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We report new dynamical modes in confined soft granular flows, such as stochastic jetting and dripping,
with no counterpart in continuum viscous fluids. The new modes emerge as a result of the propagation of
the chaotic behavior of individual grains—here, monodisperse emulsion droplets—to the level of the entire
system as the emulsion is focused into a narrow orifice by an external viscous flow. We observe
avalanching dynamics and the formation of remarkably stable jets—single-file granular chains—which
occasionally break, resulting in a non-Gaussian distribution of cluster sizes. We find that the sequences of
droplet rearrangements that lead to the formation of such chains resemble unfolding of cancer cell clusters
in narrow capillaries, overall demonstrating that microfluidic emulsion systems could serve to model
various aspects of soft granular flows, including also tissue dynamics at the mesoscale.
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Soft granular materials consist of close-packed deformable
grains separated by thin fluid films. They are ubiquitous in
industries, forming food and cosmetic products and in nature,
where examples include dense emulsions, foams, as well as
certain types of biological tissues, among others [1–7]. The
presence of the internal length scale in such materials,
associated with the grain size, leads to a complex many-
body dynamics governed by the sequences of grain defor-
mations and rearrangements [8,9], which in turn result in
complex flows and rheological behavior, including plasticity
and viscoelasticity, memory effects, and avalanches [10–15].
The flow of such types of materials confined to narrow

geometries is of primary interest to the physics of amor-
phous solids and glasses [8,9,16], as well as of techno-
logical relevance for the generation of compartmentalized
capsules [17] and porous materials [18] or in bioprinting
[19]. The dynamics of soft granular media in constrictions
under external flow is also of significant interest in tissue
mechanics [20], as it could shed light on the behavior of
cell clusters passing through physiological constrictions, a
process that remains one of the critical stages of tumor
metastasis.

Previous microfluidic approaches to soft granular mate-
rials addressed the behavior of foams or dense emulsions
inside channels, however, without considering the inter-
action with an external flow [8,9,13,21,22]. Here, we
systematically study the behavior of a model soft-granular
medium (a tightly packed monodisperse emulsion) under
external viscous forces. We use a flow-focusing geometry
in which the emulsion is fed through the middle channel
and the external immiscible phase through the side chan-
nels. Accordingly, the emulsion is focused by the external
flow and narrows until passing through an orifice, a
situation which closely resembles the flow of cell clusters
in capillaries.
Typically, in microfluidics, flow-focusing junctions are

used to generate highly monodisperse emulsions [23]. Thus,
in Newtonian liquids, one typically observes two primary
dynamical modes: dripping, in whichmonodisperse droplets
are created inside theorifice, and jetting, inwhich the focused
phase flows in parallel with the focusing phase beyond the
orifice, only to break-up much later [23–25] due to the
Rayleigh-Plateau instability [24], although other regimes
have also been reported [23,26,27].
Here, in the case of a granular medium, we find new

dynamical patterns, distinct from simple viscous jetting and
dripping, such as (i) formation of fluctuating jets in which
the fluctuations of jet width are influenced by avalanche
“discharge” of the dispersed granular phase at the junction
rather than by the Rayleigh-Plateau instability of the jet,
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(ii) formation of very thin jets—single-file chains of grains—
via “unfolding” of thicker jets under extensional viscous
stresses, and (iii) irregular breakup of the jets resulting in
highly polydisperse grain clusters with a non-Gaussian
size distribution. We highlight the stochasticity of the
transport of the close-packed emulsion through the orifice
in the various regimes and the impact of the behavior of
individual grains on the dynamics of the entire emulsion
(e.g., its breakup). Furthermore, we perform ad hoc
numerical simulations based on a recently developed lattice
Boltzmann method for multicomponent fluids with near-
contact interactions [28–30] that reproduce the experimental
findings. The simulations employ a perfectly monodisperse
emulsion which demonstrates that the observed stochasticity
of the system is intimately associated with the granular
structure and not, in particular, with polydispersity of the
droplets.
The droplets (“grains”) of the innermost phase are

