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We study the maximally-helicity-violating six-gluon scattering amplitude in planar N ¼ 4 super-Yang-
Mills theory at finite coupling when all three cross ratios are small. It exhibits a double logarithmic scaling in
the cross ratios, controlled by a handful of “anomalous dimensions” that are functions of the coupling
constant alone. Inspired by known seven-loop results at weak coupling and the integrability-based pentagon
operator product expansion, we present conjectures for the all-order resummation of these anomalous
dimensions. At strong coupling, our predictions agree perfectly with the string theory analysis. Intriguingly,
the simplest of these anomalous dimensions coincides with one describing the lightlike limit of the octagon,
namely, the four-point function of large-charge Bogomol'nyi–Prasad–Sommerfield (BPS) operators.
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Introduction.—The scattering of massless gluons in
maximally supersymmetric gauge theory, N ¼ 4 super-
Yang-Mills theory (SYM), exhibits remarkable simplifica-
tions in the planar limit of a large number of colors.
Scattering amplitudes for n gluons become dual to null
polygonal Wilson loops [1–5] and consequently they
depend essentially only on 3n − 15 dual conformal cross
ratios [6,7], out of the 3n − 10 Mandelstam invariants.
Powerful bootstrap techniques [8–12] allow the construc-
tion of the six-gluon maximally-helicity-violating (MHV)
amplitude through seven loops, and the next-to-MHV
amplitude through six loops [13]. Seven-point amplitudes
have also been bootstrapped through four loops [14–16] at
the level of the symbol [17].
For generic values of the cross ratios, the perturbative

results can be expressed in terms of generalized polylogar-
ithms to all orders, but resumming the results into a
finite-coupling expression remains challenging. In the
near-collinear limit, a finite-coupling description is avail-
able, based on integrability and the pentagon operator
product expansion (OPE) [18–25].
In this Letter we will provide a (conjectural) finite-

coupling description for another kinematical limit of the
six-gluon MHV amplitude, where all three cross ratios
become small. The “origin” is reached, roughly speaking,
by taking three adjacent pairs of gluon momenta to be

parallel (collinear) simultaneously. However, it is a Euclidean
limit, which cannot be achieved for real Minkowski
momenta. Our description of the amplitude at the origin is
based on resumming the OPE for a gas of gluonic flux-tube
excitations. It involves a “tilted” version of the Beisert-Eden-
Staudacher (BES) kernel entering the finite-coupling formula
for the cusp anomalous dimension [26]. Different tilt angles
generate different anomalous dimensions controlling loga-
rithmically enhanced terms in the amplitude. Intriguingly,
one of the anomalous dimensions also appears in the lightlike
limit of the octagon [27–32], a correlation function of four
operators with large R charge. We also predict the non-
logarithmic term, as well as the coefficient ρ controlling a
“cosmic” amplitude normalization [33]. Our key results are
Eqs. (17)–(20) for the anomalous dimensions and constant
terms, and Eq. (29) for N ¼ ρ.
More precisely, we consider the MHVamplitude normal-

ized by the BDS-like ansatz [11,12,34,35], which remains
finite as the dimensional regulator ϵ ¼ 2 − 1

2
D → 0,

EðuiÞ ¼ lim
ϵ→0

A6ðsij; ϵÞ
ABDS�like

6 ðsij; ϵÞ
¼ exp

�
R6 þ

1

4
ΓcuspEð1Þ

�
:

ð1Þ

The notation and normalization (for now) follow Ref. [12],
where Γcusp is the cusp anomalous dimension, R6 is the
remainder function, and Eð1Þ ¼ P

