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One of the major open questions in particle physics is the issue of the neutrino mass ordering (NMO).
The current data of the two long-baseline experiments NOνA and T2K, interpreted in the standard three-
flavor scenario, provide a ∼2.4σ indication in favor of the normal neutrino mass ordering. We show that
such an indication is completely washed out if one assumes the existence of neutral-current nonstandard
interactions (NSI) of the flavor changing type involving the e − τ flavors. This implies that the claim for a
discovery of the NMO will require a careful consideration of the impact of hypothetical NSI.
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Introduction.—The neutrino mass ordering (NMO) is
one of the most important unknown properties in particle
physics. Its determination is crucial for flavor model
building and has direct implications for the efforts to
determine the nature of the neutrino (Dirac vs Majorana)
with neutrinoless double-beta decay searches. We recall
that in the three-flavor scheme there are three mass
eigenstates νi with masses mi (i ¼ 1, 2, 3), three mixing
angles θ12, θ13, θ13, and one charge parity (CP)-phase δ.
The mass ordering is defined to be normal (NO) if m3 >
m1;2 or inverted (IO) if m3 < m1;2. A rich dedicated
program of experiments is underway to nailing down the
NMO with accelerator, atmospheric, and reactor neutrinos.
Quite interestingly the two running long-baseline experi-
ments (LBL) NOνA and T2K, in combination with the
reactor data sensitive to θ13, already provide a ∼2σ
indication in favor of NO [1]. This trend is independently
corroborated by the Super-Kamiokande atmospheric data
[2]. As a consequence the most recent global fits display a
preference for NO at the remarkable ∼3σ level [3–5].
It is important to underline that such an indication is

established within the standard three-flavor scheme, and its
validity in scenarios involving physics beyond the standard
model is unknown. In this work we focus on neutral current
nonstandard neutrino interactions (NSI) and analyze
their impact on the determination of the NMO in NOνA
and T2K. We find that NSI make the current indication in
favor of NO evanescent, and therefore very fragile. More

specifically, we find that the present indication is com-
pletely erased in the presence of NSI of the flavor changing
type involving the e − τ flavors [6].
Theoretical framework.—NSI may represent the low-

energy manifestation of high-energy physics involving new
heavy states (for a review see [7–11]) or, alternatively, they
can be connected to new light mediators [12,13]. As first
recognized in [14], NSI can modify the dynamics [14–16]
of the neutrino flavor conversion in matter. For prospective
studies of NSI at LBL experiments see [17–39]. The NSI
can be described by a dimension-six operator [14]

LNC−NSI ¼ −2
ffiffiffi
2

p
GFε

fC
αβ ðν̄αγμPLνβÞðf̄γμPCfÞ; ð1Þ

where α, β ¼ e, μ, τ refer to the neutrino flavor, f ¼ e, u, d
indicate the matter fermions, superscript C ¼ L, R denotes
the chirality of the ff current, and εfCαβ are the strengths of
the NSI. The hermiticity of the interaction requires

εfCβα ¼ ðεfCαβ Þ�: ð2Þ
For neutrino propagation in Earth matter, the relevant
combinations are

εαβ ≡
X

f¼e;u;d

εfαβ
Nf

Ne
≡ X

f¼e;u;d

ðεfLαβ þ εfRαβ Þ
Nf

Ne
; ð3Þ

whereNf is the number density of fermion f. For the Earth,
we can assume neutral and isoscalar matter, implying
Nn ≃ Np ¼ Ne, in which case Nu ≃ Nd ≃ 3Ne. Therefore,

εαβ ≃ εeαβ þ 3εuαβ þ 3εdαβ: ð4Þ

The NSI affect the effective Hamiltonian for neutrino
propagation in matter, which in the flavor basis becomes
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ε�eμ εμμ εμτ

