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We address the ground-state properties of the long-standing and much-studied three-dimensional
quantum spin liquid candidate, the S ¼ 1

2
pyrochlore Heisenberg antiferromagnet. By using SU(2) density-

matrix renormalization group (DMRG), we are able to access cluster sizes of up to 128 spins. Our most
striking finding is a robust spontaneous inversion symmetry breaking, reflected in an energy density
difference between the two sublattices of tetrahedra, familiar as a starting point of earlier perturbative
treatments. We also determine the ground-state energy, E0=Nsites ¼ −0.490ð6ÞJ, by combining extrap-
olations of DMRG with those of a numerical linked cluster expansion. These findings suggest a scenario in
which a finite-temperature spin liquid regime gives way to a symmetry-broken state at low temperatures.
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Introduction.—Frustrated magnets, on account of exhib-
iting many competing low energy states, are a fertile ground
for exotic physics. A celebrated example is the pyrochlore
Heisenberg antiferromagnet, which resides on a lattice of
corner sharing tetrahedra, depicted in the inset of Fig. 1.
The classical Heisenberg model on this lattice has a highly
degenerate ground state [1], forming a classical spin liquid
[2] with an emergent gauge field [3].
In contrast, the ground state of the quantum pyrochlore

antiferromagnet remains enigmatic. While recent experi-
mental evidence in the approximately isotropic S ¼ 1
compound NaCaNi2F7 shows a spin liquid like state down
to low temperature [31], the S ¼ 1=2 case is still open both
in theory and experiment.
Theory work on this prominent quantum spin liquid

candidate over the years has been formidable. Absent a
systematically controlled method, various approaches have
somewhat inevitably led to an array of possible scenarios.
One strand of work has built on a perturbative approach, in
which half the couplings (those on one tetrahedral sub-
lattice) are switched on perturbatively. This has led to
suggestions of a ground state which breaks translational
and rotational symmetries [7,32,33], a valence bond crystal
[10] or a spin liquid state [34]. On top of this, the contractor
renormalization method [35] finds antiferromagnetic order-
ing in a space of supertetrahedral pseudospins, pointing to

FIG. 1. Ground-state energies from various approaches.
The horizontal lines denote the predictions for the ground-state
energy per site (J ¼ 1) in the thermodynamic limit: Sobral and
Lacroix −0.572 [4], Canals and Lacroix −0.56 [5], Derzhko et al.
−0.52 [6], Harris et al. −0.487 [7,8], Kim and Han −0.459, [9],
Isoda and Mori −0.4578 [10], Müller et al. −0.4509 [11],
Burnell et al. −0.4473 [12]. The solid red points are our DMRG
results for periodic clusters, extrapolated to infinite bond
dimension using a quadratic polynomial. The thick blue line
represents a robust upper bound for the ground-state energy,
obtained from converged NLCE results at finite temperature,
thus excluding the red hashed area. The solid black line
shows the extrapolated value of the converged NLCE results
to zero temperature (cf. Supplemental Material [13]), and
the gray shaded area indicates the confidence interval of this
extrapolation. The inset shows the cubic unit cell of the pyro-
chlore lattice, highlighting the two tetrahedral sublattices in
red and blue.
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an even larger real-space unit cell. To render the problem
more tractable, all these theories involve the derivation of
an effective Hamiltonian, which is per se not exactly
solvable and hence solved by some type of approximation,
ranging from mean field theory to classical Monte Carlo
numerics. On a different axis in theory space, parton-based
theories yield an ordered state with a chiral order parameter
[9] or a monopole flux state [12], while the pseudofermion
functional renormalization group suggests a spin liquid
ground state [36].
In view of this relatively wide range of ground-state

