1 ðx; tsÞj2: ð29Þ

Here we set ts ¼ 1 fm, Rmin ¼ 1 fm, and Rmax ¼ 3 fm, and
obtain

2mα2

πM
jϕnð0Þj2c0 ¼ −0.17 μeV;

2mα2

πM
jϕnð0Þj2cr ¼ −93.72 μeV=fm2: ð30Þ

The choice of ts is made based on the examination of the
ground-state dominance. As shown in the Supplemental
Material [26], the Fourier transform of H1ðx; tsÞ is directly
related to the electric form factor GEðQ2Þ. To decide Rmin

and Rmax, we use the dipole functional form GEðQ2Þ ¼
1=ð1þQ2hr2pi=12Þ2 with

ffiffiffiffiffiffiffiffiffi
hr2pi

q
¼ 0.85 fm, and mimic

the distribution of 4πjxj2L1ðx; tsÞH1ðx; tsÞ in Fig. 2. The
black curve shows that the main contribution comes from
the range of 1–3 fm, from which Rmin and Rmax are decided.

After the replacement of L1 → LðrÞ
1 , the red curve shows

that the large-jxj contribution is significantly reduced,
resulting in efficiently suppressed finite-volume effects
and statistical noise. Putting Eq. (30) into Eq. (28),
ΔETPE is given by

ΔETPE ¼ −ΔE ¼ 0.77þ 93.72 · hr2pi − ΔElat: ð31Þ
Numerical results.—To demonstrate the feasibility

of the methodology, we use a single gauge ensemble
near the physical point, generated by the RBC-
UKQCD Collaboration using a 2þ 1-flavor domain
wall fermion [27]. Ensemble parameters are listed in
Table I. We calculate the four-point correlation functionP

xf;xi Phψpðxf; tfÞJμðxÞJνðyÞψ†
pðxi; tiÞi using the ran-

dom field sparsening technique [28,29], with the projection
matrix P ¼ ð1þ γ0Þ=2 and the proton annihilation oper-
ator ψp ¼ ϵabcua½uTbðCγ5Þdc�, where u and d are up- and
down-quark spinors and C ¼ γ0γ2 is the charge conjugation
matrix. The time slices are chosen as ti ¼ minftx; tyg − Δti
and tf ¼ maxftx; tyg þ Δtf. The time separation Δti=f
should be sufficiently large for the proton ground-state
saturation. In practice, we use six sets of fΔti=a;Δtf=ag ¼
f1; 2g; f2; 1g; f2; 2g; f2; 3g; f3; 2g; f3; 3g to examine the
excited-state contamination for the initial or final state and
use ts=a ¼ 2, 3, 4, 5 to confirm the ground-state dominance
for the intermediate state. The total source-sink time
separation ranges from 1.0 to 2.1 fm. We use the local
vector current Jμ with the renormalization factor quoted
from Ref. [30]. The quark field contractions for the TPE
diagrams are shown in Fig. 3, with the first two the
connected diagrams and the last three disconnected ones.

π|

FIG. 2. The distributions of 4πjxj2L1ðx; tsÞH1ðx; tsÞ and

4πjxj2LðrÞ
1 ðx; tsÞH1ðx; tsÞ at ts ¼ 1 fm, estimated using the di-

pole form factor.

TABLE I. Ensemble information. We list the pion mass mπ , the
spatial and temporal extents, L and T, the lattice spacing a, and
the number of configurations used Nconf .

Ensemble mπ (MeV) L=a T=a a (fm) Nconf

24D 142 24 64 0.1943(8) 131
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We calculate both connected and disconnected diagrams
with only Type IVand V neglected since they vanish in the
flavor SU(3) limit.
Using the lattice data at fΔti;Δtf; tsg ¼ f2a; 2a; 4ag as

an example, in Fig. 4 we show ΔElat as a function of the
spatial integral range R. All four contributions to ΔElat
converge at large R for both connected and disconnected
diagrams, suggesting that the finite-volume effects are well
under control within current statistical uncertainties. We
also examined the R dependence for other sets of
fΔti;Δtf; tsg and the same conclusion holds.
The results ofΔElat for different fΔti;Δtf; tsg are shown

in Fig. 5. For the connected part, we find that the result at
fΔti;Δtf; tsg ¼ f2a; 2a; 4ag is well consistent with the
ones at f2a; 2a; 3ag and f2a; 2a; 5ag. In addition, this
result also agrees well with all the data at Δti=f ≥ 2a. For
the disconnected part, the results for various fΔti;Δtf; tsg
are all consistent. The agreement with 0 suggests that the

disconnected contributions are relatively small. We thus
quote ΔElat at fΔti;Δtf; tsg ¼ f2a; 2a; 4ag as the final
result, and obtain

ΔElat ¼
8<
:

27.6ð4.5ÞμeV; connected part;

2.1ð2.1ÞμeV; disconnected part;

29.7ð4.9ÞμeV; total contribution:

ð32Þ

The TPE correction is given by

ΔETPE ¼ −28.9ð4.9Þ μeVþ 93.72 μeV=fm2 · hr2pi: ð33Þ

In both Eqs. (32) and (33) the errors are statistical only.
Combining Eq. (33) with Eq. (1) and comparing the

theoretical value with the experimental one, we obtainffiffiffiffiffiffiffiffiffi
hr2pi

q
¼ 0.84136ð65Þ fm, which is consistent withffiffiffiffiffiffiffiffiffi

hr2pi
q

¼ 0.84087ð39Þ fm quoted from μH experiment.

On the other hand, if putting the μH value of
ffiffiffiffiffiffiffiffiffi
hr2pi

q
into

Eq. (33), we obtain ΔETPE ¼ 37.4ð4.9Þ μeV, which agrees
with the previous theoretical results ranging from 20
to 50 μeV.
We remark here that this calculation is performed at the

nearly physical pion mass but with a relatively coarse
lattice spacing a ¼ 0.1943ð8Þ fm. We have used multiple
fΔti;Δtf; tsg to control the excited-state effects and exam-
ined the finite-volume effects by studying the R depend-
ence. Thus we expect that the dominant systematic
uncertainty arises from the lattice discretization effects.
It is our future task to further control these effects using the
ensembles with finer lattice spacings.

FIG. 3. Five types of quark field contractions. The blob denotes
a proton state.

Δ
μ

ω

ω

Δ
μ

FIG. 4. Results of ΔElat as a function of the integral range R at
fΔti;Δtf; tsg ¼ f2a; 2a; 4ag. The upper and lower panels show
the results for the connected and disconnected contribution,
respectively. Results from different terms have been slightly
shifted for clarity.

Δ
μ

Δ
μ

Δ ΔΔ Δ

FIG. 5. Results of ΔElat for multiple fΔti;Δtf; tsg. The results
at different ts have been shifted horizontally for an easy
comparison.
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Conclusion.—We developed a method to calculate the
TPE correction to the μH Lamb shift using lattice QCD.
The methodology includes (i) the derivation of the master
formula (25) to remove ir divergence automatically and to
compute the ir-finite ΔE using the hadronic functions
Hiðx; tÞ calculable from lattice QCD and (ii) the design
of an optimized subtraction scheme to significantly
reduce finite-volume effects and statistical noise. Using
the new method, we perform a lattice calculation at mπ ¼
142 MeV. It demonstrates that lattice QCD can extend its
horizon to study the important quantities relevant for
atomic spectroscopy. With both statistical and systematic
errors better controlled in the future, lattice studies can help
answer more accurately the natural question—how large
the proton is.
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