3
i¼1 Li2ð1 − 1=uiÞ is the

one-loop amplitude with Li2 the dilogarithm. The normal-
ized amplitude is a function of three cross ratios,

u1 ¼
s12s45
s123s345

; u2 ¼
s23s56
s234s123

; u3 ¼
s34s61
s345s234

; ð2Þ
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constructed from the Mandelstam invariants si…j ¼
ðpi þ � � � þ pjÞ2.
The logarithm of the amplitude E, or, equivalently, the

remainder function R6, exhibits logarithmic scaling when
all cross ratios → 0,

ln E ¼ −
Γoct

24
ln2ðu1u2u3Þ −

Γhex

24

X3
i¼1

ln2
�

ui
uiþ1

�

þ C0 þOðuiÞ; ð3Þ
with u4 ≡ u1 and where Γoct, Γhex, and C0 are functions of
the coupling constant g2 ¼ λ=ð4πÞ2 of the planar theory.
The simpler ln2 u behavior on the diagonal u1 ¼ u2 ¼
u3 ¼ u, where Γhex drops out, was conjectured [35] to
hold at any coupling for a function h ¼ − 3

8
ðΓoct − ΓcuspÞ

appearing inR6, based on two-loop results in gauge theory
and strong coupling behavior in string theory. The more
general behavior (3) for unequal ui was observed through
seven loops [13], up to power corrections in the ui. Its
structure is reminiscent of Sudakov double logarithms.
The subleading power corrections to Eq. (3) do not

exponentiate simply; in ln E at L loops at finite u1 there are
terms with up to L powers of fln u2; ln u3g. From this
observation, based on results in Ref. [13], we expect the
simplest finite-coupling resummation, apart from OPE
limits, to be when all three cross ratios are small.
Weak coupling evidence.—The first evidence for Eq. (3)

comes from weak coupling. The hexagon function boot-
strap enables the analytic determination of R6 through
seven loops [8,9,12,13,36], throughout the entire kinemati-
cal space. At the origin, the remainder function admits a
simple representation, through at least seven loops [13],

R6 ¼ c1P1 þ c2P2 þ c0 þOðuiÞ; ð4Þ
in terms of the two symmetric quadratic polynomials in
ln ui,

P1 ¼ P2 þ
X3
i¼1

ln2ui; P2 ¼
X3
i¼1

ln ui ln uiþ1: ð5Þ

There is no term linear in ln ui. Close to the origin,
Eð1Þ ¼ − 1

2

P
i ln

2ui − 3ζ2, and using Eq. (1), one finds

Γoct¼Γcusp−16c1−8c2; Γhex¼Γcusp−4c1þ4c2; ð6Þ

and C0 ¼ c0 − 3
4
ζ2Γcusp. Perturbative results in Sec. 4.2 of

Ref. [13] yield the numbers in Table I for the expansion in
g2, truncated here to 5 loops due to space limitations, where
ζn ¼ ζðnÞ is the Riemann zeta function. Note that Γoct has
an expansion in powers of π2 only (through 7 loops
at least). Furthermore, it agrees with the exact [31]
anomalous dimension controlling the lightlike limit of
the octagon [27–30],

Γoct ¼
2

π2
ln cosh ð2πgÞ: ð7Þ

The other quantities are more complicated. Their pertur-
bative expansions contain products of odd Riemann zeta
values, much like the cusp anomalous dimension, which is
recalled in the table.
Pentagon OPE.—Insight at higher loops is provided

by the pentagon OPE [19]. It generates a systematic
expansion of the amplitude around the collinear limit,
u2 → 0, u1 þ u3 → 1, see Fig. 1, based on (flux tube)
excitations of the dual two-dimensional string theory of
‘t Hooft surfaces that emerges in the large Nc, planar limit.
The collinear limit is τ → ∞ at fixed σ and φ with the
parametrization

u2 ¼
1

e2τ þ 1
; u1 ¼ e2τþ2σu2u3;

u3 ¼
1

1þ e2σ þ 2eσ−τ coshφþ e−2τ
: ð8Þ

TABLE I. Coefficients of expansions in g2 of the main coefficients through L ¼ 5 loops.

