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We develop a unified framework to characterize one-shot transformations of dynamical quantum
resources in terms of resource quantifiers, establishing universal conditions for exact and approximate
transformations in general resource theories. Our framework encompasses all dynamical resources
represented as quantum channels, including those with a specific structure—such as boxes, assemblages,
and measurements—thus immediately applying in a vast range of physical settings. For the particularly
important manipulation tasks of distillation and dilution, we show that our conditions become necessary
and sufficient for broad classes of important theories, enabling an exact characterization of these tasks and
establishing a precise connection between operational problems and resource monotones based on entropic
divergences. We exemplify our results by considering explicit applications to quantum communication,
where we obtain exact expressions for one-shot quantum capacity and simulation cost assisted by no-
signaling, separability-preserving, and positive partial transpose–preserving codes; as well as to non-
locality, contextuality, and measurement incompatibility, where we present operational applications of a
number of relevant resource measures.
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Introduction.—Manipulating different resources under
physical restrictions underpins many quantum technolo-
gies, and the precise understanding of physically realizable
transformations is a fundamental question both from
theoretical and practical points of view. Quantum resource
theories [1–3] provide a platform through which the
quantification and manipulation of resources can be explic-
itly considered, enabling the study of resource manipula-
tion in a range of settings of interest [4–7].
Because of the inherent generality of the framework of

resource theories, the formalism could be expected to
provide unifying results on resource manipulation that hold
for diverse classes of resources. Developing such versatile
general resource theories allows one to extract common
features shared by different physical phenomena and clarify
the peculiarities that differentiate one setting from others
[7–25]. However, previous approaches to these problems
suffer from a number of limitations. Many works have
focused on the static, rather than dynamical resources, in the
sense that only the manipulation of quantum states was
considered, and a more general approach that incorporates
the ability to manipulate the dynamics of the systems was

not established. Recent works have begun to describe
channel-based theories [14,22,23,26–30], but often focused
on the investigation of specific theories such as entangle-
ment, coherence, or quantummemories [31–43], or obtained
results that only apply in the idealized asymptotic limit [26].
The characterization of dynamical resource theories is
significantly more complex than the manipulation of under-
lying states, and many questions remain unanswered.
Notably, the precise characterization of convertibility
between two quantum channels in the practical one-shot
scenario has been an outstanding problem to be addressed.
An important aspect of dynamical resources is that they

can describe a much broader range of settings than the
commonly considered manipulation of quantum states with
general quantum channels. For instance, Bell nonlocality
[44,45] as well as quantum contextuality [46,47] have been
investigated within formal resource-theoretic settings
[48–52], but the specific restrictions on the structure of
channels allowed in these settings prevented them from
being integrated into most of the previous general quantum
resource frameworks. The recent works of Refs. [53,54]
considered an approach to quantum nonlocality that
encompasses any type of input and output systems,
suggesting that the establishment of a broader framework
of channel resource theories might be possible, and opening
up the potential to address the manipulation of dynamical
resources in a unified manner.
Here, we achieve such a unified description by provid-

ing a universal characterization of one-shot resource
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transformations with finite error in terms of fundamental
resource measures, valid in general resource theories of
quantum channels. By allowing arbitrary restrictions on the
set of channels under consideration, our results apply not
only to settings previously studied in resource theories of
channels—e.g., entanglement, coherence, magic, quantum
thermodynamics, and quantum communication—but also
to other dynamical resources such as Bell nonlocality,
contextuality, steering [55,56], measurement incompatibil-
ity [57], and many others [53,54], offering a very general
quantitative description of the fundamental task of resource
manipulation. As an important subclass of manipulation
tasks, we study resource distillation and dilution, where we
present additional bounds and results that provide neces-
sary and sufficient conditions for resource conversion in
many relevant cases. This provides an exact characteriza-
tion of optimal one-shot rates achievable in these tasks, in
which case important resource measures—such as resource
robustness and hypothesis testing relative entropy—are
endowed with explicit operational meaning. We further
establish tight benchmarks on the achievable fidelity of
distillation. Finally, we discuss insights provided by our
general results into several physical scenarios. We first
apply our results to quantum communication and find exact
expressions for quantum capacity and simulation cost for
communication assisted by no-signaling codes and codes
preserving separability or the positivity of the partial
transpose (PPT). We then discuss the application to non-
locality, contextuality, and measurement incompatibility,
where we link resource measures previously introduced in
other settings to approximate resource transformations.
We focus on discussing our main results below, and

