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We introduce novel relations between the derivatives [∂nρðλ; mlÞ=∂mn
l ] of the Dirac eigenvalue

spectrum [ρðλ; mlÞ] with respect to the light sea quark mass (ml) and the (nþ 1)-point correlations among
the eigenvalues (λ) of the massless Dirac operator. Using these relations we present lattice QCD results for
∂nρðλ; mlÞ=∂mn

l (n ¼ 1, 2, 3) for ml corresponding to pion masses mπ ¼ 160–55 MeV and at a
temperature of about 1.6 times the chiral phase transition temperature. Calculations were carried out
using (2þ 1) flavors of highly improved staggered quarks with the physical value of strange quark
mass, three lattice spacings a ¼ 0.12, 0.08, 0.06 fm, and lattices having aspect ratios 4–9. We find that
ρðλ → 0; mlÞ develops a peaked structure. This peaked structure arises due to non-Poisson correlations
within the infrared part of the Dirac eigenvalue spectrum, becomes sharper as a → 0, and its amplitude is
proportional to m2

l . We demonstrate that this ρðλ → 0; mlÞ is responsible for the manifestations of axial
anomaly in two-point correlation functions of light scalar and pseudoscalar mesons. After continuum and
chiral extrapolations we find that axial anomaly remains manifested in two-point correlation functions of
scalar and pseudoscalar mesons in the chiral limit.

DOI: 10.1103/PhysRevLett.126.082001

Introduction.—The Lagrangian of the (2þ 1)-flavor
quantum chromodynamics (QCD) with the physical value
of strange quark mass (ms) and degenerate up and down
light quarks possesses SUð2ÞL × SUð2ÞR chiral symmetry
and Uð1ÞA axial symmetry in the chiral limit of light quark
mass ml → 0. The chiral symmetry is spontaneously
broken in the vacuum and the Uð1ÞA symmetry is anoma-
lously broken due to quantum interactions. For the physical
value of ml, the broken chiral symmetry of the QCD
vacuum gets approximately restored through a smooth
crossover at a high temperature T ≃ 156 MeV [1–6], and
for ml → 0 the restoration takes place via a chiral phase
transition at a temperature Tc ¼ 132þ3

−6 MeV [7].
Owing to the asymptotic freedom of QCD, the Uð1ÞA

axial symmetry becomes an exact symmetry only for
T → ∞. However, the nature of the chiral phase transition
crucially depends on how axial anomaly manifests itself in
the two-point correlation functions of light scalar and
pseudoscalar mesons for T ≥ Tc. If the isotriplet scalar δ
and the isotriplet pseudoscalar π remain nondegenerate at

T ≥ Tc, then the chiral phase transition is expected to be of
second order, belonging to a three-dimensional Oð4Þ
universality class [8]. But if the δ and π become degenerate
at T ≥ Tc, then the chiral phase transition can be either first
[8] or second order [9–11]. For the physical value ofml, the
δ and π remain nondegenerate around the chiral crossover
[3,12–15]. However, what happens for T ≃ Tc as ml → 0
remains an open question [16–23] due to the lack of state-
of-the-art lattice QCD calculations with controlled con-
tinuum and chiral extrapolations.
It has been shown that if Dirac eigenvalue spectrum

ρðλ; mlÞ is an analytic function of m2
l and λ then in the

chiral limit Uð1ÞA anomaly will not be manifested in
differences of up to six-point correlation functions of π
and δ that can be connected via a Uð1ÞA rotation [24].
However, weakly interacting instanton [25,26] gas moti-
vated ρ ∼m2

l δðλÞ can lead to nondegeneracy of the two-
point π and δ correlation functions even as ml → 0 [13].
While the m2

l factor naturally arises from the two light
fermion determinants, the δðλÞ-like structure is motivated
by the limit when the small shift from zero to the near-zero
modes, resulting from the weak interactions among local-
ized (quasi)instantons and anti-instantons, can be neglected
[27,28]. Lattice QCD studies show that, for the physical
values of ml and for sufficiently high temperatures, the T
dependence of a Uð1ÞA-breaking measure, the topological
susceptibility, follows dilute instanton gas approximation
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prediction (for a recent review, see [29]). However, whether
these findings arise due to an underlying structure of
ρ ∼m2