L ¼ 1 L ¼ 2 L ¼ 3 L ¼ 4 L ¼ 5

Γoct 4 −16ζ2 256ζ4 −3264ζ6 126976
3

ζ8
Γcusp 4 −8ζ2 88ζ4 −876ζ6 − 32ζ23

28384
3

ζ8 þ 128ζ2ζ
2
3 þ 640ζ3ζ5

Γhex 4 −4ζ2 34ζ4 − 603
2
ζ6 − 24ζ23

18287
6

ζ8 þ 48ζ2ζ
2
3 þ 480ζ3ζ5

C0 −3ζ2 77
4
ζ4 − 4463

24
ζ6 þ 2ζ23

67645
32

ζ8 þ 6ζ2ζ
2
3 − 40ζ3ζ5 − 4184281

160
ζ10 − 65ζ4ζ

2
3 − 120ζ2ζ3ζ5 þ 228ζ25 þ 420ζ3ζ7

FIG. 1. Six-gluon kinematics. The collinear OPE is an ex-
pansion around one edge of the triangle, e.g., around u2 ¼ 0 and
u1 þ u3 ¼ 1. The latter condition must be relaxed to get to the
origin, as discussed below Eq. (8).
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Because τ is conjugate to the energy, or twist, of flux-tube
excitations, the collinear limit is controlled by the lowest-
twist excitations that can propagate from one side of the
hexagon to the other. These include gluonic, fermionic,
and scalar excitations. Higher-twist contributions are sup-
pressed by additional powers of e−τ.
We can move from the collinear limit toward the origin by

first considering the limit where φ, τ are taken to be large,
keeping their difference finite [22,37]. In this double-scaling
limit, u2 → 0, but u1 and u3 are generic. The hyperbolic
angle φ is conjugate to the helicity of the particles exchanged
in the OPE channel. As φ → ∞, the OPE is dominated by
gluonic excitations, which have the highest helicity for a
given twist. They form a family labeled by an integer
a ¼ 1; 2;…, and each carries a rapidity u for its energy
EaðuÞ and momentum paðuÞ (conjugate to σ).
The OPE is naturally expressed in terms of the framed

Wilson-loop expectation value W6 [18], which is related
to E by

W6 ¼ E exp
�
1

2
Γcuspðσ2 þ τ2 þ ζ2Þ

�
: ð9Þ

In the double-scaling limit, where only gluonic excitations
contribute, W6 takes the form

W6¼
X∞
N¼0

1

N!

X
a

eφ
P

N
k¼1

ak

Z
du

ð2πÞN
e−τEþiσP

Q
kμkQ

k<lPklPlk
; ð10Þ

where a ¼ ða1;…; aNÞ are positive integers and du ¼
du1…duN with uk ∈ R. The total energy and momentum
of the N-gluon flux-tube state are E ¼ P

k EakðukÞ and
P ¼ P

k pakðukÞ. The integrand is built out of the pentagon
transitions Pkl ¼ PakjalðukjulÞ and measures μk ¼ μakðukÞ,
which have been conjectured to all orders in the coupling
constant [22]. This concludes our review of the double-
scaling limit.
To get to the origin from the double-scaling limit, we

must then take φ − τ → ∞. While this limit lies outside of
the radius of convergence of the OPE series (10), we may
nevertheless reach it by analytically continuing in the
helicity a, and replacing the sum by a contour integral
with the help of the Sommerfeld-Watson transform,

X
a≥1

ð−1ÞafðaÞ →
Z

ϵþi∞

ϵ−i∞

ifðaÞda
2 sin ðπaÞ ; ð11Þ

with ϵ ∈ ð0; 1Þ [38]. Next we deform the contour of the a
integral to the left, picking up residues from poles with

ReðaÞ ≤ 0. Because of the factor eφ
P

N
k¼1

ak in Eq. (10),
poles with ReðaÞ < 0 are suppressed by powers of the ui
near the origin at weak coupling. That is, computing the
a ¼ 0 residue alone suffices to obtain the logarithmic and
constant terms at the origin.