the technical proofs are deferred to the Supplemental
Material [58].
Manipulation of dynamical resources.—Let Oall be the

set of valid channels allowed in the given physical setting;
this can be the set of all quantum channels or a subset
thereof, allowing us to take into consideration possible
restrictions on the types of channels being manipulated.
Each resource theory also designates a subset of channels
that are considered to be available for free, and we denote
the given free channels as O ⊆ Oall. We impose mild
assumptions that the underlying Hilbert spaces are always
finite dimensional and, for a fixed dimension, the set of free
channels O is convex and closed [7].
General transformations of quantum channels are

described by quantum superchannels [65]. Since super-
channels need not preserve specific channel structures in
general [53], we consider the subset of superchannels that
map the set of allowed channels Oall to allowed output
channels O0

all, defined as Sall ≔ fΘ∶Oall → O0
allg. We can

now take a subset ofO0
all and consider it as the free channels

in the output space, which we denote byO0. A subset of Sall
serves as the set of free transformation that can be used for
the manipulation of resources. The standard requirement

for any free operation is that it should not generate any
resource, i.e., it should not create any costly channel out of
a free one. We consider the maximal set satisfying this
condition, S ≔ fΘ ∈ SalljΘðMÞ ∈ O0 ∀ M ∈ Og.
Our goal is to find the conditions for the transformation

from E to N using free superchannels in S, given any
two channels E ∈ Oall and N ∈ O0

all. In practice, the
transformation can often only be achieved approximately,
especially in nonasymptotic resource manipulation. To
evaluate the inevitable error, we consider the worst-case
fidelity [66,67] defined for two channels E1; E2 ∈ Oall
as FðE1; E2Þ ≔ minρF(id ⊗ E1ðρÞ; id ⊗ E2ðρÞ) where
Fðρ; σÞ ≔ k ffiffiffi

ρ
p ffiffiffi

σ
p k21 is the fidelity.

Our aim will be to characterize the conditions on
resource transformation through the resource contents of
the given channels. To this end, we introduce two types of
resource measures. They both belong to, or are closely
related to, the class of one-shot entropic quantities [68] and,
in particular, channel divergences [69,70]. The first class is
known as the robustness measures [71] defined for any
E ∈ Oall as

RO;ÕðEÞ ≔ inf

�

1þ r

�
�
�
�
E þ rM
1þ r

∈ O;M ∈ Õ

�

; ð1Þ

where Õ ⊆ Oall is some set of channels containing O.
The extreme case Õ ¼ Oall is known as generalized
robustness [14,72,73] and corresponds to the max-relative
entropy [74], hence we denote it by Rmax;O ≔ RO;Oall

. The
other case of interest is the standard robustness Rs;O ≔
RO;O [30,41]. We also define the smooth robustness
Rϵ
O;Õ

ðEÞ ≔ minfRO;ÕðE0ÞjFðE0; EÞ ≥ 1 − ϵ; E0 ∈ Oallg for

0 ≤ ϵ ≤ 1. The other type of measure, based on the
hypothesis testing relative entropy [69,70,75,76], is defined
for E ∈ Oall as

Rϵ
H;OðEÞ ≔ min

M∈O
max
ψ

Rϵ
H(id ⊗ EðψÞjjid ⊗ MðψÞ); ð2Þ

where Rϵ
HðρjjσÞ ≔ max 0≤P≤1

TrðPρÞ≥1−ϵ
TrðPσÞ−1 and the optimiza-

tion is restricted to pure input states ψ without loss of
generality. This entropic quantity characterizes the distin-
guishability between E and the channels in the set O. The
case of ϵ ¼ 0 is known as the min-relative entropy [74],
denoted as Rmin;OðEÞ.
It is also useful to introduce two classifications for the

given theory depending on the properties of O. We say that
O is full dimensional if spanðOÞ contains all channels in
Oall, and reduced dimensional otherwise [18]. Intuitively,
in full-dimensional theories, the set O is of full measure,
meaning that Rs;OðEÞ < ∞ for all E; examples include the
theory of entanglement or local operations and shared
randomness. On the other hand, reduced-dimensional
theories are equipped with a set of free channels O of
zero measure, and the standard robustness Rs;O can diverge,
examples of which include the theory of coherence,
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asymmetry, and quantum thermodynamics. In order to
characterize such resources, we will often need to consider
an optimization with respect to affðOÞ, the affine hull of O
[18,77,78], and we define, in particular, Rϵ

