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Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by
sterile neutrino mixing have been carried out by the Daya Bay and MINOSþ collaborations. This Letter
presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor
experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on
the θμe mixing angle are derived that constitute the most constraining limits to date over five orders of

magnitude in the mass-squared splitting Δm2
41, excluding the 90% C.L. sterile-neutrino parameter space

allowed by the LSND and MiniBooNE observations at 90% CLs for Δm2
41 < 13 eV2. Furthermore, the

LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CLs for Δm2
41 < 1.6 eV2.

DOI: 10.1103/PhysRevLett.125.071801

Neutrino oscillation has been confirmed by a wealth
of experimental data accumulated since its discovery over
two decades ago [1,2]. Neutrinos are created and absorbed
in so-called weak states consisting of a coherent super-
position of mass eigenstates that evolves in time, thus, the
weak states at production and at a later interaction do not
necessarily coincide.
Most of the measurements made so far with solar,

atmospheric, reactor, and accelerator neutrinos [3–15] can
be fully explained with three neutrino states that mix as
described by the Pontecorvo-Maki-Nakagawa-Sakata for-
malism [16–18]. There are, however, some experimental
observations that cannot be accommodated in the three-
neutrino mixing model, such as the excess of electronlike
events in a muon (anti)neutrino beam observed over short
baselines by the Liquid Scintillator Neutrino Detector
(LSND) [19] and MiniBooNE [20,21] experiments. These
observations may be explained by mixing with at least
one additional fourth neutrino state with Δm2

41 ≫ jΔm2
32j,

where the Δm2
ji ¼ m2

j −m2
i represent neutrino mass-

squared differences, and mi is the mass of the ith mass
eigenstate. The addition of such states, a natural occurrence
in many extensions of the standard model of particle physics
that incorporate neutrino masses [22], results in new
neutrino states that are commonly deemed to be sterile in
accordance with the tight constraints from precision electro-
weak measurements [23,24] on the number of neutrinos that
couple to the Z boson. The far-reaching implications of
sterile neutrinos in particle physics and cosmology make
their possible existence one of the key questions in physics.
Sterile neutrinos could be detected in oscillation experi-

ments as a deviation from the standard three-neutrino
oscillation behavior if they are a mixture of the fourth

and other mass eigenstates. In 2016, the Daya Bay and
MINOS experiments reported limits on active-to-sterile
oscillations obtained by combining the results of their
electron antineutrino and muon (anti)neutrino disappear-
ance measurements, respectively [25], with those from the
Bugey-3 experiment [26]. This Letter presents significantly
improved limits obtained by utilizing a data set with roughly
twice the exposure in the case of Daya Bay [27], and by
adding 5.80 × 1020 protons-on-target (POT) of MINOSþ
data, recorded with the medium-energy configuration of the
NuMI beam [28], to the fullMINOS data sample [29]. Some
key systematic uncertainties are reduced in the case of Daya
Bay, and a new two-detector fit technique is employed for
MINOS andMINOSþ. The resulting limits provide leading
constraints on possible mixing between active and sterile
neutrinos, and can be used to examine the sterile neutrino
interpretation of the appearance claims made by the LSND
andMiniBooNE experiments in away that is independent of
CP violation and mass-ordering effects.
The results of the combined analysis presented in this

Letter are interpreted within the framework of a 3þ 1
model, which includes one new mass eigenstate and one
sterile weak eigenstate in addition to the three known
mass eigenstates and active neutrino flavors. We para-
metrize the extended 4 × 4 unitary matrix U describing
mixing between weak and mass eigenstates following
Ref. [30], and the expressions for the elements of U that
are relevant to this Letter become

jUe3j2 ¼ cos2θ14sin2θ13;

jUe4j2 ¼ sin2θ14;

jUμ4j2 ¼ sin2θ24cos2θ14: ð1Þ

Under the assumption of neutrino-antineutrino invariance,
in the Δm2

41 ≫ jΔm2
31j approximation for Daya Bay and

Bugey-3 baselines, the survival probability of electron
antineutrinos with energy E after traveling a distance L
approximates to
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Pν̄e→ν̄e ≈ 1 − 4jUe4j2ð1 − jUe4jÞ2 sin2
�
Δm2

