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We study four-derivative corrections to four-dimensional N ¼ 2 minimal gauged supergravity
controlled by two real constants. The solutions of the equations of motion in the two-derivative theory
are not modified by the higher-derivative corrections. We use this to derive a general formula for the
regularized on-shell action for any asymptotically locally AdS4 solution of the theory and show how the
higher-derivative corrections affect black hole thermodynamic quantities in a universal way. We employ
our results in the context of holography to derive explicit expressions for the subleading corrections in the
large N expansion of supersymmetric partition functions on various compact manifolds for a large class of
three-dimensional SCFTs.
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Introduction.—String and M theory are the natural
habitats for the gauge/gravity duality. The gauge theory
arises from the low-energy dynamics of D/M-branes which
in turn are massive objects that admit an alternative
gravitational description. The gravitational side of the
duality is under good calculational control in the classical
supergravity limit of string and M theory, which allows for
explicit calculations of physical observables in the planar
limit of the dual gauge theory. Going beyond this approxi-
mation requires calculating higher-derivative corrections to
ten- or eleven-dimensional supergravity and delineating
their effects on holographic observables. This proves to be
technically challenging and our goal here is to bypass some
of these difficulties by eschewing the need to work in ten or
eleven dimensions and study higher-derivative corrections
to four-dimensional supergravity instead.
We focus on the gravity multiplet of four-dimensional

N ¼ 2 gauged supergravity that captures the universal
dynamics of the energy-momentum multiplet in the dual
three-dimensional N ¼ 2 SCFT. The propagating degrees
of freedom in this theory are the metric, an Abelian gauge
field called the graviphoton, and two gravitini. The two-
derivative action for the bosonic fields is the Einstein-
Maxwell action with a negative cosmological constant.
The four-derivative action for this model can be studied
using techniques from conformal supergravity. We find
that there are only two supersymmetric four-derivative
terms in the action which have arbitrary real coefficients,

c1 and c2. Despite the nontrivial corrections to the
Lagrangian of the theory every solution of the two-
derivative equations of motion (EOM) also solves the
four-derivative equations. Moreover, the amount of super-
symmetry preserved by a given solution is not affected by
the four-derivative corrections.
These results prove powerful in the context of hologra-

phy. In particular they allow for an explicit evaluation of the
regularized on-shell action of any solution to the four-
derivative supergravity theory which in turn captures the
path integral of the dual SCFT. In addition, we show how
the presence of the higher-derivative corrections modifies
the thermodynamics of black hole solutions in the theory.
Our main results for the on-shell action and the black hole
entropy can be found in Eqs. (11) and (14), respectively.
While the constants c1;2 are free parameters in four-

dimensional supergravity, they should be uniquely fixed by
embedding our model in string or M theory. In the absence
of such an explicit embedding we can appeal to the
holographically dual field theory and study its path integral
to subleading order in the planar limit. Indeed, this proves
to be a fruitful strategy in the context of three-dimensional
SCFTs realized on the world volume of N M2-branes
which are dual to orbifolds of the AdS4 × S7 background of
M theory. Combining our results for the higher-derivative
on-shell action with supersymmetric localization results in
the large N limit we find that the partition function of the
SCFTs, Z, on various compact manifolds has the following
explicit form:

− logZ ¼ πF ½AN3=2 þ BN1=2� − πðF − χÞCN1=2: ð1Þ

The quantities ðF ; χÞ depend on the compact three mani-
fold and are given in Table II for various cases of interest,
while the constants ðA; B;CÞ depend on the SCFT. For the
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UðNÞk × UðNÞ−k ABJM theory and theN ¼ 4UðNÞ SYM
theory coupled to one adjoint and Nf fundamental hyper-
multiplets, the constants ðA;B;CÞ can be computed explic-
itly and are given in Table I.
Minimal gauged supergravity.—In the conformal

supergravity formalism, the two-derivative action of four-
dimensional minimal gauged N ¼ 2 supergravity is speci-
fied by the Weyl multiplet, an auxiliary vector multiplet
and an auxiliary hypermultiplet; see Ref. [1] for a review.
In Euclidean signature, the vector multiplet is related to
the reducible combination of a real chiral multiplet Xþ and
a real antichiral multiplet X−; see Ref. [2]. The combina-
tions ðX�Þ2 can be used to construct a supersymmetric
Lagrangian density by means of (anti-)chiral superspace
integrals [3],