Take for illustration the one-loop N ¼ 1 result [18,39],

μaðuÞ ¼ ð−1Þa g
2Γða

2
þ iuÞΓða

2
− iuÞ

ða2
4
þ u2ÞΓðaÞ þOðg4Þ; ð12Þ

with Ea¼aþOðg2Þ and pa ¼ 2uþOðg2Þ. This integrand
vanishes at a ¼ 0. Nonetheless, the u integral diverges as
1=a2 due to pinch singularities at u ¼ �ia=2. Accordingly,
the dominant contribution is obtained by considering the
residue around either one of these singularities, say the one
at u ¼ ia=2. Doing the u integral around ia=2 and then the
a integral around 0, we get

i
I

dadu
ð2πÞ2 e

aφ−aτþ2iuσ Γð1 − aÞΓða
2
þ iuÞΓða

2
− iuÞ

a2
4
þ u2

¼ σ2 − ðφ − τÞ2 − ζ2 ¼ − ln u1 ln u3 − ζ2; ð13Þ

in agreement with the one-loop result Eð1Þ þ 2ðσ2 þ τ2 þ
ζ2Þ close to the origin, ui → 0, where we have

u1 ∼ eτ−φþσ; u2 ∼ e−2τ; u3 ∼ eτ−φ−σ: ð14Þ
The above analysis remains unchanged as we increase the
loop order or particle number: The amplitude at the origin
may be obtained to all loops as the contour integral of the
OPE integrand first around uk ¼ iak=2, and then around
ak ¼ 0, for k ¼ 1;…; N. Since N-particle states are sup-
pressed as g2N

2

, by restricting to N ≤ 2 and applying the
techniques of [37,40,41] we indeed reproduce all existing
data, and obtain new predictions at 8 loops.
At finite coupling, the pole at u ¼ ia=2 is replaced by a

square-root branch cut between�2gþ ia=2, and the recipe
is to integrate u closely around this cut. Equivalently, we
may bring the contour through the cut to the so-called
Goldstone sheet [22,42], where the flux-tube ingredients
greatly simplify.
In particular, all Γ functions in the integrand (10)

disappear when passing to the Goldstone sheet, which in
turn allows us to reexpress W6 as a simpler, infinite-
dimensional integral. Strikingly, this integral is secretly
Gaussian in the vicinity of the origin (but not away from it).
As a result, it is entirely characterized by a small number
of moments, for which we were able to obtain conjectures
that matched the structure through four loops. The details
of this technical analysis are relegated to Sec. A of the
Supplemental Material [43]. After some elementary alge-
bra, we can recast our conjectures for the moments as very
concise expressions for the anomalous dimensions and
constants appearing at the origin, to be described next.
They feature the celebrated BES kernel [26] which enters
the all-loop formula for the cusp anomalous dimension and
is ubiquitous in the flux-tube dynamics.
Tilted BES kernel.—The BES kernel can be described

[20,26,44,45], after an expansion in terms of Bessel
functions, as a semi-infinite matrix,
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Kij ¼ 2jð−1Þijþj

Z
∞

0

dt
t

Jið2gtÞJjð2gtÞ
et − 1

; ð15Þ

where JiðzÞ is the ith Bessel function of the first kind. We
can spell out our finite-coupling conjectures for the origin
in terms of this matrix. To this end, let us partition K into
four blocks according to whether i and j in Eq. (15) are odd
or even. After reshuffling lines and columns, we write

K ¼
�
K∘∘ K∘•
K•∘ K••

�
; ð16Þ

with K∘∘ the odd-odd block, built out of overlaps of odd
Bessel functions (J2i−1), K∘• the odd-even one, and so on.
The tilted kernel is defined by

KðαÞ ¼ 2 cos α

�
cos α K∘∘ sin α K∘•
sin α K•∘ cos α K••

�
: ð17Þ

It reduces to the BES kernel (16) when α ¼ π=4, that is
K ¼ Kðπ=4Þ. Our conjectures are that the coefficients in
Eq. (3) are given by

