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The gradient expansion is the fundamental organizing principle underlying relativistic hydrodynamics,
yet understanding its convergence properties for general nonlinear flows has posed a major challenge. We
introduce a simple method to address this question in a class of fluids modeled by Israel-Stewart–type
relaxation equations. We apply it to (1þ 1)-dimensional flows and provide numerical evidence for
factorially divergent gradient expansions. This generalizes results previously only obtained for (0þ 1)-
dimensional comoving flows, notably Bjorken flow. We also demonstrate that the only known nontrivial
case of a convergent hydrodynamic gradient expansion at the nonlinear level relies on Bjorken flow
symmetries and becomes factorially divergent as soon as these are relaxed. Finally, we show that factorial
divergence can be removed using a momentum space cutoff, which generalizes a result obtained earlier in
the context of linear response.
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Introduction.—Hydrodynamics plays a pivotal role in
the description of nonequilibrium phenomena, with appli-
cations ranging from condensed matter systems [1] to
scenarios in astrophysics [2–4] or nuclear physics [5,6].
The reason is that hydrodynamics captures the infrared
behavior of any medium endowed with conserved quan-
tities. For a given set of conserved currents, the expression
of hydrodynamic behavior rests on the derivative expansion
in the spirit of an effective field theory [7–11]. For a neutral
relativistic fluid, the natural choice of dynamical variables
are the energy density EðxÞ and the unit-normalized fluid
velocity UðxÞ ¼ UμðxÞ∂μ, with the conserved currents,
Tμν, given by the constitutive relation

Tμν ¼ EUμUν þ PðEÞðgμν þUμUνÞ þ Πμν: ð1Þ

Here, the first two terms describe ideal flow with g being
the Minkowski metric and Πμν captures dissipative effects
organized as

Πμν ¼
X∞
n¼1

ϵnΠðnÞ
μν ½E; U�; ð2Þ

where ΠðnÞ
μν contains n spacetime derivatives of E,U and we

have introduced ϵ as a formal derivative-counting param-
eter. The gradient expansion in Eq. (2) is defined up to
redundancies associated with frame choice and current
conservation ∇μTμν ¼ 0.
Understanding the character of the expansion (2) con-

stitutes a fundamental open problem. Is it convergent, in
such a way that subsequent truncations are progressively
more accurate? If not, how does its divergent nature relate
to the empirical success of low-order truncations?
Studies of comoving flows in Refs. [12–31], in which all

fluid flow lines can be mapped to each other under
symmetry transformations, rendering the problem effec-
tively (0þ 1) dimensional, have been instrumental in
advancing our understanding of the hydrodynamic expan-
sion (2). Among these, Bjorken flow [32] in conformally
invariant theories is the most thoroughly explored example
due to its role in studies of quark-gluon plasma. In these
cases a particular strategy to solve the dynamical equations
is an expansion in the Knudsen number, 1=w [33]. It is
possible to compute a sufficient number of terms to assess
that these expansions are factorially divergent. The expan-
sion in ϵ defined in Eq. (2) encapsulates the expansion in
1=w, as we review in the Supplemental Material [34].
Another well-studied example of a comoving flow is the
Gubser flow which is reached by Weyl transformation from
a (0þ 1) flow on dS3 ×R [35,36].
Outside the realm of comoving flows, the only generic

result on (2) was restricted to the linear response regime
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[37]. It showed that depending on how the momentum
space support kmax of E and Uμ compares to an intrinsic
scale of the underlying microscopic theory k� [38],
the gradient-expanded constitutive relations could either
be convergent (kmax < k�), geometrically divergent
(k� < kmax < ∞), or factorially divergent (kmax → ∞).
In this Letter, we break free both from the symmetry

constraints of comoving flows and the conveniences of
linearization to address, for the first time, the large-order
behavior of the hydrodynamic gradient expansion beyond
comoving flows at the fully nonlinear level. Specifically,
we ask the following question: Given a generic nonequili-
brium, nonlinear configuration of E, Uμ arising on-shell,
what is nature of the expansion in ϵ (2) when evaluated on
this solution? We answer this question by introducing a
simple method that allows one to calculate Eq. (2) up to
high order on a desktop computer. In this Letter we
illustrate it in two examples. The first is the model put
forward by Baier, Romatchske, Son, Starinets, and
Stephanov (BRSSS) in Ref. [39], while the second is the
model originally introduced by Denicol and Noronha (DN)
in Ref. [27]. Both theories are representative examples
within a broad class of models employing the Israel-
Stewart approach to embed hydrodynamics in a framework
compatible with relativistic causality [40,41]. Our method
applies to any member of this class, such as [42], and
covers also equations with more than one derivative of Πμν,
such as [43–45]. Each member of this class generally gives
rise to infinitely many transport coefficients in the gradient
expansion (2) that are specific to it.
Results in the BRSSS model.—In this Letter, we consider

the restriction of the BRSSS model to conformal fluids in
d spacetime dimensions (d ¼ 4 in our numerics). We work
in the Landau frame and take ΠμνUν ¼ 0. The model is
defined by promotingΠμν to a set of independent degrees of
freedom subject to a relaxation equation,

