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Using the spinning worldline quantum field theory formalism we calculate the quadratic-in-spin
momentum impulse Ap/ and spin kick Aa¥ from a scattering of two arbitrarily oriented spinning massive
bodies (black holes or neutron stars) in a weak gravitational background up to third post-Minkowskian
(PM) order (G*). Two-loop Feynman integrals are performed in the potential region, yielding conservative
results. For spins aligned to the orbital angular momentum we find a conservative scattering angle that is
fully consistent with state-of-the-art post-Newtonian results. Using the 2PM radiated angular momentum
previously obtained by Plefka, Steinhoff, and the present authors, we generalize the angle to include
radiation-reaction effects, in which case it avoids divergences in the high-energy limit.
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Recent detections by the LIGO and Virgo Collaborations
of gravitational waves emitted by binary black hole and
neutron star mergers [1-5] have driven demand for high-
precision gravitational waveform templates. In the early
stage these inspirals typically run over many cycles,
making them difficult to model using numerical techniques
[6-8]; yet, as the gravitational field is weak, this regime is
well tackled using perturbation theory. Often this is done in
a post-Newtonian (PN) expansion in both G (Newton’s
constant) and ¢ (the speed of light); however, methods
involving the post-Minkowskian (PM) expansion in G are
gaining prominence.

The crucial insight driving this shift is that bound orbits
are closely related to unbound scattering events, the latter
more naturally handled in the PM expansion. A well-
studied approach to the bound problem in gravity is reverse
engineering a gravitational potential from scattering data
[9—15], which can in turn be used to describe bound orbits.
More recent techniques such as the bound-to-boundary
(B2B) correspondence directly relate bound with unbound
observables [16-18]; scattering observables may also be
used as direct input for an effective one-body description of
the bound dynamics [19-22], also of spinning black holes
or neutron stars [23-28].

To this end an enormous effort is now underway to
apply techniques used to calculate scattering amplitudes in
quantum field theory (QFT) to the bound-state problem in
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gravity. The technologies involved for both constructing
integrands and performing loop integrals are well honed
[29—43], and gauge-invariant scattering observables can now
be obtained directly [44—47] without introducing a gravita-
tional potential. Some impressive results have been achieved:
at 3PM (two-loop) order [48—52] including radiation-reaction
corrections [53-59], tidal effects [60—62], and most recently
also at 4PM order [63,64]. A closely related approach is
heavy-particle effective field theory (EFT) [65-70].

However, QFT-based methods suffer a drawback: the
need to suppress terms that ultimately disappear in the
classical 7 — 0 limit. While the classical limit is now
well understood in the nonspinning case as a soft limit
[20,44,45,71-73], the situation is further complicated by
the need to reinterpret quantized spin degrees of freedom in
a classical setting [74-77]. Nevertheless, these obstacles
have been successfully overcome at 2PM order [26,78,79]
up to quartic order in spin [80]; other studies of higher-spin
amplitudes in this context have been done [81-91].

In this regard the worldline EFT framework is more
economical [92-97], avoiding quantum corrections from
the outset. Partial results for the gravitational potential are
now available up to 6PN order [98-103]; in the PM
expansion recent progress has closely followed the QFT
program [104—108] including at 4PM order [109,110]. To
handle spin a local corotating frame is often introduced
[111-113]: quadratic-in-spin results are available up to
5PN (N?LO) [114-122] and 2PM orders [123]—until now
at 4PN order the former have remained unchecked.

The recently developed worldline QFT (WQFT)
formalism [124-127] innovates over these approaches by
quantizing worldline degrees of freedom. This leads to a
highly streamlined PM setup wherein classical scattering
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observables are directly computed as sums of tree-level
Feynman diagrams. The use of an N/ = 2 supersymmetric
extension to the point-particle action to encapsulate spin
degrees of freedom [126,127] circumvents the need for a
local corotating frame. Recent work on the WQFT has
included the double copy [128] and applications to light
bending [129]; other closely related approaches involve
directly solving the classical equations of motion [130] and
Wilson line operators [131].

In this Letter we realize the spinning WQFT’s full
potential with a state-of-the-art calculation: deriving the
quadratic-in-spin conservative momentum impulse A p
and spin kick Adf in a scattering encounter between
massive bodies at 3PM order, including finite-size effects.
Specializing to aligned spins yields the conservative scatter-
ing angle 6,.,;, which we generalize to include dissipative
effects using the linear response relation [132—134].