41L
4E

�

− 4jUe3j2ð1 − jUe3j2Þ sin2
�
Δm2

31L
4E

�
; ð2Þ

which yields the following sin2 2θ14-dependent expression:

Pν̄e→ν̄e ≈ 1 − sin2 2θ14 sin2
�
Δm2

41L
4E

�

− sin2 2θ13 sin2
�
Δm2

31L
4E

�
: ð3Þ

Long-baseline experiments like MINOS and MINOSþ
constrain sin2 θ24 by precisely measuring muon neutrino
and antineutrino disappearance, for which we can approxi-
mate the survival probability as

P
νμ
ð−Þ

→νe
ð−Þ ≈ 1 − sin2 2θ23 cos 2θ24 sin2

�
Δm2

31L
4E

�

− sin2 2θ24 sin2
�
Δm2

41L
4E

�
: ð4Þ

In addition, long-baseline experiments can also look for
deficits in the rate of neutral-current (NC) neutrino inter-
actions at the near and far detectors, approximately
described by

PNC ¼ 1−Pðνμ → νsÞ

≈1− cos4θ14cos2θ34sin22θ24sin2
�
Δm2

41L
4E

�

− sin2θ34sin22θ23sin2
�
Δm2

31L
4E

�

þ1

2
sinδ24 sinθ24 sin2θ34 sin2θ23 sin

�
Δm2

31L
2E

�
: ð5Þ

Besides sensitivity to both θ24 and Δm2
41, the NC channel

provides sensitivity to θ14, θ34, and δ24. (Anti)neutrino
muon to electron (anti)neutrino appearance driven by a
fourth mass state has been advanced as a possible explan-
ation of the LSND and MiniBooNE results. Over a short
baseline (SBL), this appearance probability is described by

PSBL

νμ
ð−Þ

→νe
ð−Þ ¼ 4jUe4j2jUμ4j2sin2

�
Δm2

41L
4E

�
; ð6Þ

where

4jUe4j2jUμ4j2 ¼ sin2 2θ14 sin2 θ24 ≡ sin2 2θμe: ð7Þ

Therefore, electron antineutrino disappearance constraints
from reactors on sin2 2θ14, combined with muon neutrino
and antineutrino disappearance constraints from long-
baseline experiments on sin2 θ24, can place strong con-
straints on the quadratically suppressed electron neutrino or

antineutrino appearance described by sin2 2θμe within the
framework of the 3þ 1 model [31]. While Eqs. (3) and (4)
show leading terms to illustrate the general behavior of the
oscillation probabilities, exact formulas of the full survival
probabilities are used in the analyses reported in this Letter.
The Daya Bay reactor antineutrino experiment consists

of eight identically designed antineutrino detectors (ADs)
placed in three underground experimental halls (EHs) at
different distances from three pairs of 2.9 GWth nuclear
reactors in the southeast of China. The two near halls, EH1
and EH2, house two ADs each and have flux-averaged
baselines on the order of 550 m. The far hall, EH3, houses
four ADs and has a flux-averaged baseline around 1600 m.
The overburdens of EH1, EH2, and EH3 are 250, 265, and
860 meters-water-equivalent, respectively. Electron anti-
neutrinos are detected via the inverse beta decay (IBD)
reaction, ν̄e þ p → eþ þ n, whose two products are visible
in the ADs. Further details about the Daya Bay experiment
can be found in Ref. [32].
Daya Bay’s unique configuration with multiple baselines

makes it well suited to search for sterile neutrino mixing.
A relative comparison of the rate and spectral shape of
reactor antineutrinos observed in the EHs at different
baselines provides most of the sensitivity to sterile neutrino
oscillations in the 10−3 eV2 ≲jΔm2