H;affðOÞ (respec-
tively, Rmin;affðOÞ) as the hypothesis testing entropy (min-
relative entropy) minimized over affðOÞ instead of O.
We can now state our main results that connect

the resource monotones with general one-shot resource
transformations.
Theorem 1.—Let E ∈ Oall andN ∈ O0

all. If there exists a
free superchannel Θ ∈ S such that F(ΘðEÞ;N ) ≥ 1 − ϵ,
then for any monotoneRO it holds thatROðEÞ ≥ Rϵ

O0 ðN Þ,
as well as that Rδ

OðEÞ ≥ R2ð ffiffi
δ

p þ ffiffi
ϵ

p Þ
O0 ðN Þ for any 0 ≤ δ ≤ 1

where Rϵ
OðEÞ≔minfROðE0ÞjFðE0;EÞ ≥ 1− ϵ;E0 ∈Oallg.

Conversely, for any choices of ϵ, δ ≥ 0 such that
ϵþ 2δ < 1, there exists a free superchannel Θ ∈ S such
that F(ΘðEÞ;N ) ≥ 1 − ϵ − 2δ if Rδ

H;OðEÞ ≥ Rϵ
s;O0 ðN Þ or if

Rδ
H;affðOÞðEÞ ≥ Rϵ

max;O0 ðN Þ.
Here, the parameters ϵ, δ can be used to study the trade-

offs between the error allowed in the transformation and the
values of the smoothed monotones Rϵ

O of both the input
and the output channel.
Notice that we provided two alternative achievability

conditions: one using the hypothesis testing measure RH;O
and the standard robustness Rs;O0 , and one using the affine
hypothesis testing measure RH;affðOÞ and the robustness
Rmax;O0 . The reason for this is that the former condition will
typically trivialize in reduced-dimensional theories, while
the latter condition trivializes for full-dimensional theories.
Theorem 1 establishes the conditions for general resource

transformation universally applicable to any resource theory,
including ones with specific structures of allowed channels,
reflected by choosing appropriate sets Oall and O0

all. In the
special case of manipulating quantum states (channels with
trivial input), we recover the results of Ref. [20] and extend
them to reduced-dimensional theories. We stress that the
monotones are all convex optimization problems and they
reduce to computable semidefinite programs when O is
characterized by semidefinite constraints [58].
Distillation and dilution.—Two of the most important

classes of resource transformation tasks are resource dis-
tillation, where general resources are transformed into some
reference target resources, and dilution, where the reference
target resources are used to synthesize a given channel
through free transformations. In particular, one is often
interested in two quantities: the distillable resource dϵOðEÞ
and the resource cost cϵOðEÞ; choosing a suitable class of
target reference channels T ⊆ O0

all, we can define

dϵOðEÞ≔ supfRO0 ðT ÞjFðΘðEÞ;T Þ ≥ 1− ϵ;T ∈ T ;Θ ∈ Sg;
cϵOðEÞ≔ inf fRO0 ðT ÞjF(E;ΘðT Þ) ≥ 1− ϵ;T ∈ T ;Θ ∈ Sg;

ð3Þ

where RO0 refers to any chosen monotone—for example,
Rmin;O0 , Rmax;O0 , or Rs;O0. In the discussion below, we will
fix RO0 ¼ Rmin;O0 for simplicity. The target channels T are
often chosen as multiple copies of some fixed reference
channel, but we allow for broader types of targets.
Notably, under suitable conditions on the reference

channels T , the necessary and sufficient conditions of
Theorem 1 coincide, yielding a precise characterization
of the resource cost.
Corollary 2.—If the chosen reference set satisfies