Πμν ¼ −2ηDhμuνi − τΠUαDαΠμν þ λ1
η2

Πhμ
λ Πνiλ; ð3Þ

where we neglected terms not relevant to the flow we
consider. Dμ is the Weyl-covariant derivative [46], and the
angle brackets instruct one to take the symmetric, trans-
verse, and traceless part of the tensor they act upon.
The relaxation time τΠ, the shear viscosity η, and λ1 are
transport coefficients. Conformal invariance demands that
these quantities depend on the local temperature T, defined
by the relation E ¼ E0Td, as

η ¼ Cη
4E
3T

; τΠ ¼ CτΠ

T
; λ1 ¼ Cλ1

η

T
; ð4Þ

where Cη and CτΠ > 0. The equations of motion of BRSSS
theory are given by (3) and the conservation equation

∇μTμν ¼ 0, where the energy-momentum tensor is speci-
fied in terms of E, U, and Πμν as in (1).
The fluid flows we focus on are characterized as follows.

We separate the spatial coordinates into one longitudinal
direction, x, and d − 2 transverse directions, x1;…; xd−2,
demanding isotropy and translational invariance in the
transverse hyperplane spanned by xi. Hence, the nontrivial
dynamics is confined to the longitudinal plane spanned by t
and x, and our fluid flows are (1þ 1) dimensional. We refer
to these fluid flows as longitudinal. At the linearized level
such flows would correspond to sound wave propagation.
See, e.g., Ref. [47] for a study of longitudinal flows in a
quark-gluon plasma context [48].
The most general fluid velocity for a longitudinal flow is

parameterized by a single degree of freedom, u, as

U ¼ Uμ∂μ ¼ cosh u∂t þ sinh u∂x: ð5Þ

Furthermore, any tensor which is symmetric, transverse to
Uμ, and traceless is described in terms of a single additional
degree of freedom that we pick as

Πμν ¼ ð2 − dÞΠ⋆Σμν ð6Þ

where Σμν ≡ gμν þ UμUν − ½ðd − 1Þ=ðd − 2Þ�Pμν
T and

Π⋆ ¼ ½1=ðd − 2Þ�Pμν
T Πμν, with Pμν

T being the projector in
the transverse directions.
We now consider the expansion (2) applied to the

conformal BRSSS model for longitudinal flows. This is
facilitated by a numerical algorithm which makes a
computation of (2) to large orders tractable. Since ϵ counts
derivatives it can be introduced by taking (3) and replacing
∇μ → ϵ∇μ together with positing a perturbative ansatz for
Π⋆, as follows,

Dα → ϵDα; Π⋆ →
X∞
n¼1

ΠðnÞ⋆ ϵn: ð7Þ

This leads to the following recursion relation:

Πð1Þ⋆ ¼ −
2

d − 2
ηPμν

T DhμUνi; ð8aÞ

Πðnþ1Þ⋆ ¼ −τΠðU · ∂ÞΠðnÞ⋆ −
dð∂ · UÞ
d − 1

τΠΠ
ðnÞ⋆

− ðd − 3Þ λ1
η2

Xn
m¼1

ΠðmÞ⋆ Πðnþ1−mÞ⋆ ; n > 1: ð8bÞ

Here, E andU are not expanded in ϵ. Therefore to proceed
to evaluate (8)wemust first findE andU for a given choice of
flow. These (as well as the exact Π⋆) can be obtained by
numerically solving the BRSSS equations of motion as
an initial value problem without invoking an ϵ expansion.
Once E and U are known, the recursion relation (8) can be
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efficiently evaluated numerically to high orders. Careful
consideration of resolution and precision is required, as
this procedure involves high numbers of successive deriv-
atives of the background solution E and U. This is further
discussed in the Supplemental Material, where we show that
our numerical results are convergent.Our approach applies to
the whole class of theories which build on the Israel-Stewart
approach.
Note that solving the recursion relation (8) analytically is

prohibitively expensive due to the fast growth in the
number of terms contributing at each order. In particular,
for the case λ1 ¼ 0 we observed an exponential growth of
the number of individual contributions at each order. Our
method circumvents this difficulty.
We have applied our approach in the BRSSS model

across a wide variety of initial conditions, transport
coefficients, and spacetime points. We find factorial growth
in all cases considered. We illustrate this in Fig. 1 with one
representative example in which we consider a strong
Gaussian overdensity for our initial conditions and adopt
a periodic compactification of the spatial direction. The left
panel shows T and flow lines of U and highlights three
spacetime point samples. The right panel root plot dem-
onstrates factorial growth at these sampled points. Further
details are provided in the Supplemental Material.

