
 

Universal Gate Set for Continuous-Variable Quantum Computation
with Microwave Circuits

Timo Hillmann ,1,2 Fernando Quijandría ,1 Göran Johansson,1 Alessandro Ferraro,3

Simone Gasparinetti,1 and Giulia Ferrini1
1Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

2Institut für Theorie der Statistischen Physik, RWTH Aachen, 52056 Aachen, Germany
3Centre for Theoretical Atomic, Molecular and Optical Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

(Received 7 February 2020; accepted 16 September 2020; published 12 October 2020)

We provide an explicit construction of a universal gate set for continuous-variable quantum computation
with microwave circuits. Such a universal set has been first proposed in quantum-optical setups, but its
experimental implementation has remained elusive in that domain due to the difficulties in engineering
strong nonlinearities. Here, we show that a realistic three-wave mixing microwave architecture based on the
superconducting nonlinear asymmetric inductive element [Frattini et al., Appl. Phys. Lett. 110, 222603
(2017)] allows us to overcome this difficulty. As an application, we show that this architecture allows for
the generation of a cubic phase state with an experimentally feasible procedure. This work highlights a
practical advantage of microwave circuits with respect to optical systems for the purpose of engineering
non-Gaussian states and opens the quest for continuous-variable algorithms based on few repetitions of
elementary gates from the continuous-variable universal set.
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Introduction.—The ability to control and manipulate
quantum systems has reached an unprecedented level in
the past decades [1,2]. Quantum computation stems as one
of the most promising potential applications of this
enhanced controllability of quantum systems [3–5]. As
an alternative to the use of two-level systems for quantum
information encoding, continuous-variable (CV) architec-
tures have emerged, where the underlying hardware con-
sists in quantized radiation, either with optical devices [1]
or microwaves [6] or in cavity optomechanics [7].
The theoretical setting for quantum computation with

CV-based architectures has been laid down in a seminal
paper by Lloyd and Braunstein [8]. There, universal
quantum computation in CVs is defined as the ability
of implementing any evolution corresponding to
Hamiltonians that are arbitrary polynomials in the mode
quadratures. The basic ingredients to achieve CV univer-
sality are a set of Gaussian gates and a single non-Gaussian
gate, which can be chosen arbitrarily among the poly-
nomials of degree higher than 2 in the quadratures of the
quantized modes. The ability to perform arbitrary sequen-
ces of these elementary quantum gates ensures universal
quantum computation [8].

Since then, the community of quantum opticians has
devoted considerable theoretical as well as experimental
effort toward developing the building blocks for CV
universality. In this framework, the experimental
challenge consists in achieving a non-Gaussian operation.
Experimental effort has focused on photon subtraction
[9–16], photon detection [17–19], and the use of ancillary
low photon-number states combined with homodyne
detection [20,21] as ways to achieve probabilistic non-
Gaussian transformations, resulting, however, in low
success probabilities [22] and limited versatility. In
particular, much of the effort has been dedicated to
engineer the so-called “cubic phase gate” or, alternatively,
to generate a “cubic phase state” [23]. Availability of the
latter state allows for engineering a cubic phase gate by
gate teleportation [15,16,22–26] and thereby promotes the
set of Gaussian operations to a universal set [8,27].
Having at one’s disposal such a cubic gate would allow
one, in particular, to engineer Gottesman-Kitaev-Preskill
(GKP) states [23,28], which have been shown to yield
fault tolerance [23,29–32]. Despite these efforts, the
generation of a cubic phase state, as well as the imple-
mentation of a cubic phase gate, have remained elusive,
due to the weakness of the nonlinearities that are available
in the optical regime. Alternatively, deterministic non-
linear gates in strongly coupled quantum electrodynamics
(QED) setups [33] as well as the dissipative stabilization
of cubic phase states in optomechanical systems have
been proposed [34,35].
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In microwave quantum optics, commonly referred to as
circuit QED (cQED), nonlinear photon interactions are
made possible via the use of Josephson-junction-based
devices [36]. Through a high degree of control in their
interactions with linear resonators, they led to prominent
realizations such as the generation of arbitrary Fock states
and their superpositions [37], Schrödinger cat states
[38,39], and Gottesman-Kitaev-Preskill states [40].
In particular, the superconducting nonlinear asymmetric

inductive element (SNAIL) [41–43] enables the mediation
of degenerate and nondegenerate three-photon interactions
without spurious effects commonplace in cQED through a
combination of its geometry and control through external
magnetic fields.
The CV notion of universality has not been studied

