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40NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

41University of Notre Dame, Notre Dame, Indiana 46556, USA
42Ohio State University, Columbus, Ohio 43210, USA
43aINFN Sezione di Padova, I-35131 Padova, Italy

43bDipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
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64IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

65aInstitute of Particle Physics, Victoria, British Columbia V8W 3P6, Canada
65bUniversity of Victoria, Victoria, British Columbia V8W 3P6, Canada

66Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
67University of Wisconsin, Madison, Wisconsin 53706, USA

(Received 29 November 2019; revised manuscript received 22 January 2020; accepted 20 March 2020; published 16 April 2020)

A study of the two-body decays B� → Xcc̄K�, where Xcc̄ refers to one charmonium state, is reported by
the BABAR Collaboration using a data sample of 424 fb−1. The absolute determination of branching
fractions for these decays are significantly improved compared to previous BABAR measurements.
Evidence is found for the decay Bþ → Xð3872ÞKþ at the 3σ level. The absolute branching fraction
B½Bþ → Xð3872ÞKþ� ¼ ½2.1� 0.6ðstatÞ � 0.3ðsystÞ� × 10−4 is measured for the first time. It follows that
B½Xð3872Þ → J=ψπþπ−� ¼ ð4.1� 1.3Þ%, supporting the hypothesis of a molecular component for this
resonance.

DOI: 10.1103/PhysRevLett.124.152001

In two-body B decays B → XK, the X particle is
predominantly a cc̄ system with large available phase
space. Many charmonium states are thus produced, with
approximately equal rates when no strong selection rules
apply [1]. They have mostly been observed using an
exclusive reconstruction of the charmonium state Xcc̄
[ηc, J=ψ , χc1, χc2, ηcð2SÞ, ψ 0], with possibly the associated
observation of the decay B� → Xcc̄K� [2,3]. The exotic
charmonium state Xð3872Þ, also known as χc1ð3872Þ, has
also been reconstructed in this way [4,5].
The determination of the absolute branching fraction

B½Bþ → Xð3872ÞKþ� leads to the absolute B½Xð3872Þ →
J=ψπþπ−�, bringing useful information regarding the
complex nature of the Xð3872Þ. The original tetraquark
model [6] predicts this branching fraction to be about 50%.
A more refined tetraquark model [7] can accommodate a
much smaller branching fraction, but requires another
particle, Xð3876Þ, not yet observed. Various molecular
models [8–10] predict this branching fraction to be ≲10%:
Using the Xð3872Þ total width determination based on its
line shape, or an upper limit on this quantity, information is
provided on the partial width Γ½Xð3872Þ → J=ψπþπ−], for
which a wide range of predictions exist, from 1.3 MeV in
the case of a pure charmonium state [11] to about 100 keV
for molecular models [8].
In this Letter, we adopt a technique, pioneered by BABAR

[12] and reused by Belle [13], based on the measurement in
the B rest frame of the kaon momentum spectrum, where
each two-body decay is identified by its monochromatic
kaon. Taking advantage of the ϒð4SÞ decay to a BB̄ meson

pair, the B center-of-mass (c.m.) frame is determined event
by event by fully reconstructing the other B meson. The
branching fractions for the two-body decays B� → Xcc̄K�
can thus be measured independently of any a priori knowl-
edge of the Xcc̄ decay properties.
We use a data sample with an integrated luminosity of

424 fb−1 [14], collected with the BABAR detector at the
PEP-II storage ring, at a c.m. energy corresponding to the
ϒð4SÞ mass. Charged tracks are reconstructed with a five-
layer silicon vertex tracker (SVT) and a 40-layer drift
chamber (DCH), located in a 1.5 T magnetic field gen-
erated by a superconducting solenoidal magnet. The
energies of photons and electrons are measured with a
CsI(Tl) electromagnetic calorimeter. Charged hadron iden-
tification is performed using ionization measurements in
the SVT and DCH and using a ring-imaging Čerenkov
detector. The instrumented flux return of the solenoid is
used to identify muons. A detailed description of the
BABAR detector can be found in Refs. [15,16].
The analysis method is similar to that presented in

Ref. [12]. The complete reconstruction of one of the two
B mesons provides access to the rest frame of the other B
meson. For signal events, two-body B� decays to K�X, the
kaon momentum in the B c.m. frame pk exhibits a peak for
each X particle, with mass mX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
B þm2