reproducibly formed at a T junction of channels of
rectangular cross sections. Subsequently, the monodisperse
emulsion is pushed into a wider channel (see Fig. 1) and
focused by the continuous phase into an orifice. We use
three Newtonian liquids to formulate the double emulsion:
fluorinated fluid [31] as the continuous phase, oil with
surfactant as the middle (grain-lubricating) phase, and dyed
water as the innermost grain phase (see Supplemental
Material [32] for details). The T junction generates droplets
at a volume fraction of 86% (the highest possible for which
the emulsion is monodisperse and stable). Based on
measured frequency of generation of the aqueous droplets,
we estimate droplet volume to be around 11.4 nL which
yields the diameter of an undeformed spherical droplet
D0 ¼ 0.28 mm. Since the value of D0 is larger than the
channel height H ¼ 0.11 mm, the droplets are flattened by
the lower and upper walls. Based on the measured apparent
areas of the generated clusters we estimate the diameter of
the flattened droplets Djj ¼ 0.37 mm with a coefficient of
variation CVDjj ¼ 9.2%.

The ensuing emulsion is stable enough to produce flows
for several minutes, with only occasional coalescence of the
aqueous droplets.
Our LB simulations, performed using a fully three-

dimensional color-gradient approach augmented with
near-contact interactions [28,29], use slightly different,
but similar, parameters for the system and droplets. See
Supplemental Material [32] and Ref. [33] for details on the
simulation methods and implementation.
In the experiment, we change the flow rate of the

continuous phase Qc, while keeping the flow rate of the
dispersed phase (the emulsion) Qd constant and equal
Qd ¼ 0.5 mL=h [34]. As a result, we observe several types
of dynamic flow patterns as illustrated in Fig. 2, and movies
SM1–SM4 in the Supplemental Material [32]. We find
superficial similarity to jetting and dripping regimes present
in simple fluids, however the observed dynamics is much
richer. We can distinguish four different modes: (i) jetting
with a large and moderately oscillating jet width, further
referred to simply as jetting; (ii) jetting with thin, strongly
oscillating jets and occasional breakup, further referred to
as oscillating jetting; (iii) dripping resulting in a strongly
polydisperse double emulsion, further referred to as irregu-
lar dripping; and (iv) dripping resulting in a relatively
monodisperse double emulsion, further referred to simply
as dripping. The numerical simulations recreate the same
dynamical modes at values Qc=Qd similar to yet slightly

FIG. 1. Scheme of the microfluidic system for generation
of a quasi-2D granular medium (water-in-oil emulsion) and its
fragmentation under flow focusing with an external third immis-
cible phase (fluorinated fluid). Dimensions as measured by
profilometry are W0 ¼ 2, W ¼ 1, L ¼ 2, H ¼ 0.11, w ¼ 0.11,
and h ¼ 0.08 mm.

FIG. 2. Dynamical modes observed in the system upon varying
Qc=Qd Qd ¼ 0.5 mL=h. Qc=Qd decreases from top to bottom
(note different values for simulations and experiment). Smaller
snapshots in the column on the right show flow patterns observed
in the experiment with the emulsion replaced by a simple viscous
liquid, either water (blue) or oil (transparent) for the same Qc=Qd
as in the experiment with the emulsion. The color bar refers
to simulation snapshots, with U being the local velocity in
lattice units. Experimental snapshots were taken from movies
SM1 (Qc=Qd ¼ 1), SM2 (Qc=Qd ¼ 2), SM3 (Qc=Qd ¼ 8),
SM 4 (Qc=Qd ¼ 16); simulation-based snapshots are taken
from movies SM5 (Qc=Qd ¼ 0.5), SM6 (Qc=Qd ¼ 2.5), SM7
(Qc=Qd ¼ 5), and SM8 (Qc=Qd ¼ 10) in the Supplemental
Material [32].
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different than the experimental ones, see Fig. 2 and movies
SM5-SM8, in Ref. [32]. We attribute the differences to
slightly different geometrical parameters and volume frac-
tions as imposed by the numerical constrains (see
Supplemental Material [32]).
In order to understand the impact of granularity of the