Spinning WQFT formalism.—The dynamics of Kerr
black holes with masses m; and positions x(z) on a
curved D-dimensional background metric g, are described
up to quadratic order in spin by the ' = 2 supersymmetric
worldline action [135,136]:

a
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The complex Grassmann-valued vectors y¢(z), defined in
a local frame e? with g, = eteln,, and (Dy¢/Dr) =
Wi+ )'c”a),,“by/i’b, encode spin degrees of freedom (we use
the mostly minus metric). The spin tensors S;* and Pauli-

Lubanski spin vectors % are composite fields:

S@)

m;

S (z) = ~2icheli vy ai(0) =5 oS Pf. (2)
where p; , = m;g,,x; (referred to as x; , in Ref. [127]).

Reparametrization invariance in 7 and U(1) symmetry on
the Grassmann vectors respectively imply conservation of
p? and ; - ;. Global N = 2 supersymmetry provides two
additional fermionic charges: p;-y; and p;-y;, which
when set to zero together imply the Tulczyjew-Dixon spin-
supplementary condition (SSC) p,»YMS’I-‘ ¥'=0[137,138]. The
action (1) extends naturally to include finite-size objects
like neutron stars by also including

Y = —miCE’i/dTRa/lbD'x iyl Papiyl,  (3)

with projector P, =1, —eaﬂebyic”jc’“/ic2 and Wilson
coefficients Cg;, where Cg; =0 for black holes. The
projector ensures supersymmetry for terms up to O(S?),
enough to maintain the SSC and preserve lengths of the
spin vectors.

The WQFT’s distinguishing feature is quantization of
both bulk and worldline degrees of freedom. In a weak

gravitational field with x = /327G, we expand g, (x) =
Hu + Khy, (x) with the vielbein e = n™[n,, + (x/2)h,,—
(k?/8)h,,h”, + - -]. Thereafter we no longer distinguish
between spacetime y, v, ... and local frame a, b, ... indices.
The worldline fields are similarly expanded around their
background values:

(o) = b+ vl + (),
SI(0) = S+ S (2),

yi(z) =¥ + v (@),
aj(z) = djy +af'(z).  (4)

where S = —2iP¥"W and o/, = 1e" xS’ v7. Vanishing
of the supercharges implies v; - ¥; = v;- ¥ =0, 50 v; ,S}* =0;
using z-reparametrization invariance on each worldline we fix
b-v; = 0, where b* = b — b/|. We also define the Lorentz
factor y = v, - v, and the relative velocity v = \/y> — 1/.
The WQFT is defined by a path integral, with physical
observables calculated as operator expectation values:

= / D[hﬂw Z/;7 V/:'M]ei(SEH+S¥f+Z?:1 S(i)""Sg))(’)_ (5)

We have included the D-dimensional Einstein-Hilbert
action Sgy and gauge-fixing term Sy to enforce 9, A" =
% O"h” . The stationary phase of the path integral is dominated
by solutions to the physically relevant Einstein and Mathisson-
Papapetrou-Dixon equations of motion [139-141]. This
highlights the WQFT’s main advantage when studying
classical physics: the classical # — 0 limit is identified with
the sum of tree-level Feynman diagrams.

The WQFT Feynman rules are most naturally expressed
in the Founer domaln h = [ie "k"hﬂv(k) and /' (7) =
fwe mn l ’ f(u l(M l ’ where fk =
[1dPk/ (27r)D} and fw J(dw/2x). Feynman rules for
the graviton h,, originating from the bulk Einstein-
Hilbert action are conventional, with propagator

1% po

. Ijlw,pa (6)
.WW]\CMM. k2T sgn(k0)i0+

and P, = Nu(pMo) — [1/(D — 2)]#,,1,,- Given our cur-
rent focus on conservative scattering, the retarded i0" pole
displacement here plays no role upon integration, so we
hide it in the following. The /0" prescription is, however,
significant for the worldline propagators associated with z;
and ! which are, respectively,

nt

1% |2
° = ° ’Lmi(w + i0+)2 ’ (73)
" v n/LV
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FIG. 1. The ten types of diagrams contributing to the m;m3 components of Ap;  and the m3 components of Ay

() ® () ® ()

@3 () involving Z(1#)-

type integrals (12). In the test-body limit m; < m, these are the only surviving contributions. All graphs should be considered trees—
the dotted lines represent the worldlines on which energy is conserved, instead of momentum.