K − 2EKmB

p

,
where mB and mK are the masses of the B and K mesons
and EK is the kaon energy in the B rest frame. The pk
spectrum contains, besides a series of signal peaks, a
background due to kaons from non-two-body decays or
from decays of charmed mesons. We determine the
observed number of each charmonium resonance Xcc̄ from
a fit to the kaon momentum distribution.
Event selection requires the reconstruction of a tagging

B� meson (B tag) from B → SY decays, where the seed S is

a fully reconstructed Dð�Þ0, Dð�Þ�, Dð�Þ�
s , or J=ψ meson,

and Y represents a combination of π�, K�, π0, and K0
S

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 124, 152001 (2020)

152001-3

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.152001&domain=pdf&date_stamp=2020-04-16
https://doi.org/10.1103/PhysRevLett.124.152001
https://doi.org/10.1103/PhysRevLett.124.152001
https://doi.org/10.1103/PhysRevLett.124.152001
https://doi.org/10.1103/PhysRevLett.124.152001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


hadrons [17]. For each mode, a purity [defined as
S=ðSþ BÞ, where S is the number of signal events and
B is the number of background events] larger than 0.08 is
required. The number of B candidates is determined with a
fit, shown in Fig. 1, to the distribution of the B-energy-
substituted mass, mES ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
c:m:=4 − p2

B

p

. Here, Ec:m: is the
total c.m. energy, determined from the beam parameters,
and pB is the measured momentum of the reconstructed B
in the ϒð4SÞ rest frame. The fit function is the sum of a
Crystal Ball function [18] describing the signal and an
ARGUS function [19] for the background. The number
of fully reconstructed B� decays found by the fit is
1.65 × 106 � 4 × 103ðstatÞ � 6 × 104ðsystÞ. The system-
atic uncertainty is dominated by the background shape
near the kinematic end point. This event yield is mentioned
for reference but is not used in the determination of the
branching ratios (BRs), except for the cross-check on
BRðB� → J=ψK�Þ.
If more than one B candidate is found in an event, all

candidates are retained. This is an important difference
compared to Refs. [12,13], where only one candidate per
event is retained. This method increases the efficiency and
provides better decoupling between the signal and tag
sides. Events not considered before, where the candidate
selected as the best one was not the correct one, are now
retained, including those where it belonged to the signal
side. This point is important for the Xð3872Þ measurement
because the probability to reconstruct a candidate from the
signal side is enhanced for particles decaying to D mesons.
The new method provides efficiency gains up to a factor
of 3. The mean number of B-tag candidates per event is
1.85, and 39% of events have more than one candidate.
Event selection criteria are as follows: Each B-tag

candidate should have mES>5.275GeV=c2 and be
accompanied by an opposite-sign kaon candidate (charge
conjugation is always implied), passing a tight particle
identification selection. The pion contamination in this kaon

sample is below 2%. A neural network (NN) is then used to
suppress the continuum background. The inputs to the NN
are seven variables related to the reconstructed B character-
istics, its production kinematics, the topology of the full
event, and the angular correlation between the reconstructed
B and the rest of the event. The NN selection has an 80%
efficiency for generic BþB− events and a factor 10 rejection
against non-B background events coming from u, d, s, or c
quark-antiquark pairs.
A second NN is used to reject secondary kaons produced

in B-daughter D meson decays. This is a large background
that increases rapidly with decreasing kaon momentum. In
theB rest frame, the secondary kaons are embedded in theD
decay products, which, given the boost of the D meson and
its mass, are bounded in a cone and form awide jet, whereas
signal kaons recoil against a massive (3–4 GeV=c2) state
and tend to be more isolated, with the rest of the B decay
products being more spherical. The input variables to this
NN are the energy contained in a cone around the kaon track,
the sphericity of the system recoiling against the kaon, the
angle between the kaon and the thrust axis of the recoiling
system, the minimum mass formed with the kaon, and the
recoiling particles [20]. The twoNNs are then combined in a
single neural net, called super-NN, to optimize further the
signal to background. Because of the non-negligible varia-
tion of the event topology with the mass of the charmonium
particle, the super-NN is trained separately in the J=ψ and ηc
signal region, and in the ψ 0 and ηcð2SÞ region, with kaon
background taken from simulation in the momentum ranges
1.6–1.9 and 1.2–1.5 GeV=c, respectively. The super-NN
performance corresponds to a 72% signal efficiency at the
Xð3872Þ peak and a background rejection factor varying
between three in theXð3872Þ andψ 0 region to 4.5 in the J=ψ
region.
To analyze the kaon momentum spectrum, we first