ε�eτ ε�μτ εττ

3
75; ð5Þ

whereU is the Pontecorvo-Maki-Nakagawa-Sakata matrix,
which, in its standard parametrization, depends on three
mixing angles (θ12, θ13, θ23) and the CP-phase δ. The
quantities k21 ≡ Δm2

21=2E and k31 ≡ Δm2
31=2E represent

the solar and atmospheric wave numbers, having defined
Δm2

ij ≡m2
i −m2

j , while VCC is the charged-current matter
potential

VCC ¼
ffiffiffi
2

p
GFNe ≃ 7.6Ye × 10−14

�
ρ

g=cm3

�
eV; ð6Þ

where Ye ¼ Ne=ðNp þ NnÞ ≃ 0.5 is the relative electron
number density in the Earth crust. For convenience we
introduce the dimensionless quantity v ¼ VCC=k31, which
gauges the sensitivity to matter effects. Its absolute value

jvj ¼
����VCC

k31

���� ≃ 8.8 × 10−2
�

E
GeV

�
; ð7Þ

will appear in the analytical expressions of the νμ → νe
transition probability. We here note that in T2K and NOνA
the first oscillation maximum is achieved respectively for
E ≃ 0.6 GeV (E ≃ 1.6 GeV). This implies that matter
effects are a factor of three bigger in NOνA (v ≃ 0.14)
than in T2K (v ≃ 0.05).
In the present Letter, we consider flavor nondiagonal

NSI, that is εαβs with α ≠ β. In particular, we focus on the
couplings εeμ and εeτ, which, as will we discuss in detail,
lead to a dependency on their associated CP phase in the
appearance νμ → νe probability [40]. We show the results
only for εeτ, while we will comment about the results
obtained for εeμ. We recall that the current upper bounds (at
90% C.L.) on the two NSI under consideration are jεeμj ≲
0.12 and jεeτj≲ 0.36 as reported in the review [7], which
refers to the global analysis [41]. These limits are basically
corroborated by the more recent analysis [39]. Here an
important caveat is in order. One should note that the upper
bound on jεeτj found in the global analysis performed in
[39] depends on the dataset used for the experiments T2K
and NOνA, which is very sensitive to such parameter. In
[39] an older dataset is used compared with that adopted in
the present analysis. As we will see below, the new dataset
leads (in IO) to a significant preference for a nonzero value
of jεeτj. As a consequence its inclusion in the global
analysis would imply a sensible relaxation of the upper
bound on such a parameter.
Let us consider the transition probability relevant for the

LBL experiments T2K and NOνA. In the presence of NSI,
the probability can be approximated as the sum of three
terms [42]

Pμe ≃ P0 þ P1 þ P2; ð8Þ

which, adopting a notation similar to [23], take the
following expressions [43]

P0 ≃ 4s213s
2
23f

2; ð9Þ

P1 ≃ 8s13s12c12s23c23αfg cosðΔþ δÞ; ð10Þ

P2≃8s13s23vjεj½af2 cosðδþϕÞþbfgcosðΔþδþϕÞ�;
ð11Þ

where Δ≡ Δm2
31L=4E is the atmospheric oscillating fre-

quency, L being the baseline and E the neutrino energy, and
α≡ Δm2

21=Δm2
31. For compactness, we have used the

notation (sij ≡ sin θij, cij ≡ cos θij), and following [44],
we have introduced

f ≡ sin½ð1 − vÞΔ�
1 − v

; g≡ sin vΔ
v

: ð12Þ

In Eq. (11) we have assumed for the NSI coupling the
general complex form

ε ¼ jεjeiϕ: ð13Þ

The expression of P2 is slightly different for εeμ and εeτ
and, in Eq. (11), one has to make the substitutions