candidates, a controlled and unbiased treatment of the
model is clearly desirable, if only to narrow the possible
location of the goalposts somewhat. Unfortunately, most
numerical approaches quickly reach their limits for frus-
trated magnets in d ¼ 3. While exact diagonalization is
currently limited to ∼48 sites [37], possible alternatives are
series expansions such as the numerical linked cluster
expansion (NLCE) [14–30] or high temperature expansions
[38,39], which can be pushed down to low temperatures
[30], although they do not provide access to the ground
state itself and are particularly challenged by many
competing low energy states.
To access the ground-state wave function directly, the

density-matrix renormalization group (DMRG) method—
originally devised in one dimension [40–44]—has been
pushed to two dimensions, in particular for the two-
dimensional cousin of pyrochlore, the kagome antiferromag-
net [45–49].
Here, we take DMRG one step further, by applying it to the

pyrochlore lattice in d ¼ 3, and present a study of periodic
clusters with Nsites ¼ 32, 48, 64, 108, 128. This demonstrates
that DMRG can treat clusters with up to 128 sites reliably,
significantly larger than previous exact diagonalization results
of 36 sites [50]. Exploiting the SU(2) symmetry of the
model [51–54], we keep up to 20 000 SU(2) states, (typically
equivalent to ≳80 000 U(1) states). We calculate the ground-
state energy, the spin structure factor, and low-energy
excitations for these clusters, yielding an estimate for the
ground-state energy per site in the thermodynamic limit of
E0=Nsites ¼ −0.490ð6Þ. The study of finite size clusters is
complemented by a high order NLCE calculation, which
excludes any scenario where E0=Nsites > −0.471.
Our main finding is that the ground state of the larger

(64-, 108-, and 128-site) clusters we consider exhibits a
breathing instability, rendering up and down tetrahedra
(cf. inset of Fig. 1) inequivalent: one tetrahedral sublattice
exhibits a lower energy than the other. Amusingly, our
estimate for the ground state energy is compatible with that
of the original perturbation theory with a simple mean field
solution of the resulting effective Hamiltonian, where the
inversion symmetry was maximally broken at the very
outset of the calculation [7].
Model andmethods.—We consider the S¼1=2 pyrochlore

antiferromagnetic Heisenberg model, H¼J
P

hi;ji S⃗i ·S⃗j,

where the spins sit on the sites i, j of the 3D pyrochlore
lattice and hi; ji denotes nearest neighbors. The lattice is
a face centered cubic lattice with lattice vectors
a⃗1 ¼ 1

2
ð1; 1; 0ÞT , a⃗2 ¼ 1

2
ð1; 0; 1ÞT , a⃗3 ¼ 1

2
ð0; 1; 1ÞT , and a

tetrahedral basis given by b⃗0 ¼ 0⃗, b⃗1 ¼ 1
2
a⃗1, b⃗2 ¼ 1

2
a⃗2,

b⃗3 ¼ 1
2
a⃗3, such that each lattice point can be expressed by

R⃗α;n1;n2;n3 ¼n1a⃗1þn2a⃗2þn3a⃗3þ b⃗α, with integer n1, n2, n3
and α ∈ f0; 1; 2; 3g. The model is obviously SU(2)
symmetric. Our DMRG calculations are performed on
finite size (N ¼ 32, 48, 64, 108, 128) clusters with periodic
boundary conditions (cf. Supplemental Material [13]).
We apply the one- and two-site variants of SU(2) DMRG

to reach the high bond dimensions necessary to obtain
reliable results in our three-dimensional clusters. Since
DMRG requires a one-dimensional topology, we impose a
one-dimensional “snake” path on the three-dimensional
lattice, which defines the variational manifold. We use fully
periodic clusters to reduce boundary effects and confirm
that using a snake path which minimizes the bandwidth of
the connectivity matrix improves convergence [30,55,56].
For small bond dimensions (χ ≲ 2000) we use the two-

site version of the DMRG, and switch to the one-site variant
to optimize the wave function for larger χ. Since the
truncation error is not well defined in the one-site variant
case (due to the subspace expansion [53]), we use the
reliable two-site variance estimation to extrapolate towards
the error-free case [57], because calculation of the full
variance would be impractical due to its cost.
It turns out that even the calculation of the two-site