LV ¼ 1

2

Z
d4θEþðXþÞ2 þ

1

2

Z
d4θ̄E−ðX−Þ2; ð2Þ

with E� the (anti-)chiral superspace measure. The full
two-derivative action of minimal gauged supergravity is
obtained by supplementing Eq. (2) with the Lagrangian
density for the hypermultiplet, whose explicit form can be
found in Ref. [2]. This multiplet is allowed to transform
locally under a U(1) subgroup of the SU(2) R symmetry,
implementing the gauging in the supergravity theory.
We consider two supersymmetric Lagrangian densities

containing higher-derivative couplings. The first is built out
of the Weyl multiplet, related to a chiral and an antichiral
tensor multipletWab

� , which can be squared to construct the
superspace integrals [4]

LW2 ¼ −
1

64

Z
d4θEþðWabþ Þ2 − 1

64

Z
d4θ̄E−ðWab

− Þ2: ð3Þ

The second is built from the so-called T -log multiplet and
contains the supersymmetrization of the Gauss-Bonnet
term [5]. In superspace notation, it reads

LT log ¼ −
1

2

Z
d4θEþΦ0þ∇̄4 lnΦ− þ antichiral; ð4Þ

where Φ0þ is a chiral multiplet and Φ− is an antichiral
multiplet. As shown in Ref. [5], when the former is a
constant multiplet, Φ− can be identified with X− without
loss of generality. On the other hand, in minimal gauged
supergravity, identifying Φ0þ with a composite chiral
multiplet (necessarily of zero Weyl weight [5]) leads to

terms in the Lagrangian (4) with at least six derivatives. We
do not consider such terms and therefore can fix Φ0þ ¼ 1.
Other so-called R2 invariants have recently been con-

structed from tensor multiplets [6,7], albeit in ungauged
supergravity. Since the effect of the gauging on these
invariants has not yet been worked out in the literature, we
will not consider them here. We will, however, comment on
them elsewhere and in more detail [8].
The Lagrangians in Eqs. (2), (3), and (4) are individually

superconformally invariant. The two-derivative Lagrangian
can be taken with unit coefficient by simple field redefi-
nitions, and we are left with two arbitrary real coefficients
c1 and c2 of the four-derivative Lagrangians (3) and (4),
respectively. Furthermore, the bosonic terms in Eqs. (3)
and (4) are related by LW2 þ LT log ¼ LGB, where LGB is
the Gauss-Bonnet invariant [5]. We therefore can eliminate
the T -log Lagrangian in favor of the more familiar Weyl-
squared and Gauss-Bonnet terms and write the super-
conformal higher-derivative Lagrangian as

LHD ¼ L2∂ þ ðc1 − c2ÞLW2 þ c2LGB: ð5Þ

Starting from Eq. (5), we obtain the corresponding
Lagrangian density in the Poincaré frame by gauge fixing
the extra symmetries and eliminating the fields that have
been introduced to guarantee off-shell closure of the
superconformal algebra. The result is an action involving
only the dynamical fields of minimal gauged supergravity.
This procedure will be presented in detail in Ref. [8]. Here
we make the following key observation: upon choosing
convenient gauge-fixing conditions for the superconformal
symmetries, the extra superconformal fields can be elim-
inated from Eq. (5) using their two-derivative solutions,
even in the presence of the higher-derivative couplings.
The result from this foray into conformal supergravity is the
following form of the bosonic terms of Eq. (5) in the
Poincaré frame:

e−1L2∂ ¼ −ð16πGNÞ−1½Rþ 6L−2 −
1

4
FabFab�;

e−1LW2 ¼ ðCab
cdÞ2 − L−2FabFab þ 1

2
ðFþ

abÞ2ðF−
cdÞ2

− 4F−
abR

acFþb
c þ 8ð∇aF−

abÞð∇cFþb
c Þ;

e−1LGB ¼ RabcdRabcd − 4RabRab þ R2; ð6Þ

where GN is the Newton constant, Cab
cd is the Weyl tensor,

Fab is the graviphoton field strength, and L determines the

TABLE I. The constants in Eq. (1) for two classes of SCFTs.