l δðλÞ and what happens for ml → 0 have remained
unanswered. Some lattice QCD studies have observed
infrared enhancement in ρ [13,14,19,30,31], however,
whether such enhancements scale as m2

l as ml → 0 have
not been demonstrated. In other lattice QCD calculations,
no infrared enhancement in ρ was observed [17,18,20,22],
showing the importance of controlling lattice artifacts
through continuum extrapolations. On the other hand, in
Ref. [32] it was argued that if π and δ were to remain
nondegenerate at T ≥ Tc, then chiral symmetry restoration
demands non-Poisson correlations among the infrared
eigenvalues.
In this Letter we connect all the above issues: first, by

establishing novel relations between ∂nρ=∂mn
l and

correlation among the eigenvalues, then by obtaining
∂nρ=∂mn

l from state-of-the-art lattice QCD calculations.
Finally, we demonstrate how the signature of axial
anomaly in two-point δ and π correlation functions arises
as ml → 0.
∂nρ=∂mn

l and Uð1ÞA anomaly.—For (2þ 1)-flavor
QCD, the Dirac eigenvalue spectrum is given by

ρðλ; mlÞ ¼
T

VZ½U�
Z

D½U�e−SG½U� det ½=D½U� þms�

× ðdet ½=D½U� þml�Þ2ρUðλÞ: ð1Þ

Here, ρUðλÞ ¼
P

j δðλ − λjÞ, λj are the eigenvalues
of the massless Dirac matrix =D½U� for a given back-
ground SU(3) gauge field U, V is the spatial volume,
SG½U� is the gauge action, and the partition function
Z½U� ¼ R

D½U�e−SG½U� det ½=D½U� þms�ðdet ½=D½U� þml�Þ2.
Note that ρUðλÞ does not explicitly depend onml, however,
ml dependence enters ρ through the integration over the
gauge fields. Furthermore,

det ½=D½U� þml� ¼
Y
j

ðþiλj þmlÞð−iλj þmlÞ

¼ exp

�Z
∞

0

dλρUðλÞ ln ½λ2 þm2
l �
�
: ð2Þ

Substituting Eq. (2) in Eq. (1) and Z½U� it is straightforward
to obtain ∂nρ=∂mn

l , e.g.,

V
T

∂ρ
∂ml

¼
Z

∞

0

dλ2
4mlC2ðλ; λ2;mlÞ

λ22 þm2
l

; ð3Þ

V
T
∂2ρ

∂m2
l

¼
Z

∞

0

dλ2
4ðλ22 −m2

l ÞC2ðλ; λ2;mlÞ
ðλ22 þm2

l Þ2

þ
Z

∞

0

dλ2dλ3
ð4mlÞ2C3ðλ; λ2; λ3;mlÞ
ðλ22 þm2

l Þðλ23 þm2
l Þ

; with

ð4Þ

Cnðλ1;…; λn;mlÞ ¼ h
Yn
i¼1

½ρUðλiÞ − hρUðλiÞi�i: ð5Þ

The difference of the integrated two-point functions,
i.e., susceptibilities, of the isotriplet pseudoscalar,
πiðxÞ ¼ iψ̄ lðxÞγ5τiψ lðxÞ, and the isotriplet scalar,
δiðxÞ ¼ ψ̄ lðxÞτiψ lðxÞ, mesons is defined as

χπ − χδ ¼
Z

d4xhπiðxÞπið0Þ − δiðxÞδið0Þi: ð6Þ

For T ≥ Tc owing to the degeneracy of π and the isosinglet
scalar meson in the chiral limit [13]

χπ − χδ ¼ χdisc; ð7Þ

where χdisc is the quark-line disconnected part of the
isosinglet scalar meson susceptibility [33],