Rmin;O0 ðT Þ ¼ Rs;O0 ðT Þ ∀ T ∈ T , then it holds that
cϵOðEÞ ¼ ⌈Rϵ

s;OðEÞ⌉T .
Similarly, if the chosen reference set obeys

Rmin;affðO0ÞðT Þ ¼ Rmax;O0 ðT Þ ∀ T ∈ T , then it holds that
cϵOðEÞ ¼ ⌈Rϵ

max;OðEÞ⌉T .
Here, we used the notation ⌈ · ⌉T to indicate the smallest

value greater than or equal to the argument for which there
exists a corresponding channel T ∈ T—this is required, for
instance, when T forms a discrete set (see Ref. [58]).
The result establishes an operational meaning of the

measures Rϵ
s;O or Rϵ

max;O as long as the conditions are
satisfied. This raises the question: when does a choice of
reference channels T satisfying Rmin;OðT Þ ¼ Rs;OðT Þ or
Rmin;affðOÞðT Þ ¼ Rmax;OðT Þ exist? It emerges that this is a
commonly occurring feature of resource theories. For in-
stance, it is satisfied by relevant choices of target channels in
resource theories of quantummemories and communication,
immediately providing a characterization of one-shot sim-
ulation cost of channels. When discussing the transforma-
tions of quantum states, it was shown that in any convex
resource theory there exists maximal “golden states” ϕgold

such that Rmin;OðϕgoldÞ ¼ Rmax;OðϕgoldÞ [18], and indeed
such states satisfy all requirements of the Corollary in
theories such as quantum entanglement or quantum coher-
ence. In the case of quantum state manipulation, our result
recovers the considerations of Ref. [16], where a general
framework for quantum state resources was established.
We now turn to the case of distillation. Here, we can

improve the bound in Theorem 1 and obtain an alternative
necessary condition. Importantly, distillation is often under-
stood as the purification of noisy resources, in which case it
is natural to consider pure reference channels T—for
instance, if the input space and output spaces coincide,
unitary channels can serve as targets, while if the input
space is trivial, then pure-state preparation channels can be
regarded as targets. The property needed for N to serve as
the reference resource is that the output states for pure input
states remain pure. In such cases, we obtain the following
general conditions.
Theorem 3.—Let E ∈ Oall, N ∈ O0

all and suppose
id ⊗ N ðψÞ is pure for any pure state ψ . If there exists a
free superchannel Θ ∈ S such that F(ΘðEÞ;N ) ≥ 1 − ϵ,
then it holds that Rϵ

H;OðEÞ ≥ Rmin;O0 ðN Þ and Rϵ
H;affðOÞðEÞ ≥

Rmin;affðO0ÞðN Þ.
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Conversely, there exists a free superchannel Θ ∈ S such
that FðΘðEÞ;N Þ ≥ 1 − ϵ − δ if Rϵ

H;OðEÞ ≥ Rδ
s;O0 ðN Þ or

if Rϵ
H;affðOÞðEÞ ≥ Rδ

max;O0 ðN Þ.
Theorem 3 adds a useful alternative characterization for

distillation to the general condition provided by Theorem 1.
In particular, similarly to the case of dilution, we can obtain
the following.
Corollary 4.—Consider any reference set T such that

id ⊗ T ðψÞ is pure for any pure ψ and any T ∈ T.
If T also satisfies Rmin;OðT Þ ¼ Rs;OðT Þ ∀ T ∈ T , then

it holds that dϵOðEÞ ¼ bRϵ
H;OðEÞcT .

Similarly, if the chosen reference set obeys
Rmin;affðOÞðT Þ ¼ Rmax;OðT Þ ∀ T ∈ T , then it holds that
dϵOðEÞ ¼ bRϵ

H;affðOÞðEÞcT .
This establishes a precise characterization of distillable

resource in any resource theory for suitable target channels
T , and furthermore gives an exact operational meaning to
the resource measures Rϵ

H;O and Rϵ
H;affðOÞ in the task of

distillation. When the manipulated objects are quantum
states, we recover the results of Refs. [16,18].
In some cases, distillation with the desired precision

might not be possible. It is then of interest to instead ask
how close one can approximate the chosen target channel,
that is, characterize the maximal achievable fidelity of
distillation. We can adapt our methods to obtain close
upper and lower bounds for this quantity. Importantly, the
bounds become tight for relevant reference states obeying
conditions as in Corollary 4, allowing us to provide an
exact expression for the fidelity of distillation. We discuss
the full details in Ref. [58].
Another bound on distillation fidelity was recently