a ¼ s223; b ¼ c223 if ε ¼ jεeμjeiϕeμ ; ð14Þ

a ¼ s23c23; b ¼ −s23c23 if ε ¼ jεeτjeiϕeτ : ð15Þ

In the expressions given in Eqs. (9)–(11) for P0, P1, and P2,
the sign of Δ, α, and v are positive (negative) for NO (IO).
Finally, we stress that the expressions of the transition
probability provided above are valid for neutrinos and that
the corresponding expressions for antineutrinos are
obtained by flipping in Eqs. (9)–(11) the sign of all the
CP phases and of the matter parameter v.
From the explicit expression of P0 and P1 one can

recognize that their sum returns the standard three-flavor
probability while the third term P2 is driven by NSI. Now,
we can note that the mixing angle θ13, the parameter v and
the coupling jεj are small and have similar size [45] ∼0.2,
and therefore they can be considered approximately of the
same order of magnitude OðϵÞ, while α≡ Δm2

21=Δm2
31 ¼

�0.03 is Oðϵ2Þ. We observe that P0 is positive definite and
independent of the CP phases, and beingOðϵ2Þ, it provides
the leading contribution to the probability. The two termsP1

and P2 are Oðϵ3Þ and are subleading. In P1 one recognizes
the standard three-flavor interference term among the
atmospheric and the solar frequencies. The third term P2

brings the dependency on the (complex) NSI coupling and it
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is different from zero only in matter (i.e., if v ≠ 0). This last
term is driven by the interference of the matter potential
εeτVCC with the atmospheric wave number k31 (see the
discussion in [17]).
Data used in the analysis.—We extracted the datasets of

T2K and NOνA from the latest data releases provided in
[46] and [47]. The disappearance channel of T2K consists
of 243 νμ-like (140 ν̄μ-like) events divided into 28 (19)
energy bins. The appearance channel contains three event
samples: 75 νe-like events and 15 ν̄e-like events without
pions, and 15 νe-like events with one pion in the final state.
The first two samples consist of 23 bins, whereas the last one
is divided into 16 bins. The dataset for the disappearance
channel of NOνA is divided into four quartiles for both the
neutrino and antineutrino running mode. Each quartile is
divided into 19 bins. In totalNOνAhas observed113 νμ- and
102 ν̄μ-like events. The dataset for the appearance channel is
divided into three samples. Two of them are based on the
particle identification variable (so-called low PID and high
PID) [48,49]. The third one is the “peripheral” sample. Each
of the first two samples is further divided into six bins. In total
NOνA collected 58 νe- and 27 ν̄e-like events. In our analysis
we use the software GLoBES [50,51] and its additional public
tool [52], which can implement NSI.
Discussion at the level of the bievents plots.—Before

presenting the results of the analysis we deem it useful to
discuss the interplay of the two experiments T2K and
NOνA at the level of the bievents plots, in which the xðyÞ
axis reports the number of electron neutrino (antineutrino)
events measured in the experiment under consideration.
Such plots are particularly useful as they provide a bird eye
view of the situation for each experiment and evidence
possible tensions between different experiments. We recall
that in the three-flavor framework the theoretical predic-
tion, for a fixed value of the three mixing angles θ12, θ13,
θ23 and of the two squared-mass splittings Δm2

31 and Δm2
21,

lies on an ellipse which has as running parameter the CP-
phase δ in the range ½0; 2π�. In the plots presented below we
fix the solar parameters [53] θ12 and Δm2

21 at the best fit
point of the global analysis [3], while the reactor angle θ13
is basically fixed at the best fit value from the reactor
experiments [54]. The values of the atmospheric parameters
θ23 and Δm2

31 are taken at the best fit of our own analysis.
In Fig. 1 we display the ellipses and best fit points,

obtained when one combines together the two experiments
T2K and NOνA. The continuous (dashed) curves corre-
spond to SM (SMþ NSI). Let us first comment about the
standard model (SM) results. One should note that each of
the two experiments constrains the fit of the other one by
forcing the parameters δ, θ23, and Δm2