χdisc ¼
T
V

Z
d4xh½ψ̄ðxÞψðxÞ − hψ̄ðxÞψðxÞi�2i: ð8Þ

These Uð1ÞA symmetry-breaking measures are related to ρ
through [13,32,34]

χπ − χδ ¼
Z

∞

0

dλ
8m2

l ρ

ðλ2 þm2
l Þ2

; ð9Þ

χdisc ¼
Z

∞

0

dλ
4ml∂ρ=∂ml

λ2 þm2
l

: ð10Þ

In the Poisson limit,Cn is given byCPo
n ðλ1;…; λnÞ ¼ δðλ1 −

λ2Þ � � � δðλn − λn−1ÞhðρUðλ1Þ− hρUðλ1ÞiÞni ¼ δðλ1 − λ2Þ � � �
δðλn − λn−1ÞhρUðλ1Þi þOð1=NÞ, where 2N ∝ V=T is the
total number of eigenvalues. In this limit,

� ∂ρ
∂ml

�
Po

¼ 4mlρ

λ2 þm2
l

−
Vρ
TN

hψ̄ψi; ð11Þ

�∂2ρ

∂m2
l

�
Po

¼ 4ρ

λ2 þm2
l

þ 8m2
l ρ

ðλ2 þm2
l Þ2

þ 2V2ρ

T2N2
hψ̄ψi2

−
Vρ
TN

�
8mlhψ̄ψi
λ2 þm2

l

þ 2χπ − χδ

�
; ð12Þ

where hψ̄ψi ¼ ðT=VÞðd lnZ½U�=dmlÞ. In the chiral limit,
this leads to χPodisc ¼ 2ðχπ − χδÞ, in clear violation of the
chiral symmetry restoration condition in Eq. (7), unless
both sides of the equation trivially vanish.
Lattice QCD calculations.—Lattice QCD calculations

were carried out at T ≈ 205 MeV ≈ 1.6Tc for (2þ 1)-
flavor QCD using the highly improved staggered quarks
and the tree-level Symanzik gauge action, a setup exten-
sively used by the HotQCD Collaboration [2,5,35–37]. The
ms was tuned to its physical value and three lattice spacings
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a ¼ ðTNτÞ−1 ¼ 0.12, 0.08, 0.06 fm, corresponding to
lattice temporal extents Nτ ¼ 8, 12, 16, were used [15].
Calculations were done with ml ¼ ms=20; ms=27;
ms=40; ms=80; ms=160 that correspond to mπ ≃ 160,
140, 110, 80, 55 MeV, respectively. The spatial extents
(Nσ) of the lattices were chosen to have aspect ratios in the
range of Nσ=Nτ ¼ 4–9. The gauge field configurations
were generated using the rational hybrid Monte Carlo
algorithm [38,39]. Gauge configurations from every 10th
molecular dynamics trajectory of unit length were saved to
carry out various measurements. ρ and Cn were computed
by measuring ρUðλÞ over the entire range of λ using the
Chebyshev filtering technique combined with the stochas-
tic estimate method [40–44] on ∼2000 configurations.
Orders of the Chebyshev polynomials were chosen to be
ð1 − 5Þ × 105 and 24 Gaussian stochastic sources were
used. Measurements of χdisc and χπ − χδ were done by
inverting the light fermion matrix using 50 Gaussian
random sources on 2000–10 000 configurations [45].
Results.—Figure 1 (left) shows the ml dependence of

m−1
l ∂ρ=∂ml and ∂2ρ=∂m2

l at T ≈ 1.6Tc, obtained for
lattices with Nτ ¼ 8 and the largest available Nσ for that
ml. We observe thatm−1

l ð∂ρ=∂mlÞ and ∂2ρ=∂m2
l are almost

identical and independent of ml. Also, m−1
l ∂ρ=∂ml and

∂2ρ=∂m2
l are peaked at λ → 0 and drop rapidly toward zero

for λ=T ≳ 1. Figure 1 (middle) depicts the lattice spacing
and volume dependence of ∂2ρ=∂m2