Momentum cutoff.—In previous work [37] we showed
that a momentum-space cutoff gives at most a geometrically
divergent hydrodynamic expansion for linear deviations
from equilibrium. This result naturally extends to strongly
nonlinear scenarios, as we now demonstrate. So far in this
Letter we have used a numerical grid simply as a tool to
approximate the continuum, but we now push beyond the
continuum picture and reevaluate the grid in a new role as a
physical lattice which naturally enforces a momentum-space
cutoff. In the BRSSS model, when λ1 ¼ 0 the recursion
relation (8) can be written as

Πðnþ1Þ⋆ ¼ MΠðnÞ⋆ n > 1; ð9Þ

where M ¼ −τΠðU · ∂Þ − ½dð∂ · UÞ=ðd − 1Þ� is a differ-
ential operator independent of n, depending only on the
background solution E, U. For a grid of dimensions

Nx × Nt, each ΠðjÞ⋆ can be written as a NxNt-sized vector,
andM accordingly as a NxNt × NxNt square matrix. Thus,
on a lattice the expansion is ultimately only geometrically
growing at a rate set by the largest eigenvalue ofM, which
scales with the inverse lattice spacing. In Fig. 2 this is
demonstrated by utilizing a deliberately low resolution
lattice to allow for evaluating the hydrodynamic expansion

FIG. 1. Left panel: solution to an initial value problem in BRSSS. Color shows the temperature profile Tðt; xÞ, and the black solid lines
are flow lines of velocity U. Here t, x are obtained from standard Minkowski coordinates by periodically identifying x ∼ xþ 1. Initial
conditions were provided at t ¼ 0 corresponding to a strong Gaussian overdensity. The color scale ranges from min T ¼ 0.76 (violet) to
maxT ¼ 1.76 (red). Also included are three marked points (disk, plus, open diamond). Right panel: root plot for the hydrodynamic
expansion of the constitutive relation (2) for BRSSS, evaluated using the recursion relation (8) for the solution shown in the left panel, at
each of the marked points with matching marker shapes. To guide the eye, in red we show straight lines fit to the range n ∈ ½20; 130�,
which correspond to ΠðnÞ⋆ ∼ ΓðnÞ at large n. Numerical convergence of our results is demonstrated in the Supplemental Material.
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to order n ¼ 8000. It shows the transition from factorial
growth where the continuum approximation holds, to the
geometrically divergent asymptotic behavior governed by
the aforementioned eigenvalue. We have also verified
numerically that this result holds at λ1 ≠ 0, with the
definition of M as given.
Resolving the DN model tension.—Bjorken flow is a

boost-invariant longitudinal flow such that the dynamics
depends on the proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p
only. In Ref. [27]

the authors analyzed a Knudsen number expansion for an
ultrarelativistic gas of hard spheres undergoing Bjorken
flow. While in all the other models such expansions have
been observed to be factorially divergent, in Ref. [27] the
terms grow only geometrically, with convergence ensuing
for a Knudsen number smaller than a critical value. Our
objective is to reanalyze this physical scenario using the
expansion in ϵ. For Bjorken flow we find analogous results,
namely, geometric growth; however, our method allows
us to explore what happens when these symmetries are
relaxed.
We work in d ¼ 4. As in the conformal BRSSS model,

the energy-momentum tensor in the DN model is traceless
and decomposed as in Eq. (1), withΠμν still obeying Eq. (3)

with λ1 ¼ 0. Hence, the recursion relations giving ΠðnÞ⋆ still
take the form (8), again with zero λ1. The differences start
with the inclusion of a conserved current Jμ ¼ ρUμ, where

ρ is the particle density. Furthermore, τΠ and η are not fixed
purely in terms of the local temperature T, but rather obey

E ¼ 3ρT; η ¼ a
σT

T; τΠ ¼ ab
4σT

1

ρ
; ð10Þ

where σT is the total cross section and a, b are positive
dimensionless constants.
For Bjorken flow, the conservation of the particle current