The background parameters %, v, and W (and therefore
S, dlt)) are identified with the far past: ¥/ (7)" =" b/ + o
and ! (7)"=7W¥. Expressions for Feynman vertices on
the worldline were provided in Refs. [126,127]: they
are distinguished by energy conservation and -carry
mie*Vig(k-v; + 3 w;), where k is the total momentum
of all outgoing gravitons and w; are the energies of emitted
2, w¥, and " modes.

Momentum impulse and spin kick—We derive two
physical observables in an unbound scattering event: the
momentum impulse Ap = [p/]"=*® and change in

ilt=—00
u

spin vectors Ad! := [af|7=7%—the “spin kick.” In the

i lt=—00
PM expansion with AX = 5", G"AX") we focus on the
3PM components A p(13)” and Aaf)” . The latter we recover
from both Ap/f and AS}" using Eq. (2):

1
Ad —
=3

1

€0 (S APT + mAST V] + ASTAPT).  (8)

i

selecting the G component on both sides. Meanwhile,
ASY we derive from Ay == [p#]7=1% and Ap:

ASE = =2i(PN Ay + Al 4 gl Ayt (9)

In the WQFT formalism these quantities are considered
observables:

o d*x"
Ap’; = m,-/_ d‘r< dlZ(T)> = _miw2<z7(a))>|m:0’

0 T

st = [Tar( M) — ol (0

00 T

Diagrammatically this amounts to drawing all tree-level

diagrams with a single cut external z or w;" line.

The diagrams required to calculate both Ap(IS)” and

Ay/(f)” are divided into three categories, the first two of

which are illustrated schematically in Figs. 1 and 2. As the

diagrams involved in A p(13)" and Az//(13>” differ only by the

cut outgoing line, we display them together. For additional
brevity we use only solid lines to represent propagating
worldline modes z/, w¥, and ?; however, it should be
assumed that each internal worldline mode could be of
all three types (with expressions adjusted accordingly).
The third set of diagrams (not drawn) consists simply of

mirrored versions of the graphs in Fig. 1 through a
horizontal plane, but with the external cut line still on
the first (upper) worldline. For the impulse we avoid
calculating these contributions directly, instead making

use of momentum conservation ApS* = —ApP* (for
conservative scattering).

We assemble expressions using the WQFT Feynman rules
in D = 4 — 2¢ spacetime dimensions, with the later intention
of recovering four-dimensional results in the € — O limit.
Each retarded graviton (6) and worldline (7) propagator
points toward the outgoing line: from cause to effect. As
diagrams belonging to each of the three categories carry

common overall factors of the masses m?m/z} , the categories
themselves are separately gauge invariant. This helpfully
breaks the calculation up into gauge-invariant subcompo-
nents. Diagrams in Fig. 1 carry the maximum allowed power
of m,, and represent the test-body limit m; < m,. Integrals
are performed over the energies (on the worldlines [) or
momenta (in the bulk f ) of all internal lines.

)

The integrals involved in both Ap<13 and Alpf)” are

Fourier transforms of two-loop Feynman integrals:

/eiqib‘s(q'v1)5(q'vz)|61|“ff(ff§i ..... ne =123, (11)

q

where 8(w) :=27x6(w), ¢* is the total momentum
exchanged from the second to the first worldline, and «
is an arbitrary power of |¢|:=,/=g-¢. The two-loop
integral families are

Iglll,z,i,rL [f}]ll cee f/f”fgl e f’z’m]
— / 5(f1 . 112)5(1/”2 . 02,1)5’1” R f’fhflz/] . flém
1.0

DYDY D7 ’
Dy =¢,-v,+i0",  Dy=%f,- v, +i0",

Dy = ¢3, D, =3,

Ds=(¢1+¢,-q)°, Ds=(1-9),

D; = (£, -q)*, (12)

and IS,S,i>n7 = Ifqlli)mhl(_wz Each pair (4) is associated
with one of the three categories of diagrams. To achieve
these representations one must first integrate on the
energies carried by any internal deflection z; or spin

w, ¥ modes on the worldlines.
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FIG. 2. The 22 types of diagrams contributing to the m?m3 components of Ap;

(p)

O (3)

and the m;m3 components of Ay, involving

T type integrals (12). We exclude “mushroom graphs” that integrate to zero in the potential region.