Γα ¼ 4g2
�

1

1þ KðαÞ
�
11

ð18Þ

with α ¼ 0, π=4 and π=3 for Γoct, Γcusp, and Γhex,
respectively, where the “11” subscript denotes the top left
component of the semi-infinite matrix.
The constant C0 is more complicated as it arises from

determinants of quadratic forms appearing in the secretly
Gaussian integral. Using formulas for the determinants of
block matrices, we get

C0 ¼ −
ζ2
2
Γcusp þDðπ=4Þ −Dðπ=3Þ − 1

2
Dð0Þ; ð19Þ

where

DðαÞ≡ ln det½1þ KðαÞ� ¼ tr ln ½1þ KðαÞ�: ð20Þ
These formulae can be verified easily at weak

coupling, since the matrix elements Kij ¼ OðgiþjÞ. (See,
e.g., Appendix A.2 in Ref. [22] for explicit expressions.)
The inversion in Eq. (18) is done by expanding the
geometric series in KðαÞ. Through four loops we get

Γα

4g2
¼ 1 − 4c2ζ2g2 þ 8c2ð3þ 5c2Þζ4g4

− 8c2½ð25þ 42c2 þ 35c4Þζ6 þ 4s2ζ23�g6 þ � � � ;
ð21Þ

DðαÞ ¼ 4c2ζ2g2 − 4c2ð3þ 5c2Þζ4g4

þ 8

3
c2½ð30þ 63c2 þ 35c4Þζ6 þ 12s2ζ23�g6 þ � � � ;

ð22Þ

where c ¼ cos α, s ¼ sin α, and we verify agreement with
the numbers in Table I using Eq. (19). Higher loops are
easily generated. We provide results through 25 loops in
an ancillary file. From the growth rate of their perturbative
coefficients, all these quantities appear to have the same
radius of convergence, g2c ¼ 1=16, as Γcusp [26].
The point α ¼ 0 corresponds to the octagon [27–30].

Here the off-diagonal blocks of the BES kernel drop out,

Kðα ¼ 0Þ ¼
�
2K∘∘ 0

0 2K••

�
; ð23Þ

and with them all zeta values with odd arguments, leaving
only powers of π2. Nicely, in Eq. (18) these can be
resummed exactly [31] into Eq. (7) for Γoct, and similarly
for the associated determinant,

Dð0Þ ¼ 1

4
ln
�
sinh ð4πgÞ

4πg

�
; ð24Þ

which also appears in the lightlike octagon [31].
In section B of the Supplemental Material [43], we

analyze the strong-coupling behavior, and provide four
terms in the expansion of Γα and two terms for DðαÞ. Here
we quote the leading-order expressions,

Γα ≈
8αg

π sin ð2αÞ ; DðαÞ ≈ 4πg

�
1

4
−
α2

π2

�
: ð25Þ

In Fig. 2, our weak- and strong-coupling expansions are
compared with finite-coupling numerics. The agreement is
excellent.
We can also validate our formulas at strong coupling

through comparison with string theory, as described in
more detail in the Supplemental Material [43], Sec. C.
On the diagonal u ¼ u1 ¼ u2 ¼ u3, the string-theoretic
analysis yields [35,46]

½ln Eðu; u; uÞ�=Γcusp ¼ −
3

4π
ln2u −

π2

12
−
π

6
þ π

72
; ð26Þ

at small u, up to power corrections. With the help of
Eq. (25), we can perfectly reproduce the above result,
including the sphere contribution [46] of þπ=72. Off the
diagonal the behavior is richer at strong coupling.
Nonetheless, following Ref. [47] we can also confirm the
leading strong coupling behavior of Γhex ¼ Γπ=3 in Eq. (25).
Cosmic normalization.—At last, let us remark about the