thoroughly in these systems yet, nor has it ever been
achieved experimentally. Here, we bridge between the
optical and microwave approaches and show explicitly
that a parametrically modulated microwave architecture
making use of a SNAIL allows for implementing a
universal gate set for CV quantum computation, in the
sense of the CV universality notion recalled above [8]. As
an application, we show that a state-of-the-art microwave
platform allows for the generation of a cubic phase state—a
long sought-after aspiration for the quantum optics
community.
Universal gate set in continuous-variables.—A universal

gate set for CV quantum computation is provided by the
following operations [8]:

feiq̂ks1 ; eiðq̂kp̂kþp̂kq̂kÞs2 ; eiðp̂kq̂l−q̂kp̂lÞ; eiðπ=4Þðq̂
2
kþp̂2

kÞ; eiq̂
3
kγg; ð1Þ

where q̂k ¼ ðâk þ â†kÞ=
ffiffiffi
2

p
and p̂k ¼ ðâk − â†kÞ=ði

ffiffiffi
2

p Þ are
the quadrature operators for mode k satisfying the canoni-
cal commutation relation ½q̂k; p̂l� ¼ iδkl (from here on,
ℏ ¼ 1 and we drop the mode index if only a single mode is
relevant).
The operations in Eq. (1) excluding eiq̂

3γ represent,
respectively, the displacement, squeezing, beam splitter,
and Fourier-transform operators (where si ∈ R for all i)
and are universal for Gaussian operations; i.e., they allow
implementing any arbitrary quadratic Hamiltonian.
Addition of the cubic phase gate eiq̂

3γ , where one value
of the cubicity γ is sufficient [8,26,28,44–46], allows
promoting the Gaussian set of operations to universal
quantum computation. Indeed, following Ref. [8], if we
can apply the Hamiltonians Â and B̂ for a time δt, then we
can approximate the evolution under their commutator for a
time δt2 by means of the relation

e−½Â;B̂�δt2 ¼ eiÂδteiB̂δte−iÂδte−iB̂δt þOðδt3Þ: ð2Þ

Commuting a polynomial in q̂ and p̂ with q̂ and p̂
themselves reduces the order of the polynomial by at least
1. Commuting with quadratic Hamiltonians never increases

the order. Finally, commuting with a polynomial of order 3
or higher increases the order by at least 1. Hence, one can
achieve arbitrary Hermitian polynomials of any order in q̂
and p̂ by commuting properly the Gaussian operations
with an applied Hamiltonian of order 3 or higher.
Consequently, the set in Eq. (1) is universal. Direct
application of Eq. (2) may result in a significant number
of operations in order to approximate a desired
Hamiltonian. More efficient schemes involving nested
operations as well as numerical optimization may provide
shorter gate sequences for achieving the same approximate
Hamiltonian evolution [51–53]. However, the approach
described above will suffice for our purpose of establishing
a proof of principle for universality with microwave
circuits. We are now going to introduce a cQED archi-
tecture that is instrumental to implement the universal gate
set in Eq. (1).
Microwave circuit for CV universal quantum

computation.—Interactions between microwave photons
in superconducting circuits can be realized by coupling
the modes of interest to Josephson junctions acting as
nonlinear, low-loss inductive elements with potential
energy UðφÞ ¼ EJ½1 − cosðφÞ�, where φ is the supercon-
ducting phase across the junction and EJ is the Josephson
energy [36,54]. When Josephson junctions are arranged in
a loop configuration, as in a dc superconducting quantum
interference device (SQUID), the Josephson potential
energy depends on the magnetic flux threading the loop,
allowing for in situ static tuning of the potential, as well as
its parametric modulation [55,56]. Photon-photon inter-
actions have been demonstrated in resonators terminated by
dc SQUIDs by introducing suitable drives to resonantly
select specific n-photon processes from the Josephson
potential. This potential has even parity for both a single
junction and a symmetric SQUID, resulting in mixing
processes with an even number of photons, such as four-
wave mixing [57]. As has been recently demonstrated, an
asymmetry between the SQUID junctions introduces an
odd contribution to the potential, enabling three-wave
mixing (as well as higher-order odd photon interactions)
[58,59]. However, the even contribution still results in
undesired terms, most notably, self- and cross-Kerr inter-
actions, that contain an equal number of creation and
annihilation operators and are consequently resonant (non-
rotating) in any reference frame. To overcome this chal-
lenge, the SNAIL was recently introduced [41–43] in the
context of Kerr-free three-wave mixing and parametric
amplification. Here we propose a tunable resonator design
based on a SNAIL and show that by a two-tone flux
modulation we can resonantly select all processes com-
prising the cubic interaction ðâþ â†Þ3 as we will detail
later. The SNAIL loop consists of n large Josephson
junctions in parallel with a single smaller junction with
Josephson energies EJ and αEJ (α < 1), respectively
[Fig. 1(a)]. By threading an external magnetic flux Φext
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through the loop, the inductive energy of the SNAIL circuit
can be written as [41]