Theory A B C

ABJM at level k
ffiffiffiffiffi
2k

p
=3 −ðk2 þ 8Þ=ð24 ffiffiffiffiffi

2k
p Þ −ð1= ffiffiffiffiffi

2k
p Þ

N ¼ 4 SYM with Nf fundamentals
ffiffiffiffiffiffiffiffiffi
2Nf

p
=3 ðN2

f − 4Þ=ð8 ffiffiffiffiffiffiffiffiffi
2Nf

p Þ −ðN2
f þ 5Þ=ð6 ffiffiffiffiffiffiffiffiffi

2Nf
p Þ
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cosmological constant. Using Eq. (6), one can show that the
two-derivative solutions for the metric and graviphoton also
solve the four-derivative equations of motion, but not vice
versa. Similar results have been noticed also in the context
of ungauged N ¼ 2 supergravity [9,10], as well as for
nonsupersymmetric theories [11]. We also find that the
Poincaré supersymmetry variations of the gravitini are not
modified by the presence of the higher-derivative cou-
plings. We thus conclude that any solution of the two-
derivative Poincaré action is also a solution of the higher-
derivative action (5), and it preserves the same amount of
supersymmetry.
On-shell action.—In order to evaluate the action (5) on

solutions of the two-derivative EOM we use Eq. (6) to
derive the following identity for the on-shell values of the
three actions:

IW2 ¼ IGB −
64πGN

L2
I2∂ : ð7Þ

The divergences in the on-shell actions on the right-hand
side can be removed via holographic renormalization using
the following counterterms [12,13]:

ICT2∂ ¼ ð8πGNÞ−1
Z

d3x
ffiffiffi
h

p �
−K þ 1

2
LRþ 2L−1

�
;

ICTGB ¼ 4

Z
d3x

ffiffiffi
h

p
ðJ − 2GabKabÞ; ð8Þ

where hab is the induced metric on the boundary, Kab is the
extrinsic curvature,R and Gab are the boundary Ricci scalar
and Einstein tensor, respectively, and J is defined by

J ¼ 1

3
½3KðKabÞ2 − 2ðKabÞ3 − K3�: ð9Þ

Using Eqs. (6) and (8), we can compute the regularized on-
shell actions

I2∂ þ ICT2∂ ¼ πL2

2GN
F ; IGB þ ICTGB ¼ 32π2χ; ð10Þ

where F depends on the two-derivative solutionM4, and χ
is the Euler characteristic of M4, see Table II. Combining
Eqs. (5), (7), and (10), we arrive at the following universal
formula for the regularized four-derivative on-shell action
in minimal gauged supergravity:

IHD ¼
�
1þ 64πGN

L2
ðc2 − c1Þ

�
πL2

2GN
F þ 32π2c1χ: ð11Þ

This remarkably simple formula relates the full four-
derivative on-shell action to the two-derivative result,
proportional to F , along with the topological invariant
χ. We emphasize that this result for the on-shell action is

valid for all solutions of the two-derivative EOM and is
independent of supersymmetry. In the context of hologra-
phy the on-shell action in Eq. (11) should be dual to the
logarithm of the partition function of a three-dimensional
N ¼ 2 SCFT defined on the boundary of M4. Standard
examples for M4 include Euclidean AdS4 solutions with a
squashed S3 boundary as well as Euclidean black hole
solutions with a S1 × Σg boundary. We present the results
for F and χ for a number of supersymmetric solutions of
minimal gauged supergravity in Table II.
There are two types of contributions to the on-shell