determine the background shape and then perform a fit to
the background-subtracted spectrum. The shape of the
background spectrum is determined by interpolating
through regions where no signal is expected, below 1.1
and above 1.9 GeV=c. Because the use of only these two
regions leads to large uncertainty in the background param-
eters, we add data points in the two regions 1.34–1.36 and
1.53–1.57 GeV=c, where there is no peak, as indicated
in Fig. 2.
Figure 2 also shows the fit to the simulated signal K�

momentum spectrum for all charmonia peaks in the
simulation. A good description is obtained when using,
for each peak, a narrow Gaussian, whose width depends
on momentum varying from 13 MeV=c for the J=ψ to
9 MeV=c for the ψ 0, and a two-piece Gaussian,
100 MeV=c wide on the left and 60 MeV=c wide on
the right. A similar fit is performed for the Xð3872Þ with a
dedicated Monte Carlo (MC) sample (Fig. 3). The narrow
Gaussian width is measured to be 7 MeV=c and the wide
Gaussian tails are 47 MeV=c on each side. All parameters
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FIG. 1. The mES distribution of the exclusively reconstructed
B�, with the fit result superimposed.
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describing the shapes of the signal peaks are fixed to these
values in the fit to data. The wide Gaussian is associated
with candidates where the B tag has a reconstructed mES in
the signal region but is not built with the correct set of B
decay products and, therefore, provides an incorrect boost.
The presence of D mesons in ψð3770Þ or Xð3872Þ leads to
a higher background under the B peak, leading to a large
wide Gaussian component and a higher efficiency for the
Xð3872Þ: the MC efficiency is found to be ð48� 2Þ%
and ð25� 0.7Þ% for J=ψ using the low and high mass
training, respectively, ð51� 2Þ% for ηc, ð56� 3Þ% for χc1,
ð61� 3Þ% for ψ 0, and ð77� 2Þ% for Xð3872Þ.
When using the intermediate points to interpolate the

background, the tails from the J=ψ and ηcð2SÞ peaks
extending into these intermediate regions are subtracted

using the simulation with the known branching fractions
[21]. The fit function is a product of fifth-order Chebyshev
polynomials and an exponential function.
Small deviations are observed in the simulation between

the background kaon momentum distribution and the fit
function [20]. These defects in background shape do not
affect the visibility of narrow peaks, such as that of the
Xð3872Þ since the expected width of 7 MeV=c is much
smaller than the ∼50 MeV=c typical width of the local
deviations. The observed residuals in the 1.1–1.2 GeV=c
region are corrected for, and the resulting uncertainty is
taken into account.
The kaon spectrum between 1.5 and 2 GeV=c is expected

to exhibit two peaks, one atpk ¼ 1.684 GeV=c correspond-
ing to the J=ψ and a second atpk ¼ 1.754 GeV=c for the ηc.
The super-NN is trained in the J=ψ–ηc region and the super-
NN output is required to be > 0.85 with a B purity larger
than 0.08. A fit to the background-subtracted spectrum is
performed with the two signal functions determined
above, the only free parameters being the charmonia
yields. Figure 4 displays the results, with the yields NJ=ψ ¼
2364� 189 and Nηc ¼ 2259� 188. The statistical preci-
sion is 8%, a factor of about two improvement compared
to Ref. [12].
The branching fraction BðB� → K�ηcÞ is computed

using the world average BðB� → K�J=ψÞ [21] and the
ratio of the yields quoted above, to obtain