normalization of the amplitude. The subtraction of diver-
gences in the amplitude leaves a freedom in defining the
finite part. Depending on the situation, it might prove
convenient to subtract more than just the BDS-like ampli-
tude. For example, in the collinear limit it is natural to work
with the non-cyclic-invariant object W6. Another instance
is provided by the so-called cosmic normalization for E
introduced in the hexagon function bootstrap,
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Ecosmic ¼ E=ρ; ð27Þ
with ρ ¼ ρðg2Þ a function of the coupling constant. This
function was determined iteratively in Refs. [13,33] by
demanding that the spaces of functions in which the
perturbative amplitudes live obey a coaction principle
associated to a cosmic Galois group [48–50]. The imple-
mentation of this requirement fixes ρ order by order in
perturbation theory,

ln ρ ¼ 8ζ23g
6 − 160ζ3ζ5g8

þ 16ð−2ζ4ζ23 þ 57ζ25 þ 105ζ3ζ7Þg10 þ � � � ; ð28Þ

and two more loops can be found in Ref. [13]. Strictly
speaking, ln ρ is fixed up to addition of pure even zeta
values, which are trivial under the coaction, and in Eq. (28)
all pure even zeta values ζð2LÞ have been set to zero.
In the process of evaluating the infinite-dimensional

integral in the Supplemental Material [43], Sec. A, a
particular normalization factor emerges,

N ¼ det½1þK�e−ð1=2Þζ2Γcusp ; ð29Þ

Remarkably, the perturbative expansion of N bears a
striking resemblance to ρ. To be precise, one has through
at least seven loops

ln ρ − lnN ¼ pure even zeta values: ð30Þ

It is tempting to believe that Eq. (30) holds true to all
orders in perturbation theory. It strongly suggests that the
most natural normalization for the amplitude is simply
to set ρ ¼ N . This ρ value shifts C0 in Eq. (19) to
C0 ¼ −Dðπ=3Þ − 1

2
Dð0Þ, removing all α ¼ π=4 contribu-

tions from ln Ecosmic.

Conclusion and outlook.—We reported exact expres-
sions for the anomalous dimensions and constant control-
ling the six-gluon MHV amplitude at the origin of the
kinematical space. Our proposals rely on study of the weak
coupling series on the field theory side and an extrapolation
based on the pentagon OPE formulas. We evaluated our
exact expressions to high orders in perturbation theory,
numerically at finite coupling, as well as a few orders at
strong coupling. The leading strong-coupling behavior was
verified to agree with the string theory minimal surface
analysis, plus a constant from the sphere determinant.
The main implication of our analysis is that the hexagon

amplitude can be determined exactly at the origin, using
the same ingredients needed for the cusp anomalous
dimension, but tilted by an angle α. For now, the physical
significance of α is unclear. Perhaps similar simplifications
and extrapolations will be found for higher polygonal
Wilson loops, utilizing other values of α. For example,
one can define an “origin” of the heptagon by sending six
of seven cross ratios to zero; the seventh is not independent
and must go to unity. This limit is currently under
investigation. Weak-coupling expansions generally feature
coefficients of zeta values that are rational numbers. This
consideration and Eq. (18) implies that sin2 α ∈ Q. Our
work also raises the hope of understanding the behavior at
the origin for non-MHV amplitudes, and as one moves
away from the origin for both MHV and non-MHV
amplitudes, although in both cases it will not be as
simple as the quadratic logarithmic behavior explored here.
One could also study lightlike Wilson hexagons in other
theories, to see whether the integrability of planar N ¼ 4
SYM is critical to this behavior.
We also observed an intriguing connection with the

anomalous dimension which controls the lightlike limit
of the correlator of four half-BPS operators dubbed the
octagon [27,28,31]. It is reminiscent of the general corre-
spondence between lightlike correlators and null polygonal
Wilson loops [51]. It is not quite the same, however, since
the Wilson loop studied here carries no R charge, while the
octagon is full of it. It might be hinting at a connection
between integrable descriptions based on the polygonali-
zation of correlators [52–54] and amplitudes [19].
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FIG. 2. Plot of Γα=2g as a function of g and comparison with
weak and strong coupling expansions, Eqs. (21) and (30) from the
Supplemental Material [43], respectively.
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