31 to assume a
common best fit value. In particular, in the combination
the CP-phase δ is forced (essentially driven by T2K) to
remain close to ∼3=2π. From the left plot we see that in
T2K the NO best fit (red star) is closer to the data point with
respect to the IO best fit (blue star). In the right panel we see

that, once the CP-phase δ is forced to lie close to ∼3=2π, in
NOνA there is basically no preference for any of the two
hierarchies. As a result, in the overall fit, a moderate global
preference for NO is obtained. We find χ2SM;NO−χ2SM;IO ≃
−5.6, corresponding to 2.4σ in favor of NO (see also the
upper panels of Fig. 3).
In the presence of NSI the additional interference term in

the transition probability provides much more freedom in
the fit. In this case each pair of the NSI parameters
ðjϵeτj;ϕeτÞ corresponds to a different ellipse in the bievents
plot. The amplitude jϵeτj influences mostly the size of the
ellipse, while the phase ϕeτ determines the relative length of
the two axes as well as the orientation of the ellipse. The fit
of the combination of T2K and NOνA selects the points
(marked as squares) on those ellipses that provide the best
compromise between the two experiments. In NO the best
fit points in the SMþ NSI have basically the same distance
from the experimental data points with respect to the SM
case. So we expect only a marginal improvement of the fit
when including the NSI. The numerical analysis described
in the next section will confirm that in NO there is indeed
only a 0.7σ preference for nonzero NSI. In contrast, for IO
in T2K the best fit point is much closer to the experimental
point with respect to the SM case, while in NOνA the
distance between best fit and data remains basically
unchanged. So in IO we expect a more marked preference
for NSI. The numerical analysis in the next section will
confirm that in IO there is indeed a ∼2.5σ preference for
nonzero NSI. We can also appreciate that in the SMþ NSI
case the distance of the best fit points (squares) from
the data is basically the same in NO and IO in both
experiments, so we expect a similar goodness of fit of
the two mass orderings in the presence of NSI. We find
χ2SMþNSI;NO − χ2SMþNSI;IO ≃ 0.5, corresponding to 0.7σ in
favor of IO (see also the lower panels of Fig. 3). Therefore,
in the presence of NSI the indication in favor of NO found
in the standard case gets lost.
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FIG. 1. Bievents plot for the T2K (left panel) and NOνA setup
(right panel). The continuous (dashed) ellipse represents the
parametric curve corresponding the SM (SMþ NSI) case with
running parameter δ in the range [0, 2π]. The ellipses and the best
fit points located on them are determined by fitting the combi-
nation of the two experiments.
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Numerical results.—Figure 2 reports the results of the
analysis of the combination of T2K and NOνA for NO (left
panel) and IO (right panel). Each panel displays the allowed
region in the plane spanned by jϵeτj and ϕeτ. The CP-phase
δ, the mixing angles θ23 and θ13, and the squared-mass
Δm2

31 are marginalized away. We show the contours at the
1σ and 2σ level for 1 d.o.f. and indicate with a star the best
fit point. From the left panel we can appreciate that in NO
there is only a weak preference (≃0.7σ) level for a nonzero
value of the coupling jϵeτj, with best fit jϵeτj ≃ 0.09. In the
right panel we see that the preference for nonzero NSI is
stronger, reaching the 2.5σ significance with a best fit value
jϵeτj ≃ 0.39. In NO (IO) the CP-phase ϕeτ has best fit value
1.42π (1.30π).
In Fig. 3 we show the estimates of the two parameters δ