As two-loop integrals of this kind are now well studied—
see, e.g., Refs. [49,56,142,143]—we relegate full details of
how to perform them to the Supplemental Material [144].

The Inl ,,,,, n, Integrals—associated with the test-body dia-
grams in Fig. 1—are more straightforward, being naturally
evaluated in the rest frame ¢, = (1, 0). The more involved

z <2]i) integrals—associated with the diagrams in Fig. 2—

contain the arccoshy function. To fix boundary conditions
we adopt the potential region of integration, which ignores
radiation-reaction contributions and may be interpreted as a
resummation of the terms arising from a conservative PN
expansion (v/c) < 1. We have therefore excluded certain
graphs from Fig. 2—the so-called “mushroom graphs”—
which integrate to zero within this regime.

Our final results for Ap{™* and Aa\™" are presented
together with the corresponding 1PM and 2PM results in
the Supplemental Material [144]. They have the schematic
form

2 2.2 3 n—2
B mym; | (su my (s)u
Api = . [c arccoshy + <—> Cn ]
2 2
(13a)
2 mym? 3 (my\ 2
AW = P {dés)"arccoshy +)° <—1> dﬁ,s)”} :
s=1 |b| : n=1 my
(13b)

The coefficients c * and d " are rational functions of vk,
the initial spin vectors a,, and the unit-normalized impact
parameter b := b*/|b|, where |b|:=+/—b-b. We have
performed several consistency checks. Firstly, all poles
in e =2 — (D/2) arising from the dimensionally regular-
ized two-loop integrals (12) are seen to cancel, thus
ensuring finiteness of our results in the limit D — 4.
Secondly, conservation of pl?, ;- y,; and the fermionic
supercharge p; - y; between initial and final states implies a
set of consistency requirements:

0=mv, -Apg3> +Ap(11)-Ap(12>,
0=, Ay +Apt" W+ A At 4+ ApY - Ay
0=mvy- Ayt +ap7 W +Ap"- Ay

+Aap7 Ay’ (14)

All three of these checks are highly nontrivial: for instance,

(3

the third compares parts of Ay, containing arccoshy with

A pf)” at different orders in spin.

Scattering angle—We now specialize to spin vectors
aligned with the orbital angular momentum: o = s/,
where /¥ := e”ypag”v’]’ v5/(yv), confining the motion to a
plane. The conservative part of the scattering angle is then
given by (see, e.g., Ref. [104])

. gcons
Sy ——| =
2

with the full scattering angle (including radiative correc-
tions) given by 6 = 0., + 6.4 The center-of-mass
momentum is p,, = uyv/I’, where uy = Mv = mm,/M
is the symmetric mass, M = m; + m, is the total mass, and

I'=E/M = +/1+2u(y — 1), E being the total energy. We

decompose the scattering angle as

|AP1|
2P

(15)

n,m)

£=3(Gr) o W=§$w<@

with n and m counting the PM and spin orders, respectively.
At 3PM order using our results,

64y% — 120y* + 60y* =5 ,

32— 1)

dy* —12y% -3
1

3 Suy(14y* + 25)
3(r*=1)

(17a)

Oon =2

—8v arccoshy,
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44y* 4+ 100y + 41

(r-6)2r +1

35

(3,1) 16]/4 - 20}/2 +5 ) )
950“5 = ZYW (SF Sy — 5S_) - 4l/S+ (]/2 _ 1)3/2 + 12]/ (yz — 1)2 arccoshy s (l7b)
4r? 1772y° —2946y* + 1346y% — 137 16y* — 122 +1
032 = e ((96y6 — 160y* 4 70y% — 5)5% — ——~ v+ 130y ) 85 (y—H S5y

cons — (}/2

(r* 1)

214y* =223y +44 > o {2)/4—1—863/24—87
_ 2

35(y7 = 1)?

— (3s3 (47" + T2 +1) + 352 (8y° — 68y* — 63y2 —9) — 257 (8y° — 56y* — 24y — 3))

where we have defined § = (my — m;)/M as well as s, =

51 £ syand 5%, = Cp 183 + Cp 3. We have checked O,
both in the test-body limit v — 0 and up to 4PN order
(N?LO) for comparable masses against Refs. [26,145]. For
aligned spins, this provides a first check on the complete
quadratic-in-spin conservative dynamics of compact bina-
ries at 4PN order [117,118] together with recent work in the
worldline EFT formalism [122].