action of supersymmetric solutions, which can be classified
by the dimension of the fixed loci under the isometry
required by supersymmetry [21,22]. As shown in Ref. [22],
the two-derivative on-shell action F localizes on the fixed
points of the preserved equivariant supercharges, and this
principle allows for its explicit evaluation for generic NUT
or Bolt solutions. Our result (11) demonstrates that the
higher-derivative corrections to the on-shell action can also
be written purely in terms of topological fixed point data. It
should therefore be possible to repeat the analysis of
Ref. [22] for the most general supersymmetric solutions
of the four-derivative action in Eq. (5) and establish a
higher-derivative generalization of their localization results.
Our results can be related to another important observ-

able in AdS4 holography: the coefficient CT of the two-
point function of the energy momentum tensor in the dual
SCFT. Using the four-derivative action in Eq. (6) and the
results in Ref. [23] we find (in the conventions of Ref. [24])

CT ¼ 32L2

πGN
þ 2048ðc2 − c1Þ: ð12Þ

This result is valid for all three-dimensional holographic
SCFTs captured by our minimal supergravity setup. One
can use Eq. (11) and the second entry in Table II to
confirm the Ward identity CT ¼ ð32=π2Þð∂2IS3b=∂b2Þjb¼1,
see Ref. [25]. This constitutes a nontrivial consistency
check of our results.

TABLE II. The on-shell action (11) for various supersymmetric
Euclidean solutions of holographic interest along with references
with the explicit form of the metric and gauge field. The first five
lines represent solutions with NUTs while the last three lines refer
to solutions with bolts.

Solution M4 Susy Ref. F χ

AdS4 w. S3 bdry 1 [14] 1 1
Uð1Þ × Uð1Þ sq. 1=2 [15] 1

4
½bþð1=bÞ�2 1

SUð2Þ × Uð1Þ sq. 1=2 [16] s2 1
SUð2Þ × Uð1Þ sq. 1=4 [17] 1 1
KN-AdS 1=4 [18] ðωþ 1Þ2=2ω 2
AdS2 × Σg 1=2 [18] ð1 − gÞ 2ð1 − gÞ
Romans 1=4 [19] ð1 − gÞ 2ð1 − gÞ
Bolt� 1=4 [20] ð1−gÞ∓p=4 2ð1 − gÞ
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Black hole thermodynamics.—To understand how the
thermodynamics of black holes is modified by the four-
derivative terms in Eq. (6) we consider a stationary black
hole solution to the two-derivative equations of motion. To
this end we work in Lorentzian signature as implemented
via a Wick rotation of Eq. (6).
In a higher-derivative theory of gravity, the black hole

entropy can be computed using the Wald formalism [26]:

S ¼ −2π
Z
H
Eabcdεabεcd; ð13Þ

where the integral is over the two-dimensional horizon H,
Eabcd is the variation of the Lagrangian with respect to the
Riemann tensor, and εab is the unit binormal to the horizon.
Using the Lagrangian (5) and the EOM, we obtain

S ¼ ð1þ αÞ AH

4GN
− 32π2c1χðHÞ; ð14Þ

where AH is the area and χðHÞ the Euler characteristic of
the horizon and we defined α ≔ ð64πGN=L2Þðc2 − c1Þ. We
find two modifications to the entropy: a topological term
independent of the charges of the black hole, accompanied
by an overall rescaling of the Bekenstein-Hawking area
law. This rescaling can be interpreted as a renormalization
of GN , as required to tame divergences in a UV-complete
theory of gravity [27,28].
The four-derivative terms in the action modify the

conserved quantities associated with Killing vectors of
the spacetime. Let Σ be a timelike boundary at spatial
infinity. The conserved charge Q associated with a Killing
vector K can be computed by the Komar integral

Q½K� ¼
Z
∂Σ

d2x
ffiffiffi
γ

p
naKbτab; τab ≔

2ffiffiffi
h

p δLHD

δhab
; ð15Þ

with γ the induced metric on the boundary surface ∂Σ, na
the unit normal to ∂Σ, and τab the boundary stress tensor
[29]. Using Eqs. (7) and (8), we find that for any solution of
the two-derivative EOM the boundary stress tensor takes
the universal form