BðB� → K�ηcÞ
¼ ½0.96� 0.12ðstatÞ � 0.06ðsystÞ � 0.03ðrefÞ� × 10−3;

where the systematic uncertainty is detailed in Table I, and
“ref” refers to the uncertainty in BðB� → K�J=ψÞ [21].
This result agrees with the world average ð1.09� 0.09Þ ×
10−3 [21]. As a cross-check, BðB� → K�J=ψÞ is also
extracted from the ratio of observed J=ψ events obtained
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FIG. 2. The K� momentum spectrum for simulated events
where no signal kaons are present. The MC statistics represent 3.5
times BABAR integrated luminosity. The hatched areas corre-
spond to the zones used to fit the polynomial background. The
filled blue histogram is the signal-only K� momentum spectrum
in simulated events. The purple line represents the fit to this
distribution.
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FIG. 3. Fit to the signal-only K� momentum spectrum in
Xð3872Þ simulated events.
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FIG. 4. The background-subtracted kaon momentum spectrum
for data in the J=ψ − ηc region with fit result superimposed.
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in data and simulation: BðB� → K�J=ψÞ ¼ ½1.09�
0.09ðstatÞ � 0.06ðsystÞ� × 10−3, in agreement with the
world average.
The higher-mass regionwas blinded during the initial part

of the analysis. Here, the super-NN is trained in theψ 0 region
and the super-NN output is required to be >0.6 with a B
purity larger than 0.10. The pK spectrum is fitted using the
same procedure as above. The background shape is deter-
mined using a fit to the signal-free region after correction for
the small residual signal in that region estimated from MC
simulation. The kaon spectrum before (after) background
subtraction is displayed in Fig. 5 (Fig. 6).
The fit to the background-subtracted signal spectrum

(Fig. 6) is a sum of nine signal-peak functions correspond-
ing to the Xð3872Þ, ψð3770Þ, ψ 0, ηcð2SÞ, χc2, χc1, χc0, J=ψ ,
and ηc. The peak locations are taken from Ref. [21] and the
widths from fits to MC signal samples and include both

detector resolution and the natural width of each resonance.
The peak labeled χc1 refers to both χc1 and hc since these
two states cannot be distinguished from each other in this
analysis. A binned maximum likelihood fit is performed,
with the nine charmonium yields as free parameters.
Table II contains the fit results. Signal peaks are visible
for ηc, J=ψ , χc1, ψ 0 [20], and Xð3872Þ. A separate fit in
which the Xð3872Þ signal is forced to zero has a χ2 larger
than that of the nominal fit by 11.1 units, which reduces to
9.0 when accounting for the uncertainty in the background
shape in the 1.1–1.2 GeV=c region. Thus, there is 3σ
evidence of the decay B� → K� Xð3872Þ, detected for the
first time using this recoil technique.
Systematic uncertainties mainly stem from the imperfect

description of the data by the simulation and are computed
for the five particles having significance >2σ. An extra
uncertainty is added for the Xð3872Þ for the limited
knowledge of its decay modes.
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FIG. 5. The kaon momentum spectrum after applying final
selection criteria and before background subtraction. The red line
is the interpolated function describing the background shape. The
arrows indicate the values at which a signal for each resonance is
expected.

TABLE I. Summary of relative systematic uncertainties (in
percentage) for the ηc, χc1, ηcð2SÞ, ψ 0, and Xð3872Þ branching
fractions, relative to BðB� → J=ψK�Þ.

Uncertainty source ηc χc1 ηcð2SÞ ψ 0 Xð3872Þ
K identification 1 2 2 2 5
Decay model � � � � � � 1 � � � 5
Efficiency 0 2 2 2 5
pK: peak position 2 2 8 2 2
pK: signal narrow width 1 1 1 1 1
pK: signal wide width 5 5 5 5 5
pK: narrow width fraction 2 2 2 2 2
pK: background shape � � � 13 12 13 13
Decay width 1 � � � 1 � � � � � �
Correction in signal-free regions � � � � � � � � � � � � 4

Total 6 14.5 15.1 14.6 16.3
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FIG. 6. The background-subtracted kaon momentum spectrum
between 1 and 2.05 GeV=c. The fit function (red) includes signal
peaks for nine particles, indicated by the arrows. The fit function
where the Xð3872Þ yield is forced to zero is drawn in blue.

TABLE II. Results from fits to the kaon momentum spectrum.
B stands for the branching fraction for B� → Xcc̄K�. An addi-
tional 3% uncertainty must be added to these results, reflecting
the present knowledge of the reference BðBþ → J=ψKþÞ. The
significance of each peak refers to the χ2 increase of the fit when
removing each resonance in turn.