As explained by Bini and Damour [132-134], the
conservative scattering angle is generalized to include
radiation using the linear response relation:

o 1 a‘9cons 1 89c0ns
rad — 2 OE rad 297

Jrad' (18)

Here J is the total angular momentum in the center-of-mass
frame: the derivative is equivalent to one with respect to the
orbital angular momentum L = p|b|. It has recently been
clarified [146] that Eq. (18) applies only using an “intrin-
sic” gauge choice with respect to Bondi-Metzner-Sachs
symmetry, wherein the radiated angular momentum J 4

begins at O(G?). With E,,q starting at O(G?) to deduce Qiag
@)

we need only J), which was provided by Plefka,
Steinhoff, and the present authors for arbitrary spin
orientations in Ref. [126]. For aligned spins,

Jgg 208, ST =Sk
7\ |

L A+ P
dmim, 2y*=1)( 8 1 (3v*-1)
|b|2 ﬁ —g P-FTaTCCOSh]/ .

(19)
This yields the radiative part of the scattering angle:
3 42y -1270 8 1 (3v*-1)
0.,4= 0 1)2/2 ——+F—|—Tarccoshy

6y°v s, 6y —6y>+1 52 _s%_’+
27— ) 18] 2y’ =1)* [p]* [bP

(20)

o 298" +834y° + 853 2 3244y* +7972y% 4 4639 B
507 - 1) 507 - 1) " 105(y* - 1) e
arccoshy
r(r* - 1)5/2] ’ (17¢)

The nonspinning part of G’Eag has also been confirmed

without reference to Eq. (18); see, e.g., Refs. [53,54].

A key criterion of 95321 is that the total scattering angle

should remain finite in the high-energy limit. We write
O(E,v,|b|,7,s;) in terms of the energy, symmetric mass
ratio, impact parameter, Lorentz factor, and spin magni-
tudes, and let y — oo, in which case the individual masses
are negligible. In this limit,

GE — 52 32 (GE\3
0=4"" <1+S++¢>+?<—> [1+3S—+

|b| ] |bf? || ||
3 4152 + 52 — 1652
% s e Eﬂ +O(G*y7172). (21)

While we know of no spinning extension to the results of
Amati et al. [147] to compare with in the high-energy limit,
we do see that a logarithmic divergence appearing in the
conservative part of the angle (17) is canceled by the
radiative correction (20).

Discussion.—We conclude with a brief discussion of
bound observables. Using the B2B dictionary [16—18] one
may, for instance, recover the aligned-spin periastron
advance A® from our scattering angle:

A® =0(E,L,m;,s;) +0(E,—L,m;,—s;). (22)

Similarly one may relate the unbound and bound radial
actions, from which the scattering angle and periastron
advance are respectively given by a derivative with respect
to L. At 3PM order 6 cancels in Eq. (22); nevertheless,
from 6©) one may reconstruct the leading-PN parts of 0*)
and 6 (and similarly for the radial action) [145]. This
suffices for a comparison with bound quadratic-in-spin
results at N’LO: for example, we have reproduced the
quadratic-in-spin N’LO binding energy for circular orbits
[117,118], as was also very recently done in Ref. [122].
For arbitrarily aligned spins there is currently no extension
of the B2B map (22). An alternative would therefore be to
make an ansatz for a conservative two-body Hamiltonian—
for example, building on that used at 2PM order [78,79]—
and solve Hamilton’s equations for comparison with Ap/
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and Ad/, thus extending those results to 3PM. On the other
hand, we are hopeful that direct maps between unbound and
bound gauge-invariant observables for arbitrary spins will be
discovered in the near future. In that spirit, all information is
captured by the impulse and spin kick.

There remains much work to be done: for example,

extending Ap'™* and Aal to incorporate radiation-

reaction effects, as we have already done for the scattering

angle 9523 (20). This requires us to upgrade our two-loop

master integrals to account for the retarded pole displace-
ment on the graviton propagator (6) and restore the
mushroom graphs to Fig. 2. We are also interested in
the eikonal phase, which was computed in Ref. [127] at
2PM order as the free energy of the WQFT, and captures
both the impulse and spin kick. Nevertheless, for the time
being we believe that we have effectively showcased the
spinning WQFT’s utility and efficiency.
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