USNAILðφÞ ¼ −αEJ cosðφÞ − nEJ cos

�
φext − φ

n

�
; ð3Þ

where φ is the superconducting phase across the small
junction, φext ¼ 2πΦext=Φ0 is the reduced applied mag-
netic flux, and Φ0 is the magnetic flux quantum. The
advantage of the SNAIL circuit over traditional SQUIDs is
that through its design, resulting in specific parameters
n, α, in addition to the external flux Φext, its potential
landscape around a minimum φmin can be tailored.
Then we can Taylor expand (3) around this value
as USNAILðφÞ¼USNAILðφminÞþ

P
m>1cmðφ−φminÞm=m!.

The three-wave mixing capability of this device corre-
sponds to setting the coefficient of the fourth-order term
identical to zero (c4 ¼ 0) [41], so that the leading nonlinear
term is the cubic one.
Our proposed architecture is a quarter wavelength trans-

mission line resonator of length d terminated with a SNAIL
loop in one end [Fig. 1(b)]. We describe the state of the
resonator in terms of the superconducting phase field
φðx; tÞ. For our purposes, the phase at the position of
the SNAIL φS ¼ φðd; tÞ is assumed to be small. This
means that the current flowing through the Josephson
junctions is smaller than their corresponding critical cur-
rents. If this holds, the Lagrange equations of motion which
determine the normal modes of the resonator-SNAIL
system can be linearized, allowing one to obtain the system
Hamiltonian. The nonlinear corrections are reintroduced
perturbatively [46]. The resonator is also weakly coupled to

an input transmission line [Fig. 1(b)], which allows driving
the resonator field.
We choose the SNAIL parameters n, α, and Φext in order

to operate the device free of Kerr interactions. Furthermore,
we propose to endow this device of flux tunability in order
to fully exploit the third-order interaction. For this, we
apply a periodically modulated reduced external flux of the
form

φextðtÞ ¼ φdc
ext þ φac

extðtÞ; ð4Þ

where φdc
ext is the static part of the flux and φac

extðtÞ is
the time-dependent modulation. The latter satisfies
jφac

extðtÞj ≪ 1. This is required in order to remain near
the equilibrium point and to not excite higher nonlinear
processes. We consider the SNAIL potential up to second
order in φac

extðtÞ. As customary, we follow the canonical
quantization recipe for the resonator [46]. Upon quantiza-
tion, the Hamiltonian describing our tunable resonator is

Ĥ ¼ ωrâ†âþ g1ðtÞðâþ â†Þ þ g2ðtÞðâþ â†Þ2
þ g3ðtÞðâþ â†Þ3 þ g4ðtÞðâþ â†Þ4; ð5Þ

with time-dependent coefficients giðtÞ, i ¼ 1;…; 4 to be
discussed below. Here ωr is the resonance frequency of the
transmission line resonator modified by the presence of the
SNAIL. Because of the modulation of the potential around
its minimum, we gain linear and quadratic contributions in
addition to the cubic potential. Notice that we have also
included a quartic contribution. The reason is twofold.
First, due to the time-dependent modulation, the condition
c4 ¼ 0 is not always satisfied. Second, as demonstrated in
Ref. [42], the cubic interaction leads to fourth-order
renormalization effects. In this context, the Kerr-free
operation point results from the interplay of third- and
fourth-order nonlinearities. The time dependence of g1 and
g3 is proportional to φac

extðtÞ and that of g2 and g4 to φac
extðtÞ2.