Jμ entails that the particle density ρ decouples from the
energy-momentum tensor. One has that

ρðτÞ ¼ ρ0τ0
τ

; ð11Þ

where ρ0 ¼ ρðτ0Þ is the initial particle density. Hence,

τΠ ¼ 1

4
abKnτ; ð12Þ

where Kn ¼ 1=ðρ0τ0σTÞ is the Knudsen number. In the DN
model for Bjorken flow it is time independent.
To assess the large-order behavior of the expansion in ϵ,

Eq. (2), we first note that one can find a closed-form

expression for ΠðnÞ⋆ ,

ΠðnÞ⋆ ðτÞ ¼ 2

3
aKnρ0

�
τ0
τ

�4
3

�
−
abKn
4

�
n−1

× ðτ∂τÞn−1
��

τ

τ0

�1
3

TðτÞ
�
; ð13Þ

a fact that relies crucially on Eq. (12). Second, we recall
that T can also be determined exactly [27],

TðτÞ ¼ T0;þ

�
τ0
τ

�
αþ þ T0;−

�
τ0
τ

�
α−
; ð14Þ

where T0;� depend on initial conditions and α� on a, b, and

Kn. Together, Eqs. (13) and (14) entail that ΠðnÞ⋆ cannot
grow factorially with n at fixed τ, since the repeated action
of the differential operator τ∂τ on terms of the form
ðτ=τ0Þð1=3Þ−α� only grows geometrically. Furthermore,

Eqs. (13) and (14) also imply that Πð1Þ⋆ (and therefore all

Πðn>1Þ⋆ ) is a linear combination of eigenfunctions of the
differential operator M defined as in Eq. (9), providing
another perspective on why the gradient expansion grows
geometrically in this case. We refer the reader to the
Supplemental Material for further details.
The analysis above relies crucially on the symmetry

restrictions of Bjorken flow. Empirically, when relaxing
these symmetry restrictions in all cases studied we find
that the large-order geometric growth is destroyed and the
factorial divergence is restored. We illustrate this in Fig. 3

FIG. 2. Workingon a lattice gives awindowof factorial growth—
where it successfully approximates the continuum—before yield-
ing to a geometrically growing hydrodynamic expansion regulated
by the lattice. The asymptotic value reached is governed by the
lattice spacing as discussed in the text. Black disks are those from
Fig. 1 corresponding to the disk spacetime marker point. Red
circles are the same simulation and spacetime point, but on a coarse
numerical grid and evaluated to hydrodynamic order n ¼ 8000.
This plot serves also as an indication of a convergence of our
approach.
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for a longitudinal flow corresponding to a small perturba-
tion of Bjorken flow.
Summary and outlook.—Understanding the behavior of

the hydrodynamic gradient expansion at large orders is a
challenging question in the foundations of relativistic
hydrodynamics. We have proposed a method to compute
such series in a large class of models. Applying this to
nonlinear longitudinal flows reveals factorially divergent
series which we have illustrated with a number of exam-
ples. This shows that previously observed instances of
factorial growth were not reliant on Bjorken symmetries.
It is natural to ask what are the generic conditions that

lead to factorial growth. We have here established that the
ability of a system to support arbitrarily large momentum is
important; ways around this include working on a lattice,
and appropriate restriction of initial data in the linearized
case [37], both of which naturally lead to geometric growth.
Second, as our analysis of the DN model shows, imposing
special symmetries such as boost invariance can also lead to
geometric rather than factorial growth. It would be inter-
esting to explore this question further including other
natural momentum cutoffs such as microscopic physics
and turbulent cascades. For models with recursion relations
of the form (9), it may be possible to engineer further
examples where the underlying equations of motion give
rise to ΠðnÞ⋆ which are eigenfunctions of M such that the
hydrodynamic gradient expansion grows geometrically.
This could form the basis of a rigorous mathematical
formulation for investigating the genericity of factorial
growth.

The picture that is emerging from this work and results in
linear response [37] is that the origin of factorial growth at
large n in the hydrodynamic gradient expansion is the
successive action of n derivatives on the hydrodynamic
variables E,U. This is intimately connected with support of
a solution in momentum space. It suggests that having a
factorial growth in the number of transport coefficients at
each order is not necessary.
The factorial divergence of asymptotic series is not an

impediment to their practical utility: such series typically
provide excellent approximations as long as one does not
exceed the so-called order of optimal truncation. Our work
makes such investigations possible for a much wider set of
flows than previously tractable.
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