τab ¼ ð1þ αÞτab2∂ − c1τabGB; ð16Þ

where τab2∂ is the boundary stress tensor associated with L2∂
and τabGB is the boundary stress tensor associated with LGB

in Eq. (6). Crucially, the topological nature of the Gauss-
Bonnet term ensures that τabGB gives no contribution to the
Komar integral [30]. This implies that the four-derivative
terms in Eq. (6) simply rescale the Komar charges of the
original two-derivative solution. In particular, the mass and
angular momentum of the black hole are M ¼ ð1þ αÞM2∂
and J ¼ ð1þ αÞJ2∂ , respectively.
To study the electromagnetic charges of the black hole

we note that the Maxwell equations can be written as

dG ¼ dF ¼ 0, where F is the two-form graviphoton field
strength and G is the two form defined by

ð⋆GÞμν ¼ 32πGN
δLHD

δFμν : ð17Þ

The electric and magnetic charges Q and P are defined by
integrating G and F over ∂Σ:

Q ¼
Z
∂Σ

G; P ¼
Z
∂Σ

F: ð18Þ

The field strength F, and therefore the magnetic charge, is
unaffected by the higher-derivative terms. However, the
latter modify G, which in turn modifies the electric charge
as Q ¼ ð1þ αÞQ2∂ .
As a consistency check of our results we consider

the quantum statistical relation between the thermodynamic
quantities of a black hole and its Euclidean on-shell
action [31]

I ¼ βðM − TS −ΦQ − ωJÞ; ð19Þ

where T ¼ β−1 is the temperature, Φ is the electric
potential, and ω is the angular velocity of the black hole.
These intensive quantities are fully determined by the two-
derivative solution and are therefore not modified since the
black hole background is not affected by the four-derivative
terms in the action. The same is not true for the extensive
quantities I, S, M, Q, and J computed above. Comparing
Eq. (11) to Eq. (14), we find that if the quantum statistical
relation is satisfied in the two-derivative theory then it is
automatically satisfied in the four-derivative theory pro-
vided that the Euler characteristics of the full Euclidean
solution and the horizon are equal, χðM4Þ ¼ χðHÞ. We
have checked this relation for all known asymptotically
AdS4 stationary black holes and it would be interesting to
prove it in full generality.
Our results imply that the ratio Q=M for extremal black

holes is not affected by the four-derivative terms in Eq. (6)
and thus the corrections to the black hole entropy in
Eq. (14) have no relation to the extremality bound.
Moreover, the black hole entropy corrections do not have
a definite sign and therefore do not necessarily lead to an
increase in the entropy for all black holes. These results are
in conflict with some of the claims in Refs. [32–34] about
the weak gravity conjecture implying positivity of entropy
corrections and will be discussed further in Ref. [8].
Field theory and holography.—The discussion so far

was confined to four-dimensional supergravity. To make a
connection with holography we now assume that the four-
dimensional supergravity action in Eq. (5) arises as a
consistent truncation of M theory on an orbifold of S7.
This consistent truncation has been established at the
two-derivative level and in the absence of orbifolds [35].
It will be most interesting to extend this result to include
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higher-derivative terms and to study potential subtleties
arising from orbifolds with fixed points. We consider two
classes of orbifolds for which the low energy dynamics of
N M2-branes is captured by the UðNÞk × UðNÞ−k ABJM
theory [36] or a UðNÞN ¼ 4 SYM theory with one adjoint
and Nf fundamental hypermultiplets [37].
For theories arising from M2-branes it is expected

that the dimensionless ratio L2=2GN scales as N3=2 while
the four-derivative coefficients c1;2 scale as N1=2, see, for
example, Ref. [38]. We expect that the coefficients of the
six- and higher-derivative terms in the four-dimensional
supergravity Lagrangian are more subleading in the large
N limit. To this end it is convenient to define the constants
vi ≔ 32πciN−1=2. In addition, we allow for an N1=2