The perturbative treatment of the nonlinearity leads to the
hierarchy ωr ≫ jgij.
Engineering of Gaussian gates.—We start our demon-

stration of CVuniversality by showing that this architecture
is capable of implementing the Gaussian operations in (1).
For this, a modulation of the flux is not required, i.e.,
φac
extðtÞ ¼ 0 in Eq. (4). In this case, the Hamiltonian (5)

reduces to Ĥ ¼ ωrâ†âþ gdc3 ðâþ â†Þ3 þ gdc4 ðâþ â†Þ4,
with the couplings gdc3 and gdc4 depending only on the
microscopic parameters of the circuit as well as the static
external flux. In order to engineer a squeezing operation,
we apply an off-resonant microwave tone of frequency
ωp ¼ 2ωr through the input transmission line. As dis-
cussed in Ref. [43], in a frame rotating at the resonator
frequency ωr the system is described by the effective
Hamiltonian Ĥsq ¼ −ði=2Þðξâ†2 − ξ̄â2Þ, where the para-
meter ξ depends on gdc3 as well as on the amplitude of the
drive. In particular, choosing ξ real allows us to obtain the

(a)

(b)

FIG. 1. (a) Circuit representation of the SNAIL composed of n
large Josephson junctions of energy EJ and a single smaller one
of energy αEJ. Following Ref. [41], we represent this subcircuit
by a snail-like symbol. (b) Sketch of our proposed architecture.
The quarter wavelength transmission line resonator is terminated
into a SNAIL at the right end and capacitively coupled to an input
transmission line at the left end through which microwave signals
for control can be fed. The SNAIL potential can be tuned and
modulated through an external flux line.
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squeezing operation in Eq. (1). This is the basis of SNAIL-
based parametric amplification [42,43]. The Fourier trans-
form eiðπ=4Þðq̂2þp̂2Þ follows from the free evolution of the
system, i.e., the evolution under the resonator Hamiltonian
ωrâ†â in the absence of any external modulation. As
customary, a displacement operation is implemented by
means of a microwave tone near resonance with mode â.
Finally, a tunable beam-splitter interaction can be achieved
by coupling two resonator-SNAIL units via a parametri-
cally modulated dc SQUID or a tunable gap qubit or
mediating a static nonlinear coupling via time-dependent
drivings of both resonators [60–62].
Engineering a nonlinear gate.—The power of our

proposal relies on the realization of the interaction term
q̂3 which has been experimentally elusive so far. In order to
engineer such a gate, we exploit the flux tunability of the
SNAIL. In particular, we consider a two-tone modulation of
the form

φac
extðtÞ ¼ λ½cosðωrtÞ þ cosð3ωrtÞ�; ð6Þ

where λ ≪ 1 is a small modulation amplitude. This is
justified by studying the cubic potential in Eq. (5) in the
interaction picture with respect to the free resonator
Hamiltonian ωrâ†â. Because of the odd parity of the
potential, there are no nonrotating contributions. The terms
that are pure in âð†Þ rotate with frequency ∓ 3ωr, while the
mixed terms rotate with �ωr. Thus, in order to select the
full cubic interaction resonantly, the necessity to drive with
two frequencies ωr and 3ωr arises. It must be pointed out
that the drive at ωr also selects resonantly the linear and the
quadratic terms in Eq. (5). However, in Supplemental
Material [46], we show that for a realistic choice of
parameters the quadratic term is sufficiently suppressed
and can thus be neglected. This is not the case for the linear
drive. However, its effect can be corrected via a displace-
ment of the resonator field, and, thus, we neglect it in the
remainder of this Letter.
Finally, following the above arguments and in the

rotating frame, we isolate the desired cubic interaction

ĤI ¼ gac3 ðâþ â†Þ3; ð7Þ

where the coupling gac3 depends on the microscopic
parameters of the circuit as well as on the modulation
amplitude λ. In principle, one could use classical optimi-
zation to determine the circuit parameters that result in
Hamiltonian couplings gi which are tailored to specific
requirements. However, here we will restrict ourselves to
hand-selected circuit parameters based on state-of-the-art
realizations of superconducting circuits to demonstrate
our claim.
For the chosen parameters, our theory predicts that it is

possible to achieve gac3 =2π ≈ 0.3 MHz and ωr=2π ≈ 4 GHz
while the Kerr nonlinearity is tuned to zero [46]. This also

guarantees that the drive at 3ωr is sufficiently detuned from
the plasma frequency of the Josephson junctions, which are
typically on the order of a few tens of gigahertz [63].
Therefore, we have demonstrated that all of the operations
in the set (1) can be implemented with our proposed
architecture.
We emphasize that, in principle, more gates are directly

accessible through our proposal. While this does not matter
for the goal of achieving universality, having at one’s
disposal customizable high-order gates can lead to sub-
stantial advantages when limited to noisy devices with a
finite coherence time.
Generation of a cubic phase state.—We now address

the generation of a cubic phase state jγ; ri ¼
eiγq̂

3

eðr=2Þðâ†2−â2Þj0i, where r is the real squeezing para-
meter, γ the cubicity of the cubic phase gate applied, and j0i
the photon vacuum state [26]. Because of the weak
coupling to the transmission line, the main dissipation
channel corresponds to internal losses. We treat them
within a Gorini-Kossakowski-Sudarshan-Lindblad master
equation formalism with jump operator L̂ ¼ ffiffiffi