presented with respect to the so-called resource weight
[22,23]. Our approach allows one to extend the insight from
these works to theories with arbitrary channel structures
Oall, enabling an operational application of the correspond-
ing weight measures, some of which were previously
introduced in other contexts [49,79–83].
One can obtain additional results in the characterization

of distillation and dilution in special cases of resource
theories, for example, when the given theory is concerned
with an underlying state-based resource. We discuss such
cases in Ref. [58].
Quantum communication.—A central problem in quan-

tum communication is to manipulate a given channel to
enhance its communication capabilities using resources
available to both parties. Quantum capacity [84–86] and
simulation cost [86–88] are important figures of merit to
evaluate the operational capability of quantum channels,
and their one-shot characterization received considerable
attention recently [29,89–93]. These tasks are precisely
channel distillation and dilution where the reference re-
source is the identity channel, and the sets of free channels
and free superchannels specify the accessible resources for
the sender and receiver. Formally, we define the one-shot

quantum capacity and simulation cost with the set of free
superchannels S as

Qϵ
SðEÞ≔maxflog d j∃Θ ∈ S;F(ΘðEÞ; idd) ≥ 1− ϵg;

Cϵ
SðEÞ≔minflog d j∃Θ ∈ S;F(ΘðiddÞ;E) ≥ 1− ϵg: ð4Þ

We can then use our results to immediately obtain
an exact characterization of these quantities in relevant
settings. For example, when O is the set of separable
channels OSEP whose Choi states are separable, this set-
ting corresponds to communication with separability-
preserving codes S ¼ SSEP. This is a full-dimensional
theory and it holds that Rmin;OSEP

ðiddÞ ¼ Rs;OSEP
ðiddÞ ¼ d

[41]. Then, Corollaries 2 and 4 provide a complete
characterization of one-shot quantum capacity and simu-
lation cost as Qϵ

SSEP
ðEÞ ¼ logbRϵ

H;OSEP
ðEÞc and Cϵ

SSEP
ðEÞ ¼

log ⌈Rϵ
s;OSEP

ðEÞ⌉, the latter of which recovers a result
of Ref. [41]. Similar results apply to the setting of
communication assisted by codes preserving the posi-
tivity of the partial transpose (PPT), where OPPT is the
set of PPT channels [89,94]. We analogously obtain
Qϵ

SPPT
ðEÞ¼ logbRϵ

H;OPPT
ðEÞc and Cϵ

SPPT
ðEÞ¼log⌈Rϵ

s;OPPT
ðEÞ⌉.

Interestingly, Rϵ
H;OPPT

appeared as a bound in Ref. [90].
Another example is the case whenO is the set of replace-

ment channels OR ≔ fRσjRσð·Þ ¼ Trð·Þσg, where S
becomes the set of channel transformations assisted
by no-signaling (NS) correlations, SNS [29,95]. Since
OR is closed under linear combinations, it is reduced dimen-
sional. We also have Rmin;affðORÞðiddÞ ¼ Rmax;OR

ðiddÞ ¼
d2, and our results immediately give Qϵ

SNS
ðEÞ ¼

1
2
logbRϵ

H;affðORÞðEÞc and Cϵ
SNS

ðEÞ ¼ 1
2
log ⌈Rϵ

max;OR
ðEÞ⌉. The

one-shot NS-assisted quantum capacity was obtained in
Ref. [91] in the form of a semidefinite program; our result
identifies it with the affine hypothesis testing relative
entropy, providing an operational meaning to this resource
measure. The one-shot NS simulation cost was obtained in
Refs. [29,92], which is recovered by our general approach
as a special case. Furthermore, we can quantify exactly the
fidelity of NS-assisted coding [58], recovering a result
of Ref. [89].
Our methods apply also to the study of the entanglement

of bipartite channels [34,96], where the target resources
are maximally entangled states in the underlying state-
based resource theory. We then establish exact one-shot
rates of channel manipulation under PPT- and separability-
preserving superchannels (see Ref. [58]).
Nonlocality and contextuality.—Quantum nonlocality