41j ≲ 0.3 eV2 region.
For jΔm2

41j≳ 0.3 eV2, the oscillations are too fast to be
resolved by the detectors, and the sensitivity arises pri-
marily from comparing the measured rate with the expect-
ation. The uncertainty in the expected reactor antineutrino
flux is conservatively set to 5% as motivated by recent
reevaluations in light of the so-called reactor antineutrino
anomaly [33,34].
A new search for light sterile neutrino mixing was

performed at Daya Bay with a data set acquired over
1230 days. This represents a factor of ∼2 increase in
exposure over the previous result [35]. The analysis of this
data set incorporates other improvements, such as a more
precise background assessment, the inclusion of a time-
dependent correction for spatial nonuniformity within
each AD, and a reduction in the relative detection efficiency
uncertainty to 0.2%, which is the dominant source of
systematic error. The IBD selection, background rejec-
tion, and assessment of systematic uncertainties for this
data set are described in detail in Ref. [27]. The normal mass
ordering is assumed for Δm2

31 and Δm2
41. The results

reported here are largely insensitive to this choice.
The same two complementary methods applied in

previous sterile neutrino searches at Daya Bay [35,36]
are used to set the exclusion limits in the ðΔm2

41; sin
2 2θ14Þ

parameter space. The first one is based on a purely relative
comparison between the near and the far data and relies
on the frequentist approach proposed by Feldman and
Cousins to determine the exclusion limits [37]. In this
approach, Δχ2 ¼ χ2point − χ2best fit distributions are generated
for each ðΔm2

41; sin
2 2θ14Þ point by fitting a large number of
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pseudoexperiments with statistical and systematic fluctua-
tions. For each pseudoexperiment, the fit relies on both the
rate and spectral shape information and involves a global
minimization with Δm2

41, sin
2 2θ14, and sin2 2θ13 as free

parameters. The resulting Δχ2 distribution for each point is
then compared with the corresponding Δχ2 value obtained
with the data to determine if that point is included in the
exclusion contour.
The second one uses the predicted antineutrino spectra to

simultaneously fit the observations in the three halls, and
uses the CLs statistical method [38,39] to set the limits. The
CLs method is a two-hypothesis test, used here to dis-
criminate between the three-neutrino (3ν) and four-neutrino
(4ν) scenarios where each combination of (Δm2

41, sin
2 2θ14)

is treated as a separate 4ν scenario. We define the test
statistic Δχ2 ¼ χ24ν − χ23ν, where χ

2
3ν is the minimum χ2 in a

fit to the 3ν hypothesis (with free θ13) and χ24ν is the
minimum χ2 in a fit to the 4ν hypothesis (with free θ13, and
Δm2

41 and θ14 set to the corresponding 4ν scenario under
consideration). The fits rely on both the rate and spectral
shape information. Other parameters, namely sin2 2θ12,
Δm2

21, and jΔm2
32j, are constrained using external data

[23]. We produce a Δχ23ν distribution by fitting simulated
pseudoexperiments with Δm2

41 ¼ sin2 2θ14 ¼ 0 and θ13
fixed to the best-fit value in the data. The same is done
to construct a Δχ24ν distribution for every point in the

(Δm2
41, sin

2 2θ14) parameter space. Since theΔχ23ν andΔχ24ν
distributions are normally distributed, we estimate their
mean and variance from Asimov data sets [40], greatly
reducing the amount of computation needed. For each point
in (Δm2

41, sin
2 2θ14) the observed Δχ2obs is compared to the

Δχ23ν and Δχ24ν distributions in order to obtain the corre-
sponding p-values. The CLs statistic is defined by

CLs ¼
1 − p4ν

1 − p3ν
; ð8Þ

where pH is the p-value for hypothesis H. The 90%
exclusion contour is obtained by requiring CLs ≤ 0.1.
As seen in Fig. 1, consistent results are obtained by the

two methods. It has been shown that the CLs approach can
yield more constraining exclusion contours than the
Feldman-Cousins approach with null data sets [40].
Moreover, a study using a very large number of simulated
experiments found that the purely relative near-far com-
parison method that is used to produce the Feldman-
Cousins contours had slightly lower sensitivity in the
Δm2

41 ≲ 2 × 10−3 eV2 region than the method where the
near and far observations are fit simultaneously. This study
also found that the two methods can react slightly differ-
ently to statistical fluctuations. Thus, the small differences
observed in Fig. 1 are well within expectation.
A CLs-based analysis is also applied to the published

data from the Bugey-3 experiment [26]. This reactor
experiment operated at shorter (< 100 m) baselines,
allowing it to provide valuable constraints on sterile
neutrino mixing from electron antineutrino disappearance
for higher values of Δm2