correction to L2=2GN by defining

L2

2GN
¼ AN3=2 þ aN1=2: ð20Þ

With this at hand the on-shell action in Eq. (11) becomes

IHD ¼ πF ½AN3=2 þ BN1=2� − πðF − χÞCN1=2; ð21Þ

where B ≔ aþ v2 and C ≔ v1. To determine the constants
ðA;B; CÞwe can use supersymmetric localization results on
the squashed sphere S3b corresponding to the second entry
in Table II. In particular for the round sphere at b ¼ 1 the
free energy for the ABJM theory and the UðNÞ N ¼ 4
SYM was computed in Refs. [39,40] and Ref. [37],
respectively. These results allowus to determine the constant
A as well as the sum Bþ C in Eq. (21). For both families of
SCFTs it is also possible to compute the constant CT [24]
and one can combine this with Eq. (21) and the supergravity
result in Eq. (12) to determine B and C individually. The
outcome of these calculations is summarized in Table I. Note
that these results unambiguously fix the coefficient c1 in
Eq. (5), while c2 cannot be fully determined due to the shift
by the constant a in Eq. (20).
Using this amalgam of four-derivative supergravity and

supersymmetric localization results we arrive at the general
form of the partition function for these two classes of
SCFTs (1). As a further consistency check we note that our
results for the ABJM theory at level k ¼ 1 and the UðNÞ
N ¼ 4 SYM theory for general Nf agree with [41] where
the squashed sphere partition function was computed for
b2 ¼ 3. For more general values of the squashing parameter
we obtain the following result for the ABJM free energy,
F ≔ − logZ:

FS3b
¼π

ffiffiffiffiffi
2k

p

12

��
bþ1

b

�
2
�
N3=2þ

�
1

k
−

k
16

�
N1=2

�
−
6

k
N1=2

�
:

Additionally, the result in Eq. (1), together with the
second to last entry in Table II, allows for the calculation
of the leading correction to the large N results for the

topologically twisted index on S1 × Σg for the so-called
universal twist [42,43]. For the ABJM theory we find

− logZS1×Σg
¼ ð1 − gÞ π

ffiffiffiffiffi
2k

p

3

�
N3=2 −

32þ k2

16k
N1=2

�
:

This agrees with the result from supersymmetric localiza-
tion for g ¼ 0 in Ref. [44]. Finally, we note that using the
explicit results for ðA;B;CÞ in Table I and the result in
Eq. (14) we can compute the leading correction to the
entropy of any asymptotically AdS4 × S7 black hole.
Discussion.—We studied four-derivative corrections to

minimal N ¼ 2 gauged supergravity and analyzed their
effects on black hole thermodynamics and holography.
It is important to generalize our construction to matter-
coupled N ¼ 2 gauged supergravity as well as to theories
with N ¼ 4 and N ¼ 8 supersymmetry. In addition, it
should be possible to extend our results to minimal gauged
supergravity in higher dimensions. Some of these gener-
alizations will be explored in Ref. [8].
It would be most interesting to derive the supergravity

action in Eq. (5) from a KK reduction of type II or eleven-
dimensional supergravity with higher derivative correc-
tions. This will allow for a first principles derivation of the
constants c1;2. In the context of M theory the relation
between supersymmetric localization and higher-derivative
holography we explored should be viewed as complemen-
tary to the strategy pursued in Ref. [45]. It will be
interesting to understand whether we can use this alter-
native vantage point to determine the coefficient c2 and the
constant a in Eq. (20).
It will be very interesting to establish the validity

of Eq. (1) for other three manifolds using supersymmetric
localization. Another worthy goal is to extend the results
for the partition function in Eq. (1) and Table I to other
three-dimensionalN ¼ 2 SCFTs with a holographic dual in
string or M theory. Prime candidates for such a generaliza-
tion are Chern-Simons matter theories arising from M2-
branes probing Sasaki-Einstein singularities. In addition, it
should be possible to apply our results also to theories
arising from D2-branes [46] and wrapped D4-branes
[47,48] in massive IIA string theory as well as M5-branes
wrapped on three manifolds in M theory [49]. More
generally, the universality of the on-shell action result in
Eq. (11) and its implications for the partition function of the
dual SCFT underscores the “unreasonable effectiveness” of
our results and can be viewed as a four-derivative extension
of the ideas discussed in Ref. [50].
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