and θ23. The two upper (lower) panels report the χ2

expanded around the minimum value obtained when the
SM (SMþ NSI) hypothesis is accepted as true. In each
panel we display the results obtained by the combination of
T2K and NOνA in NO (continuous lines) and IO (dashed
lines). The undisplayed parameters are marginalized away.
We observe that in the SM case there is a preference for NO
at the ∼2.4σ level. This preference is completely washed
out in the presence of NSI (lower panels), in which case
there is even a mild preference for IO (at ∼0.7σ). Therefore,
we conclude that the current indication in favor of NO is
fragile with respect to the perturbations induced by the NSI
under study. From the left panels we can observe that the
reconstruction of δ deteriorates in the presence of NSI.
Notably, the values of δ close to π=2 are rejected at a much
lower statistical level with respect to the SM case (∼3σ
instead of ∼5σ). In addition, in the presence of NSI the CP
conserving values δ ¼ ð0; πÞ are rejected at a lower con-
fidence level. Concerning θ23 we see that in the SM case
(right upper panel) there is a moderate preference for
nonmaximal mixing (Δχ2 ≃ 2.1) and for the higher octant,
the symmetric value of the best fit point in the lower octant
(sin2 θ23 ≃ 0.45) being markedly disfavored (Δχ2 ≃ 4.5). In
the presence of NSI both the preference for a nonmaximal
mixing and that for the higher octant found in the SM

sensibly decrease. In this case maximal mixing is disfa-
vored only at Δχ2 ≃ 1.3 and the lower octant at Δχ2 ≃ 2.9.
It is worthwhile to make some comments on the results of

the analysis obtained considering the interaction in the e − μ
sector. Differently from the e − τ sector we find a significant
preference for nonzero values of jεeμj both inNOand IO.We
obtain best fit value jεeμj ¼ 0.15 (jεeμj ¼ 0.10) for NO (IO)
with statistical significance of 1.6σ (1.5σ). The correspond-
ing best fit value of the CP-phase ϕeμ is 1.78π (1.82π) for
NO (IO). Since there is approximately the same improve-
ment of the fit in NO and IO, the indication in favor of NO
remains almost unaltered with respect to the SM case. In
fact, we find that NO is preferred over IO at the 2.5σ level
similar to the SM case. Therefore, the fragility of the
indication in favor of theNO appears onlywhen considering
the nonstandard interactions in the e − τ sector.
In this Letter we have focused on the real data provided

by NOνA and T2K. Needless to say, it is interesting to
consider the impact of the degeneracy problem we have
found in real data on the future LBL experiments, which are
expected to have a higher sensitivity to the NMO. In the
Supplemental Material [55] (which includes Refs. [50–
52,56–60]), we show explicitly what may be expected from
DUNE. Here, we limit ourselves to summarize the basic
result, by stating that the degeneracy issue under consid-
eration can be resolved by DUNE only if δ will be
confirmed to lie sufficiently close to its current best fit
value δ ∼ 1.5π. Also we have checked that ESSνSB, T2HK
and T2HKKwill have less chances to resolve the issue with
respect to DUNE.

FIG. 2. Allowed regions determined by the combination of
T2K and NOνA for NO (left panel) and IO (right panel). The
contours are drawn at the 1σ and 2σ level for 1 d.o.f.
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FIG. 3. Estimates of δ and θ23 for SM (upper panels) and SMþ
NSI (lower panels) determined by the combination of T2K and
NOνA. The continuous (dashed) curves refer to NO (IO).
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Conclusions.—In this Letter we have investigated the
impact of NSI on the interpretation of T2K and NOνA data.
Our main result is that the indication in favor of NO valid in
the standard three-flavor scheme does not hold anymore if
one assumes the existence of neutral-current nonstandard
interactions of the flavor changing type involving the e − τ
(εeτ) flavors. We have also investigated the potential role of
the future LBL experiment DUNE in resolving the degen-
eracy issue that plagues the present data. An unambiguous
determination of the NMO in the presence of NSI will be
possible only if the CP-phase δ will be confirmed to lie not
too far from the present best fit value around δ ∼ 1.5π. We
conclude this letter by underlining that, apart from the LBL
accelerator data, it would be very interesting to complement
our study considering the existing and future atmospheric
neutrino data, which may help to resolve the NMO
ambiguity. Finally, our work clearly evidences the impor-
tance of investigating the NMO exploiting different types
of experiments, such as JUNO, which are less sensitive to
(standard and non-standard) matter effects.
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