l and ∂3ρ=∂m3
l for

mπ ¼ 80 MeV. To compare these quantities across
different lattice spacings, we multiply with the appropriate
powers ofms to make them renormalization group invariant
and make them dimensionless by rescaling with appropri-
ate powers of Tc ¼ 132 MeV. We see that the peaked
structure in ∂2ρ=∂m2

l at λ → 0 becomes sharper as a → 0
and shows little volume dependence (see Supplemental
Material [46]). Moreover, within errors, ∂3ρ=∂m3

l
are found to be consistent with zero in all the cases.
The findings m−1

l ∂ρ=∂ml ≈ ∂2ρ=∂m2
l and ∂3ρ=∂m3

l ≈ 0
show that the peaked structure ρðλ → 0; ml → 0Þ ∝ m2

l .
In Fig. 1 (right) we show the difference ΔPo

n ¼
mn−2

l ½∂nρ=∂mn
l − ð∂nρ=∂mn

l ÞPo� (n ¼ 1, 2), with the

Poisson approximations for ∂nρ=∂mn
l as defined in

Eqs. (11) and (12). The fact ΔPo
n < 0 shows that the

repulsive non-Poisson correlation within the small λ gives
rise to the ρðλ → 0Þ peak.
In Fig. 2 we show that ρ and ∂ρ=∂ml reproduce

directly measured χπ − χδ and χdisc using Eqs. (9) and
(10), respectively. The numerical integrations in λ were
performed using the rectangle method, where the largest
value of λ was estimated using the power method and the
statistical error of integration was obtained using the
jackknife method. Since we saw very mild volume depend-
ence in all the quantities, we only present results from the
largest available volume for each Nτ and ml. We checked

FIG. 1. Left: Light sea quark mass dependence of m−1
l ∂ρðλ; mlÞ=∂ml (open symbols) and ∂2ρðλ; mlÞ=∂m2

l (filled symbols) using
Nτ ¼ 8 lattices. Middle: Lattice spacing and volume dependence of ∂2ρðλ; mlÞ=∂m2

l and ∂3ρðλ; mlÞ=∂m3
l (inset) for mπ ¼ 80 MeV.

Right: The differences, ΔPo
n ¼ mn−2

l ½∂nρ=∂mn
l − ð∂nρ=∂mn

l ÞPo� [cf. Eqs. (11) and (12)], for mπ ¼ 80 MeV and three lattice spacings. In
all cases, results are obtained at T ≈ 205 MeV and the filled symbols have been slightly shifted horizontally for visibility.

FIG. 2. Comparisons of direct measurements (open symbols) of
χπ − χδ (top) and χdisc (bottom) with those reconstructed (filled
symbols, slightly shifted horizontally for visibility) from ρ
[cf. Eq. (9)] and ∂ρ=∂ml [cf. Eq. (10)], respectively. The results
are shown for all values of light quark masses and lattice spacings
at T ≈ 205 MeV.
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that only the infrared λ=T ≲ 1 parts of ρ and ∂ρ=∂ml are
needed for the reproductions of χπ − χδ and χdisc, within
errors, for all Nτ and ml. Additionally, we checked that
once the bin size of λ in the numerical integration of Eq. (9)
is chosen to reproduce directly measured χπ − χδ, the same
bin size automatically reproduces χdisc and hψ̄ψi without
any further tuning. We observe that both χdisc and χπ − χδ
are linear in m2

l for all lattice spacings and especially for
mπ ≲ 140 MeV; this is in accord with the expectation
Z½U� is an even function of ml for T ≥ Tc due to the
restoration of the Zð2Þ subgroup of SUð2ÞL × SUð2ÞR.
In Fig. 3 we show the continuum and chiral extrapolated

results for χdisc and χπ − χδ. Using all the data for Nτ ¼ 8,
12, 16 and mπ ≤ 140 MeV, we performed a joint
a;ml → 0 extrapolation of the form χdiscða; mlÞ ¼
χdiscð0; 0Þ þ a1=N2