focused fluid on the onset of oscillating jetting/irregular
dripping regimes, we repeat the flow focusing experiment
with a simple fluid (water or oil) as the dispersed phase. We
find simple jetting (see SM9 and SM10 in Ref. [32] for oil
at Qc=Qd ¼ 1 and 2, respectively), highly monodisperse
dripping (CVAjj ¼ 2.2% for oil, where Ajj is the area of a
flattened oil drop, at Qc=Qd ¼ 3; see SM11) or bidisperse
dripping [35] (the latter, with 2 narrow peaks, in the case
with oil at high Qc=Qd, see SM12 and SM13 for examples
with Qc=Qd ¼ 4 and 8, respectively; see Supplemental
Material [32] for relevant histograms), but never observe
irregular oscillations and rich dynamics similar to the case
of a focused emulsion (see Fig. 2). In particular, we find
only dripping for the case with water and the jetting-
dripping transition for oil, which both agree with previous
predictions for simple Newtonian liquids (i.e., that increas-
ing viscosity of the dispersed phase promotes jetting) [26].
We further examine the four distinct dynamical

modes observed for the focused emulsion in more detail.
We define the minimum instantaneous jet width, wminðtÞ ¼
minx∈½0;L�wðx; tÞ, where wðx; tÞ is the full spatiotemporal
profile of the jet within the narrowing, as a measure of jet
oscillations in time [Fig. 3(a)]. We find that the correspond-
ing time average, hwmini ¼ T−1

R
T
0 dt wminðtÞ, where T is the

timeof durationof the experiment, decreases upon increasing
Qc=Qd while the stochastic fluctuations ofwminðtÞ remain of
similar absolute magnitude. Accordingly, this leads to occa-
sional break-up (wmin ¼ 0) of the jet in the oscillating
jetting mode.
Additionally, in the jetting mode, we frequently observe

abrupt granular “discharge” of the junction, associated
with rapid entrance of several droplets in-parallel into
the constriction. In order to quantify such avalanching
behavior we measure the width of the jet w0ðtÞ precisely at
the entrance to the constriction. We find that w0ðtÞ develops
a sawtooth like profile [Fig. 3(b)] characteristic of ava-
lanches and previously also observed in sheared foams and
dense suspensions [12,36].
Next, we measure the sizes of the subsequently gen-

erated clusters in the dripping and irregular dripping modes
[Fig. 3(c)]. Whereas in the former case the clusters are
relatively monodisperse (yet much more polydisperse than
in dripping of simple viscous fluids), in the latter case we
observe recurring peaks in the cluster size corresponding to
extremely large clusters. More quantitatively, in the drip-
ping mode the number of grains N in a cluster does not
apparently deviate from the Gaussian distribution. The
coefficient of variation CVN ¼ 19.5% [see Fig. 3(d)] is
significantly larger than in the case with the granular

emulsion replaced by the pure oil phase (CVAjj ¼ 2.2%),
yet still moderate. In contrast, in the irregular dripping
mode the distribution of cluster sizesN features a long right
tail for large N [see Fig. 3(e)], with CVN ¼ 74.3% and a
very large skewness, as documented by a Pearson’s
moment coefficient of skewness (see Supplemental
Material [32] for a formal definition) SN ¼ 3.1.
We associate the formation of the extremely large

clusters in the irregular dripping regime with the emergence
of single-file chains of grains within the narrowing, which,
once formed, exhibit remarkable stability. In principle, such
chains remain stable once the local velocity of the con-
tinuous phase around the chain Uc matches the velocity of
the grains inside the chain Ud;chain, which in turn is set by
the rate of feeding of the grains into the orifice (note that
this condition also determines the boundary between the
dripping and jetting modes). Considering that Uc ¼
Qc=½H × ðW −WchainÞ� and Ud;chain ¼ Qd=ðH ×WchainÞ,
where Wchain is the width of the chain, the requirement
Uc ¼ Ud;chain leads to the following condition on the
matching flow rate of the continuous fluid Qc;match:

Qc;match=Qd ¼ W=Wchain − 1: ð1Þ

FIG. 3. (a) Fluctuations of the minimum jet width wminðtÞ
(b) Fluctuations of jet width w0ðtÞ at the entrance to the
constriction. The avalanching events are marked with arrows.
(c) Number of grains N in clusters generated in the dripping and
irregular dripping regimes (Qc=Qd ¼ 16 and 8) vs the index of
cluster i in order of generation, and (d)–(e) the corresponding
histograms nðNÞ. The histogram in (f) shows analogous data for a
system with a much thinner and longer orifice, yet with
Qc=Qc;match very close to the case in (e) (see main text and
Supplemental Material [32] for further discussion).
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We note that this requirement resembles the condition for
continuity of soft polymer fibers stretched by an accelerat-
ing co-flow, studied by Mercader et al. [37]. In fact,
our granular chains resemble semisolid fibers rather than
viscous jets as demonstrated by (i) the lack of the Rayleigh-
Plateau instability (typical of viscous jets) [25] and
(ii) longitudinal stretching and/or compression of the chain
as visualized by droplet deformations within the constric-
tion, see Fig. 4(a). We associate such elastic solidlike
behavior with a combination of the capillary arrest and
deformability of the droplets within the chain.
From the experimentallymeasured averagewidth of chain

Wchain ¼ 0.68Djj ¼ 0.253W we obtainQc;match=Qd ¼ 2.95.
This is close to the value Qc=Qd ¼ 2 corresponding to the
oscillating jetting regime; however, we actually observe
single-file chains more often when Qc=Qd ¼ 8, in the
irregular dripping mode.We suspect that the relative scarcity
of single-file chains for Qc=Qd ¼ 2 results from sponta-
neous “folding” of single-file chains into wider jets

in the immediate vicinity of the theoretical matching
velocity Ud;chain (see SM2, seconds 1.83–2.58, 5.20–5.88,
24.01–24.76 [32]). At the same time, due to the finite length
of the orificeL, chains are able to survive extensional stresses
at Qc ≳Qc;match, which may explain their abundance at
Qc=Qd ¼ 8.
We note that even at matched velocities the chains can

break due to irregularity of the grain feeding into the orifice
associated with stochasticity of grain rearrangements upon
approaching the constriction. When a pair of grains enter
the narrowing simultaneously they may rearrange, or
“unfold,” into a chain or not- in the latter case entering
as a two-grain cluster or a “fold” (see Fig. 4). When the fold
enters the orifice the continuous phase needs to locally
accelerate and pass around it to conserve flux. The
increased viscous forces acting at the fold result in chain
stretching via longitudinal grain deformation which may
eventually cause chain breakup.
Our LB simulations allow us to extract precise informa-

tion about the velocity gradients within the system and
verify this scenario. Indeed, we find progressively increas-
ing velocity gradients around the doublet [see the purple
marker in the last snapshot of Fig. 4(b)]. We propose that a
similar mechanism (i.e., the acceleration of the continuous
phase around wider parts of the jet) might also lead to the
enhancement of fluctuations of jet width in the jetting and
the oscillating jetting modes.
Next, we also perform a series of experiments with a

smaller width of the orifice (W ≲Djj), for which a
simultaneous entry of two grains into the narrowing is
hindered (see Supplemental Material [32] for details). In
this case, the complex dynamical picture is lost and we only
observe a transition between single-file jetting and drip-
ping. To provide an example, we quantify the cluster size
distribution in this geometry in Fig. 3(f) when Qc=Qc;match