Particle Yield Bð10−4Þ Nσ

J=ψ 2364� 189 10.1� 0.29 (Ref. [21]) 10.4
ηc 2259� 188 9.6� 1.2ðstatÞ � 0.6ðsystÞ 9.3
χc0 287� 181 2.0� 1.3ðstatÞ � 0.3ðsystÞ 1.6
χc1 1035� 193 4.0� 0.8ðstatÞ � 0.6ðsystÞ 2.2
χc2 200� 164 < 2.0 1.2
ηcð2SÞ 527� 271 3.5� 1.7ðstatÞ � 0.5ðsystÞ 2.3
ψ 0 1278� 285 4.6� 1ðstatÞ � 0.7ðsystÞ 3.1
ψð3770Þ 497� 308 3.2� 2.0ðstatÞ � 0.5ðsystÞ 1.2
Xð3872Þ 992� 285 2.1� 0.6ðstatÞ � 0.3ðsystÞ 3.0
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(i) Peak position: A deviation from the known peak
position can induce an uncertainty in the number of events
from the fit integral, estimated at 1%.
(ii) Signal shape: Four parameters are used to describe

the signal shape: the main narrow width of the signal peak,
the widths of the left- and right-hand side Gaussian tails,
and the fraction under the narrow Gaussian. The uncer-
tainty resulting from the uncertainty in the signal shape is
estimated using the fit to the simulation sample containing
only true kaons from two-body B� decays by comparing
the fit results with the true numbers of events. When the
resonance has a non-negligible natural width, as for the ηc,
the uncertainty in this width is included.
(iii) Background subtraction: The statistical uncertainty

of the background fit is propagated, including correlations,
into the statistical uncertainty and is not a systematic
uncertainty. The systematic uncertainties stem from differ-
ent background parametrizations and from the correction
due to the signal subtraction in the 1.1–1.2 GeV=c region.
This latter uncertainty is determined as the change to the
Xð3872Þ yield introduced by a one-sigma deviation of the
correction function.
(iv) Efficiency determination: Uncertainties in detection

efficiency arise in the kaon reconstruction and particle
identification and in the super-NN-based selection. These
uncertainties cancel to a good approximation in the ratios of
the branching fractions of all resonances to the J=ψ .
(v)Xð3872Þ decaymodel: The signal shape is not the same

for DD and J=ψX decays and this effect induces a small
change in the signal yield in the fit. Varying the ratio between
these two types of decays leads to a 5%additional uncertainty.
Table I summarizes the various systematic uncertainties,

and Table II summarizes the branching fraction results.
The number of Xð3872Þ events is converted into an

absolute branching fraction using the number of observed
J=ψ events, its absolute branching fraction, and the relative
efficiency ratio, with the result B½Bþ → Xð3872ÞKþ� ¼
½2.1� 0.6ðstatÞ � 0.3ðsystÞ � 0.1ðrefÞ� × 10−4. Using the
measured product branching fractionB½Bþ→Xð3872ÞKþ�×
B½Xð3872Þ→J=ψπþπ−�¼ð8.6�0.8Þ×10−6 [21], this trans-
lates into B½Xð3872Þ → J=ψπþπ−� ¼ ð4.1� 1.3Þ%. From
this, an upper limit on the partial width Γ½Xð3872Þ →
J=ψπþπ−� can be set in the 100 keV range, using 3 MeV
as an upper limit for theXð3872Þ total width, as measured in
its DD decay channel [22,23]. Our measurement therefore
suggests that the Xð3872Þ has a significant molecular
component.
We report an update to our first analysis [12] with the full

BABAR statistics. Two new features are introduced: the
inclusion of all B candidates has led to an increase of
efficiency and a better separation between signal and tag
sides of an event; the fit to a polynomial background in
regions where no signal is present reduces the statistical
and systematic uncertainties related to the background
subtraction. We obtain the following results:

BðBþ → ηcKþÞ
¼ ½0.96� 0.12ðstatÞ � 0.06ðsystÞ � 0.03ðrefÞ�× 10−3;

B½Bþ → Xð3872ÞKþ�
¼ ½2.1� 0.6ðstatÞ � 0.3ðsystÞ � 0.1ðrefÞ�× 10−4;

B½Xð3872Þ→ J=ψπþπ−� ¼ ð4.1� 1.3Þ%:

This result will certainly contribute to the determination of
the complex nature of the Xð3872Þ particle.
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