variance becomes too costly for clusters with more than
∼100 sites and bond dimensions ≳ 8000. In certain
cases, we revert to the usage of the two-site DMRG and
extrapolate as a function of the truncation error (cf. 108-site
cluster).
Ground-state energy.—Using DMRG, we calculate

the variational ground-state energy of finite clusters with
high accuracy. By systematically increasing the bond
dimension χ, we enlarge the variational manifold in a
controlled way, such that we can extrapolate, χ → ∞,
to the exact limit using a linear extrapolation as a function
of the two-site variance (cf. Fig. 2). We use an estimate
of the systematic extrapolation error given by half the
distance between the extrapolated value and the last DMRG
point.
Figure 1 shows the extrapolated energies per lattice site

of all finite clusters we considered in comparison with the
available predicted ground-state energies in the literature.
Our results show a monotonic growth of the ground-state
energy as the number of sites is increased.
The periodic clusters we consider have either the full

cubic (32, 108) or an increased or reduced (48a, 48b, 48c,
48d, 64, 128) symmetry of the pyrochlore lattice and
represent the bulk due to the absence of a surface. The
energies per site of different clusters as a function of inverse
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cluster size admit a fit to a quadratic polynomial, which we
use to obtain an extrapolation to the thermodynamic limit.
In order to get an estimate of the extrapolation error, we use
Gaussian resampling, using the systematic DMRG error
bars as standard deviation. This yields our best estimate for
the ground-state energy of E0=Nsites ¼ −0.490ð6Þ. In this
fit we considered only the cluster 48d among the 48-site
clusters, which appears to be consistent with the other
clusters, while other 48-site clusters have lower ground-
state energies.
Our extrapolated (χ → ∞) cluster energies and gaps are

summarized in Table I. While the singlet gaps in the most
symmetric clusters (32, 48d) are very small, the triplet gaps
are sizable and roughly an order of magnitude larger. Since
the 48d cluster does not obey all lattice symmetries, a
reliable extrapolation is not possible, but our results are
compatible with a scenario with a finite triplet gap, in which
case all low energy excitations would be in the singlet
sector as claimed in Refs. [32,35].
Our finite temperature NLCE [14–30] provides a com-

plementary perspective. We have carried out this expansion
in entire tetrahedra up to eighth order (cf. Ref. [30] for
details, as well as the Supplemental Material [13]),
obtaining convergence for the energy per site in the
thermodynamic limit as a function of temperature for
temperatures T ≳ 0.2. Since the energy is a monotonic
function of temperature, the converged part of EðTÞ
(cf. Supplemental Material [13]) provides an upper bound
for the ground-state energy ENLCE ≈ −0.471J, which is
consistent with the DMRG data and extrapolation. One can
furthermore polynomially extrapolate the finite temperature

NLCE energies to zero temperature (assuming an analytic
behavior at low temperatures), see Supplemental Material
[13], and obtain −0.495ð15Þ, which agrees remarkably well
with the DMRG extrapolation and lies within its error bar,
serving as a further corroboration of the DMRG energy. In
light of these results we can confidently exclude a ground-
state energy per site larger than −0.47J.
Ground-state symmetry breaking.—To investigate the

properties of the ground state in more detail, we calculate
the total spin, and hence total energy, of up and down
tetrahedra separately. This reveals an inequivalence of up
and down tetrahedra (cf. Supplemental Material [13]),
suggesting a breaking of the inversion symmetry of the
lattice. In our DMRG calculations, the snake path does not
fully respect the symmetry between up and down tetrahe-
dra, so we need to verify that this symmetry breaking is
intrinsic, and not due to a preference imposed by the snake
path. We therefore introduce a small symmetry breaking
“breathing” perturbation, where we modify the couplings
of up and down tetrahedra to be J ¼ 1� ϵ, equivalent to
the standard technique of including pinning fields.
Figure 3 shows the results for the total spin of up and

down tetrahedra for opposite signs of the breathing

FIG. 2. Variational ground state energy estimates of the clusters
48b, 48c, 48d (top) and 64,128 (bottom) for different bond SU(2)
bond dimensions χ (indicated by the labels) as a function of the
two-site variance. Solid lines correspond to linear extrapolations
to the error-free limit, corresponding to infinite bond dimension
and zero variance. We estimate the systematic extrapolation error
as the half distance between the last point and the extrapolated
value.