has been a major subject of study not only as a key feature
of quantum theory, but also as a useful resource in a
number of operational tasks [97–102]. The latter view
motivates a precise understanding of the manipu-
lation of nonlocal resources [49,55,103,104], but the
characterization of such one-shot transformations has
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remained elusive. Our framework encompasses this scenario
by choosingOall to be the set of no-signaling channels,where
classical input or output systems are represented through
dephasing in a given basis, and taking O to be the channels
that can be constructed by local operations and shared
randomness. This includes not only the standard setting of
Bell nonlocality (where such channels are the classical
“boxes”), but also more general resources such as steering
(where channels represent “assemblages”) [53,54]. Our
results then provide an operational application of nonlocality
measures individually introduced in different settings of
nonlocality [49,105] and unified in Refs. [53,54], which we
relate to one-shot resource transformations (see also
Ref. [50]). We also introduce new monotones to this setting,
which can add further insights into feasible manipulation of
nonlocal resources. For instance, since a noisy box of the
form B ¼ ð1 − ϵÞBPR þ ϵBfree, where BPR is the Popescu-
Rohrlich (PR) box [106] andBfree ∈ O is some local box, has
Rmin;OðB⊗nÞ ¼ 1 ∀ n, we recover the fact that it cannot be
distilled to other fundamental resources such as the PR box
even when multiple copies of the box B are available
[103,107]. In Ref. [58], we numerically evaluate the resource
measures for a special class known as isotropic boxes [108]
where we explicitly observe this property.
Notably, our framework can also be applied to another

related phenomenon known as quantum contextuality,
which also serves as an operational resource [109–115].
Namely, we consider the set of all classical-classical
channels for consistent boxes [81] as Oall and the set of
channels corresponding to noncontextual boxes as O. Our
results characterize the exact and approximate box trans-
formations with operations that do not create contextuality,
offering a new perspective to the recent resource-theoretic
framework [51,52,116], as well as providing operational
application of the robustness of contextuality [117–119],
contextual fraction [81,82,120], and hypothesis testing
measures introduced in this work.
Measurement incompatibility.—Measurement incompat-

ibility refers to the impossibility of simultaneous measure-
ment and is closely related to the aforementionedphenomena
such asBell nonlocality and steering [83,121,122]. The set of
POVMs fMajxg, where Majx is the POVM element with
outcome a for themeasurement labeled by setting x, is called
compatible (or jointly measurable) if there exists a parent
measurement fPig and a conditional probability distribution
fqðajx; iÞg such that Majx ¼

P
i qðajx; iÞPi.

Our formalism can handle scenarios where resources
take the form of ensembles by incorporating the classical
labels of the ensembles into the description of Oall. In the
case of measurement incompatibility,Oall represents the set
of channels corresponding to POVMs, while O ⊆ Oall
represents the set of compatible POVMs (see Ref. [58]).
This form allows one to apply our results to this setting and
characterize the approximate one-shot transformation of
incompatible sets of measurements, complementing the
previous works which focused on exact transformation with

smaller sets of free operations in different approaches
[123,124] and providing operational applications of the
related measures [83,125–127]. Although the robustness
and weight measures are usually defined at the level of
POVMs, we show in Ref. [58] that they coincide with the
channel-based measures defined in our framework,
allowing one to carry over the previous analyses to
characterize resource transformations. We also note that
the discussion here can be straightforwardly extended to
channel incompatibility [57,128], which includes measure-
ment incompatibility as a special case.
Conclusions.—We established fundamental bounds on

the transformations between general dynamical quantum
resources in the one-shot regime. We tightly characterized
the ability to manipulate resources by providing conditions
for convertibility in terms of the robustness and hypothesis
testing measures. In particular, under suitable assumptions,
we established an exact quantification of the one-shot
distillable resource and one-shot resource cost of general
channels, giving a precise operational interpretation to the
considered monotones in these important tasks. This not
only extends and unifies previous specialized results
[34,36,41,89,91,96], but also sheds light on the general
structure of dynamical resource theories by providing a
common description of their operational aspects. Besides
contributing to the theory of quantum resources, our
methods find direct practical use, as we exemplified with
several explicit applications.
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Note added.—During the completion of this manuscript, we
became aware of two related works, Ref. [129] by Kim et al.
and Ref. [130] by Yuan et al., where the authors independ-
ently obtained results overlappingwith someof our findings.
The former work considers one-shot distillation and dilution
of quantum channel entanglement, which coincideswith our
characterization of these tasks in Corollaries 2 and 4 (see
Ref. [58]), while the latter work introduces a general
framework for one-shot channel distillation and dilution
which again corresponds to our Corollaries 2 and 4 for the
cases of quantum channel resources.
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