41 compared to Daya Bay. The
same methodology detailed in Ref. [25] was followed to
generate the exclusion contour for Bugey-3. The main
adjustments made with respect to the original Bugey-3
analysis were (i) the use of the Gaussian CLs method,
instead of the raster scan technique, (ii) the use of an
updated neutron lifetime in the IBD cross-section calcu-
lation, and (iii) the use of the Huber þMueller [41,42]
model, instead of the original ILLþ Vogel model [43,44],
to make the flux prediction at the different baselines. The
reproduced contour is very similar to the one published
originally by the Bugey-3 collaboration, shown in Fig. 1.
The MINOS and MINOSþ experiments used two detec-

tors placed on the NuMI beam axis, the near detector (ND),
located 1.04 km downstream from the production target at
Fermilab at a depth of 225 meters-water-equivalent, and the
far detector (FD), located 734 km further downstream, in the
Soudan Underground Laboratory inMinnesota at a depth of
2070meters-water-equivalent. The detectors were function-
ally identical magnetized, tracking, sampling calorimeters
composed of steel-scintillator planes read out bymultianode
photomultiplier tubes [45]. The NuMI neutrino beam is
produced by impinging 120 GeV protons accelerated by the
Main Injector complex at Fermilab onto a graphite target.
The emerging secondary beam of mostly π andK mesons is
focused by twoparabolic electromagnetic horns and allowed
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FIG. 1. The Feldman-Cousins (FC) exclusion region at
90% C.L. from the analysis of 1230 days of Daya Bay data is
shown as the solid blue line. The 90% C.L. median sensitivity is
shown as the dashed red line, along with 1σ and 2σ bands. The
excluded region for the original Bugey-3 limit with the raster scan
technique is shown in green, while the resulting CLs contour
from Daya Bay and its combination with the reproduced Bugey-3
results with adjusted fluxes are shown in grey and black,
respectively. The regions to the right of the curves are excluded
at the 90% CLs or 90% C.L.
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to decay in a 675 m long helium-filled pipe, resulting in a
neutrino beam composed predominantly of νμ, with a 1.3%
contamination of νe [46]. The detectors accumulated a
10.56 × 1020 POT beam exposure during the MINOS
neutrino runs, with the observed neutrino energy spectrum
peaked at 3 GeV. In the MINOSþ phase, the detectors
sampled a higher-intensity NuMI beam, upgraded as part of
the NOvA experiment [47], with the neutrino energy
spectrum peaked at 7 GeV. The higher-energy neutrino
beam, although less favorable for three-flavor oscillation
measurements (for MINOS’ baseline and three-neutrino
standard oscillations, the muon neutrino disappearance
maximum occurs at Eν ≈ 1.6 GeV), provides greater sensi-
tivity to sterile-induced muon neutrino disappearance by
increasing the statistics in regions of L=Eν where oscilla-
tions driven by large mass-squared splittings would occur.
A new search for sterile neutrino mixing using an additional
exposure of 5.80 × 1020 POT of MINOSþ data has been
recently published [29]. Unlike the previous MINOS analy-
sis based on the ratio between the measured neutrino energy
spectra in the two detectors (far-over-near ratio) [48–51],
limited by the statistical error of the lower-statistics FD
sample, the new analysis employs a two-detector fit method,
simultaneously fitting the reconstructed neutrino energy
spectra in both detectors [52]. The new technique exploits
the full power of the large ND statistics for L=Eν regions
probed by the ND baseline.
The analysis employs both the charged-current (CC) νμ

and the NC data samples from MINOS and MINOSþ.
The CC νμ disappearance channel has sensitivity to θ24 and
Δm2

41, in addition to the three-flavor oscillation parameters
Δm2

32 and θ23. The NC sample has sensitivity to θ34, θ24,
and Δm2

41, albeit with a worse energy resolution (due to
the missing energy carried by the outgoing final-state
neutrino) than in the CC case, as well as lower statistics
due to the lower NC interaction cross section. As detailed in
Refs. [29,52], the analysis is approximately independent of
the angle θ14 and the phases δ13, δ14, and δ24, so these
parameters are all set to zero in the fit. The MINOS and
MINOSþ combined search for sterile neutrinos places the
most constraining limit to date on the mixing parameter
sin2 θ24 for most values of the sterile neutrino mass-
splitting Δm2