FIG. 3. Extrapolation of tetrahedron spins for an explicit
breaking of lattice inversion symmetry, similarly to a “pinning”
coupling, for the 64 (left) and 108 (right) site clusters. The whole
Hamiltonian is written as H¼ð1− ϵÞHupþð1þϵÞHdown, where
the Hup and Hdown parts contain the terms for the up and down
tetrahedra, respectively.

TABLE I. Ground-state energies per site and gaps within the
Stot ¼ 0 sector (singlet gap) as well as to the Stot ¼ 1 sector
(triplet gap) if available.

Cluster GS energy Singlet gap Triplet gap

32 −0.5168 0.0318 0.6872
48a −0.5161 0.2166(4) 0.6709(4)
48b −0.5077 0.027(2) 0.554(2)
48c −0.5060ð1Þ 0.053(7) 0.42(2)
48d −0.5040ð5Þ 0.06(3) 0.36(3)
64 −0.4972ð25Þ
108 −0.4935ð50Þ
128 −0.4928ð10Þ
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perturbation in the 64 (108) site clusters as a function of the
two-site variance (inverse bond dimension), admitting a
linear extrapolation towards χ → ∞. The results reveal a
clear selection of states with opposite symmetry breaking,
as required for spontaneous symmetry breaking. The order
parameters for the larger, 108-site, cluster are slightly
different for the two opposite pinning fields (Fig. 3, right
panel), but that difference is much smaller than the
extrapolated order parameter which differs only little
between the two clusters. It is of course always possible
in principle that the symmetry breaking vanishes when yet
larger clusters are considered. Given the scaling of the
computational effort with system size, the study of much
larger clusters with the present method is, however, out of
reach. In the Supplemental Material [13] we provide further
evidence that the two symmetry-breaking states converge to
the same energy after the pinning field is removed.
We next consider nearest neighbor spin correlations of

the best (lowest-energy) wave functions jψ0i obtained in
DMRG. For each pair of adjacent sites ði; jÞ, we calculate
the correlation function Cij ¼ hψ0jS⃗i · S⃗jjψ0i. We plot the
result for the clusters 64 and 128 in Fig. 4 (truncated to
the cubic unit cell for ease of visualization), with the
tube thickness proportional to the strength of the spin
correlations.
The correlation pattern reveals that one sublattice (say,

“up”) of tetrahedra contains more strongly correlated bonds
than the other. These are found on opposite edges of up
tetrahedra. We note that the details of this pattern still
depend strongly on the cluster geometry and we get
opposite choices of correlated bonds in the two clusters,
presumably due to different symmetry broken states
picked by the different “snake” paths in the two clusters.
Moreover, the periodic boundary conditions impact the
performance of the DMRG calculation. In particular, finite-
sized clusters with periodic boundary conditions comprise
winding loops which may be as short as, or even shorter,
than the “physical” loops in the bulk, whose minimal length
is the circumference, 6, of a hexagon. Resonances along

both loop types will therefore compete. The minimal length
of winding loops forN ¼ 108 is 6 while it is 8 forN ¼ 128.
Indeed, we observe considerably better convergence for the
latter, inducing a smaller error, see Fig. 1. The shortest
periodic loop of each cluster is shown in the Supplemental
Material [13].
Ground-state structure factor.—The static spin structure

factor for different clusters, accessible in neutron scattering
experiments, is obtained from the Fourier transform of
the spin correlations [factor 4=3 from normalization
1=ðSðSþ 1ÞÞ for spin S ¼ 1=2]:

SðQ⃗Þ ¼ 4

3N

X

ij

hS⃗i · S⃗jic cos ½Q⃗ · ðR⃗i − R⃗jÞ�; ð1Þ

where R⃗i denote the real-space coordinates of sites and
the index c denotes the connected part of the correlation
matrix. The results for two cuts [Qx ¼ Qy (top) andQz ¼ 0
(bottom)] in the three-dimensional momentum space are
shown in Fig. 5.
One can readily recognize the bow-tie patterns, the

hallmark of pyrochlore magnets [3,7,11,30,31,34,36].
Note that the 32- and 108-site clusters have full cubic
symmetry, while the 64-site cluster does not, hence the
structure factors looks slightly different in that case. The
results for the spin structure factor and the absence of sharp
Bragg peaks confirm that there is no long range magnetic
ordering. The observed pattern for theQx ¼ Qy cuts is very
close to what is found at finite temperature in the regime
T ≲ 1 [30], on the other hand the Qz ¼ 0 cuts exhibit a
drastic change in the 108- and 128-site clusters reflecting
the symmetry breaking. While the pinch points sharpen
with increasing system size (and therefore momentum
resolution), we are unable to extrapolate their width reliably
to the thermodynamic limit to extract a correlation length.

FIG. 4. Real space spin correlation Cij in the ground state
(Sz ¼ 0) for N ¼ 64 (left) and N ¼ 128 (right) shown in the
cubic unit cell. The thickness of the red bonds corresponds
to magnitude of the correlation between neighboring sites.
The black lines indicate bonds between sites with negligible
correlations.

FIG. 5. Static spin structure factor for different clusters for two
cuts [Qx ¼ Qy (top) and Qz ¼ 0 (bottom)] through momentum
space. The corresponding maximal bond dimensions for the
32, 64, 108, and 128-site clusters are 20 000,16 000, 16 000, and
12 000, respectively.
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Note that for the largest clusters, apparent lines in the spin
structure factor in the Qx-Qy plane become discernible,
Fig. 4, raising the possibility of at least short-range spin
correlations with spatial anisotropy. A more detailed search
for such symmetry breaking is clearly warranted.
Concluding discussion.—Our DMRG study has found

the ground state of the SU(2) symmetric S ¼ 1
2
Heisenberg

antiferromagnet to discard lattice inversion symmetry in
favor of a “breathing” pattern of strong (weak) sublattices
of up (down) tetrahedra. We extrapolate the energy
per lattice site to −0.490ð6Þ. The possibility of such
spontaneous symmetry breaking has been a central ques-
tion for this class of magnets, as several studies have used
an explicit such symmetry breaking as a starting point of
various perturbative schemes [7,32,35,58]. As the restora-
tion of an explicitly broken symmetry in a perturbative
scheme is generically not to be expected, a nonvanishing
order parameter does not per se indicate spontaneous
symmetry breaking.
Our results are thus important in that they provide largely

unbiased evidence for the existence of this spontaneous
symmetry breaking, subject only to finite-size effects which
are much reduced in comparison to previous studies. This
also indicates that one of the prime Heisenberg quantum
spin liquid candidates in three dimensions in fact exhibits at
least one form of symmetry breaking.
In closing, we note that our extrapolated ground-state

energy lies close to the estimate obtained in the pioneering
work by Harris et al. [7], in the abovementioned scheme of
coupling the up tetrahedra perturbatively through the bonds
of the down tetrahedra. These authors also found a long-
range dimer ordering (cf. also Ref. [32]) compatible with
the correlation pattern we observe in our calculations
shown in Fig. 4. This first, simple and quite uncontrolled,
approach to this difficult problem thus may turn out to have
been already quite close to what will eventually be
established as the final answer.
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