
Comment on “Chaotic-Integrable Transition
in the Sachdev-Ye-Kitaev Model”

In their Letter [1], the authors studied a variant of the
Sachdev-Ye-Kitaev model with quadratic and quartic inter-
actions (also known as a mass-deformed SYK). They
claimed that the quantum Lyapunov exponent λL would
vanish below some critical temperature. In this Comment,
we show that this is not the case. We calculate λL exactly in
the perturbative regime where the temperature T and the
quartic coupling J are much smaller than the quadratic
coupling κ. At leading order in T=κ and J=κ, we find

λL
κ
¼ 3T2J2

κ4
: ð1Þ

Therefore, this model has no λL ¼ 0 phase at small but
nonzero T, J.
To derive Eq. (1), we improve upon the standard

approach followed by the Letter’s authors and analyze
the leading eigenvalue problem of the ladder kernel, Eq. (9)
of the Letter:

K ¼ K2K1; ðK1fÞðtÞ ¼ ½κ2 þ 3J2G2
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where GR and Glr are retarded and Wightman Green
functions of a fermion, respectively. Recall also that λL
is found by imposing that the largest eigenvalue of K is 1.
We shall work perturbatively in J=κ and T=κ up to the
leading order. Such a perturbative expansion is controlled
since the quartic term is irrelevant in the low-T limit where
the model is a Fermi liquid. Our analysis thus differs from
the Letter, which considered a perturbative expansion with
respect to the relevant term.
To start, we compute Glr and GR to an adequate order.

For Glr, the conformal solution of the J ¼ 0 limit [2]
suffices:

GlrðtÞ2 ¼
T2

κ2
sechðtπTÞ2: ð3Þ

For jGRj2, the J ¼ 0 conformal solution GRðωÞ ¼ −i=κ [2]
is not enough, and we shall incorporate the leading
correction. That comes from quasiparticle decay encoded
in the imaginary part of the self-energy Σ4ðτÞ ≔ J2GðτÞ3 in

Euclidean time. Continuing to real time, we find that the
retarded propagator ΣR

4 satisfies

−ImΣR
4 ðωÞ ¼

J2T2

2κ3
þ J2ω2

2π2κ3
ð4Þ

at leading order in J=κ. Together with the Schwinger-
Dyson equationGRðωÞ−1¼ω−κ2GRðωÞ−Σ4;RðωÞ, Eq. (4)
implies that
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where we also omitted higher orders of λL as we anticipated
it to be small.
With Eqs. (3) and (5), the kernel, Eq. (2), reduces to

K ¼ 1 −
λL
2κ

−
J2T2

2κ4
−
J2T2

κ4

�

−
1

2π2T2
∂2
t − 3sechðtπTÞ2

�

:

ð6Þ
Upon rescaling s ¼ tπT in the parenthesis, we recognize the
1D Schrödinger Hamiltonian with a Pöschl-Teller potential:
− 1

2
∂2
s − 3sechðsÞ2. Its ground state energy is E0 ¼ −2 [3].

Thus, the largest eigenvalue of K equals 1 − λL=ð2κÞ þ
3J2T2=ð2κ4Þ. Imposing it to be 1 leads to Eq. (1).
We verified our prediction numerically in the large-N

limit by directly computing the leading eigenvalue of the
kernel, Eq. (2), where the Green functions are (nonpertur-
bative) numerical solutions of the real-time Schwinger-
Dyson equations [2]. We find a nice agreement in the
perturbative regime (see Fig. 1). Observe, however, that
λL=κ can become very small and could be mistaken for 0
due to numerical artifacts. Finally, we note that Refs. [4–6]
observed λL ∼ T2 > 0 in other large-N models of disor-
dered Fermi liquid.
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FIG. 1. Temperature dependence of the Lyapunov exponent λL
for various interaction strengths (markers) compared to the
prediction, Eq. (1) (solid lines).
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