τ þ a2=N4
τ þ ðml=msÞ2½b0 þ b1=N2

τþ
b2=N4

τ �. Fits were performed on each bootstrap sample of
the data set. The bootstrap samples were created by
randomly choosing data from Gaussian distributions with
means equal to the average values and variances equal to
the 1-σ errors of the directly measured χdisc. We chose the
median value of the resulting bootstrap distribution as the
final result (depicted by the upward triangles) and the 68%
percentiles confidence interval of the resulting distribution
as the errors on the final results (the band labeled by

Nτ→
8;12;16

∞). Since we used the so-called rooted-staggered
formulation [53–56] for our (2þ 1)-flavor lattice QCD, we
also checked that the same χdiscð0; 0Þ is obtained within
errors by first carrying out the a → 0 extrapolations for
each ml and then performing the ml → 0 extrapolation
using the a → 0 extrapolated results. For this purpose,

we used the Nτ ¼ 12, 16 data for each of ml ¼
ms=27; ms=40; ms=80 to obtain χdiscð0; mlÞ by fitting to
the ansatz χdiscða;mlÞ ¼ χdiscð0; mlÞ þ d1=N2

τ . Then the
chiral extrapolation was carried out using χdiscð0; mlÞ ¼
χdiscð0; 0Þ þ d2ðml=msÞ2 based on the continuum estimates
of χdiscð0; mlÞ. These extrapolations were done by using the
same bootstrap procedure described before and the final

results are indicated with the label Nτ→
12;16

∞. Exactly
the same procedures were followed also for χπ − χδ to
obtain its continuum and chiral extrapolated values. After
carrying out continuum and chiral extrapolations, we find
that Eq. (7) is satisfied within errors, and χdisc and χπ − χδ
are nonvanishing at a confidence level above 95%.
Conclusions.—In this Letter we establish relations

between ∂nρ=∂mn
l and Cnþ1. To the best of our knowledge,

these relations are new in the literature. Based on these
relations, for the first time, we present direct computations
of ∂nρ=∂mn

l employing state-of-the-art lattice QCD tech-
niques. The results presented in this Letter led us to
conclude that, in chiral symmetric (2þ 1)-flavor QCD at
T ≈ 1.6Tc, (i) ρðλ → 0; mlÞ develops a peaked structure
due to repulsive non-Poisson correlations within small λ;
the peak becomes sharper as a → 0, and its amplitude is
∝ m2

l . (ii) The underlying presence of this ρðλ → 0; mlÞ
leads to manifestations of Uð1ÞA anomaly in χπ − χδ and
χdisc. (iii) Axial anomaly remains manifested in χπ − χδ and
χdisc even in the chiral limit. These suggest that for
T ≳ 1.6Tc the microscopic origin of axial anomaly is
driven by the weakly interacting (quasi)instanton gas
motivated ρðλ → 0; ml → 0Þ ∼m2

l δðλÞ, and the chiral
phase transition in (2þ 1)-flavor QCD is of the three-
dimensional Oð4Þ universality class.
The above conclusions are based on the continuum

extrapolated lattice QCD calculations using the (2þ 1)
flavors of staggered fermions. Confirmations of these
continuum extrapolated results using other fermion actions,
especially using chiral fermions, are needed in future. Even
in those future calculations it will be very difficult to
directly identify a structure like m2

l δðλÞ in ρ itself as
ml → 0. The formalism developed and techniques pre-
sented in this Letter for directly accessing ∂nρ=∂mn

l will be
essential for those future studies too. The same or similar
formalism also may have many potential applications
beyond the present physics problem: few plausible exam-
ples testing the predictions of random matrix theory
[34,57,58], determination of strong coupling constant using
Dirac eigenvalue spectrum [59], determinations of mass
anomalous dimensions in different theories [47,60–63], etc.
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FIG. 3. Continuum and chiral extrapolated results for χdisc (top)
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