κ
p

â, where κ
is the single-photon loss rate. Evolving an initial squeezed
state for a time tg with the Hamiltonian (7) results in a cubic
phase state with cubicity γ ¼ gac3

ffiffiffi
8

p
tg, where the factor

ffiffiffi
8

p
results from the normalization of q̂ [46].
At this point, we would like to stress that Hamiltonian (7)

is the result of several approximations, more remarkably,
the rotating wave approximation. In order to test the
validity of the latter approximation, we can apply the
above described squeezing and cubic gates by means of the
appropriate external drives to the full nonlinear-resonator
Hamiltonian Eq. (5) initialized in the vacuum state [46]. In
Figs. 2(a) and 2(b), we compare the state resulting from the
full Hamiltonian (5) in the presence of losses with the ideal
cubic phase state jγ; ri, corresponding to the lossless
evolution under Hamiltonian (7) acting on an ideal
squeezed state, respectively. For this example, we consider
κ=2π ¼ 50 kHz (1=κ ≈ 3 μs) which corresponds to a

(a) (b)

FIG. 2. Wigner distribution for the cubic phase state jγ; ri.
(a) Obtained from a master equation simulation with the
Hamiltonian (5) and single-photon loss rate κ=2π ¼ 50 kHz
by sequentially applying the squeezing and cubic phase gate
to an initial vacuum state j0i (see [46] for details). (b) Ideal cubic
phase state with matched cubicity γ ≈ 0.1 and squeezing
r ≈ 0.70ð≈6 dBÞ.
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quality factor Q of the order of 105. In addition, we choose
evolution times and drive strengths that lead to a squeezing
parameter r ≈ 0.7 [64] and cubicity γ ≈ 0.1 [65]. We obtain
a fidelity of 97.2% to the ideal cubic phase state (numerical
simulations are done using QuTiP [66]), which is sufficient
to retain its distinguished features, such as the negativities
of the Wigner function, as shown in Fig. 2. Note that the
fidelity in the absence of losses is increased to 97.4%.
Finally, the generated cubic phase state can be probed,

e.g., by quantum state tomography using a dispersively
coupled qubit [not shown in Fig. 1(b)] [37].
Conclusions.—In summary, we have proposed a micro-

wave architecture that allows for the implementation of a
universal gate set for continuous-variable quantum com-
putation. Our architecture is based on a quarter wavelength
transmission line resonator terminated by an array of
Josephson junctions in a SNAIL configuration. The tun-
ability of our device allows for engineering customized
gates and, in particular, the interaction q̂3, corresponding to
a cubic phase gate. As an application, we have provided an
experimentally realistic protocol for the generation of the
cubic phase state, which is a resource state for CV quantum
computation and whose generation has not been experi-
mentally achieved yet despite extensive effort undertaken
with quantum optical setups.
On the one hand, our work opens the experimental quest

for a cubic phase state with microwave circuits. Our
proposal is within reach of current cQED technology in
terms of resonator quality factors, that can be as high as
3 × 105 in 3D architectures [67], and the ability to tune the
resonator field much faster than its corresponding lifetime,
with pulse synthesis resolution within nanoseconds [68].
On the other hand, the experimental realization of a
universal gate set in a continuous-variable architecture
would present the community with the question of what
relevant quantum algorithms can be run in the near future
on such an architecture, possibly with a limited circuit
depth, and without fault tolerance. In this sense, our work
heralds further research in an area that could be referred to
as of “continuous-variable–noisy intermediate scale quan-
tum (CV-NISQ) devices,” in resonance with similar inves-
tigations recently emerged in the context of qubit-based
quantum computation [69]. Indeed, quantum advantage in
CV beyond a specific encoding has been addressed so far
only in the context of sampling problems [28,70–75], for
the implementation of algorithms for optimization of
continuous functions [76], or for numerical integration
[77], leaving plenty of room for new applications yet to
unveil.
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