(which serves as a measure of proximity to the jetting-
dripping transition) is almost identical as in the long-tailed
irregular dripping mode [Fig. 3(e)]. We still observe strong
polydispersity (CVN ¼ 44%), however, no long tails
(SN ¼ 0.73). This further confirms the impact of individual
grain rearrangements and, more specifically, the manner in
which the grains enter the constriction, on the fate of the
entire system, including the large-scale stochastic behavior.
Finally, we provide an example of how granular rear-

rangements observed in our flow-focusing setup could
serve as a “benchmark” for more complex soft granular
flows including confined biological flows. In fact, sequen-
ces of cell rearrangements have been previously studied in
circulating tumor cell clusters transiting a narrowing
channel [20]. Upon approaching a constriction the clusters
were often able to unfold into a single-file chain without
breakup. In some cases, the order in which the cells
approached the narrowing seemed to determine their order
of entry, but in some other cases the order was strongly
disturbed by cell rearrangements [see Fig. 4(c)]. This is

FIG. 4. (a)–(b) Numerical (at Qc=Qd ¼ 3.5) and experimental
(at Qc=Qd ¼ 8) snapshots (see SM14 and SM15 [32], respec-
tively, for the full movies) visualizing (a) doublet unfolding upon
entry into the constriction and (b) a failure of unfolding, leading
to an increased velocity gradient ∇U around the doublet (pink
marker in the simulation panel) and breakup of the jet. (c) The
order of entry of circulating tumor cells (CTCs) forming a cluster
in a narrowing channel under co-flow (figure adapted with
permission from Au et al. [20]; copyright National Academy
of Sciences 2016) and (d) the order of entry of droplets into the
constriction in our experiment, at Qc=Qd ¼ 8 (see SM16 [32] for
the full movie).
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interpreted in Ref. [20] as the effect of heterogeneity of cell-
cell interactions and polydispersity of cells. However, our
experiments demonstrate that even in a homogeneous,
monodisperse passive granular system the order of entry
is not strictly determined by the order of approach but
rather depends on stochastic rearrangements upon entry
[see Fig. 4(d)]. Accordingly, we argue that the phenomena
reported by Au et al. [20] may result from the immanent
irregularity of flow patterns associated with many-body
interactions and general stochastic dynamics of soft granu-
lar media, and not only from heterogeneity of the grains.
In summary, we develop a model platform to study the

behavior of soft granular media subjected to external flows
and demonstrate rich phenomenology including stochastic
granular jettinglike and drippinglike modes with no
counterpart in simple fluids.
We note that series of two (or more) microfluidic

junctions have been previously used to produce double-
emulsion core-shell droplets with multiple cores [38–44]. A
couple of recent works considered cores-in-shell volume
fractions high enough (> 80%) for the double-emulsion
drops to be considered soft granular clusters [17,39,45,46].
However, those previous works exploited generation of the
clusters via one-by-one feeding of the cores into the shell
without actually considering the flow of a soft-granular
medium per se. In this Letter, we argue that the latter poses
a completely different problem and involves phenomena
not present in simple fluids.
Our findings open up several avenues for future work.

First, the full dynamical phase diagram in the three-
dimensional ðQc;Qd;ϕÞ-space including possible hyster-
etic behavior at transitions between the modes—also
depending on the viscosities and interfacial tensions–
remains to be established. Second, the statistics of rear-
rangements between individual grains could be further
investigated to shed light on the effective phases of matter
(solidlike vs fluidlike) occurring in such a system. Finally,
our platform could also be further developed to allow
tracking of the internal relaxation dynamics of the gen-
erated granular clusters. This poses possible significance,
e.g., to the recovery of tissues after mechanical injury or the
dynamics of CTCs in capillaries during cancer metastasis.
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