41 > 10−4 eV2.
Following the same approach used in the first joint

analysis by MINOS and Daya Bay [25], the CLs contours
for the new two-detector fit of MINOS and MINOSþ data
are obtained using a similar prescription to the one used by
Daya Bay, but where the test statistics Δχ23ν and Δχ24ν are
approximated by MC simulations of pseudoexperiments
without assuming they have Gaussian distributions. The
consistency with the published Feldman-Cousins corrected
limits is displayed in Fig. 2. The newMINOS andMINOSþ
limits are combined with the Daya Bay and Bugey-3 limits
described above to obtain a new improved limit on anoma-
lous νμ to νe oscillations, as discussed below.

The disappearance measurements from the three experi-
ments are combined using the same methodology as in
Ref. [25]. For each fixed value of Δm2

41, the Δχ2obs value
and the Δχ23ν and Δχ24ν distributions for each (sin2 2θ14,
Δm2

41) point from the Daya Bay and Bugey-3 combination
are paired with those for each (sin2 θ24, Δm2

41) point
from the MINOS and MINOSþ experiments, resulting
in specific (sin2 2θμe, Δm2

41) combinations according to
Eq. (7). Since systematic uncertainties of accelerator
and reactor experiments are largely uncorrelated, the
combined values of Δχ2obs are obtained by simply summing
the corresponding values from the reactor and accelerator
experiments. Similarly, the combined Δχ23ν and Δχ24ν
distributions are calculated by random sampling the dis-
tributions from each experiment and summing. Since
several different combinations of (sin2 2θ14, sin2 θ24) can
yield the same sin2 2θμe, the combination with the largest
CLs value is selected to be used in the final result. The CLs
surfaces for Daya Bay and Bugey-3, MINOS and
MINOSþ, and their combination, are available in the
Supplemental Material [54].
The new combined 90% and 99% CLs limits from

searches for sterile neutrino mixing in MINOS, MINOSþ,
Daya Bay, and Bugey-3 in the 3þ 1 neutrino model are
shown in Figs. 3 and 4, respectively. Constraints on the
sin2 2θμe electron (anti)neutrino appearance parameter are
provided over 7 orders of magnitude in the mass-squared
splitting Δm2

41. These limits are the world’s most con-
straining over 5 orders of magnitude, for Δm2

41 ≲ 10 eV2.
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FIG. 2. Comparison of the MINOS and MINOSþ 90% C.L.
exclusion contour using the Feldman-Cousins method [53] and
the CLs method. The regions to the right of the curves are
excluded at the 90% C.L. (CLs). The 90% C.L. median sensitivity
is shown in red along with the 1σ and 2σ bands.
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The new constraints exclude the entire 90% C.L. allowed
regions from LSND and MiniBooNE for Δm2

41 < 13 eV2,
with regions at higher values being excluded by NOMAD
[56]. Further, the 99%C.L. allowed regions fromLSND and
MiniBooNE are excluded forΔm2

41 < 1.6 eV2. The allowed
region from a global fit to data from sterile neutrino probes,
intentionally excluding MINOS, MINOSþ, Daya Bay, and
Bugey-3 contributions, computed by the authors of
Refs. [57,58], is fully excluded at the 99%C.L. The allowed
region resulting from a fit to all appearance data, updated by
the authors of Ref. [59] to include the MiniBooNE 2018
results [21], is equally strongly excluded. Thus, the new
limits presented here significantly increase the tension
between pure sterile neutrino mixing explanations of
appearance-based indications and the null results from
disappearance searches. The sole consideration of additional
sterile neutrino states cannot resolve this tension, which
stems from the nonobservation of ν̄e and νμ

ð−Þ
disappearance

beyond what is expected from the three-neutrino mixing
model. This inconsistency may be further quantified in
additional detector exposures in the process of being
analyzed, specifically the last year of MINOSþ data taking,
representing an additional sample of similar size to the

one used here, as well as over two more years of Daya
Bay data.
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