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We consider the optimization of a finite-time Carnot engine characterized by small dissipations. We
bound the power with a simple inequality and show that the optimal strategy is to perform small cycles
around a given working point, which can be, thus, chosen optimally. Remarkably, this optimal point is
independent of the figure of merit combining power and efficiency that is being maximized. Furthermore,
for a general class of dissipative dynamics the maximal power output becomes proportional to the heat
capacity of the working substance. Since the heat capacity can scale supraextensively with the number of
constituents of the engine, this enables us to design optimal many-body Carnot engines reaching maximum
efficiency at finite power per constituent in the thermodynamic limit.
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The Carnot engine has a pivotal role in thermodynamics,
both from a fundamental and applied perspective, being the
reference point for other engines in terms of efficiency
[1,2]. Thus, it is of paramount importance to understand its
limits and strategies for its best utilization. In this Letter, we
consider the optimization of a finite-time Carnot cycle
within the so called low-dissipation (LD) regime [3–14],
where the driving of the control parameters is slow but
finite. Previous studies of Carnot engines in the LD regime
have considered bounds on the reachable efficiencies [3],
tradeoffs between efficiency and power [7–9,15], the
coefficient of performance of refrigerators [12,13], the
impact of the spectral density of the thermal baths [14],
and other thermodynamic figures of merit [10,11]. Despite
this remarkable progress, the following crucial question has
remained unaddressed: given a certain level of control on
the working substance (e.g., some parameters of the
Hamiltonian, or some macroscopic variables such as
volume or pressure), what is the optimal cyclic modulation
of the control parameters to maximise the power output (or,
more generally, any figure of merit involving power and
efficiency [7–9,15]) of a finite-time Carnot engine? Such an
optimal cycle has been designed for a single-qubit engine in
[16,17], but a general understanding is lacking.
Using recent insights on a geometrical approach to

thermodynamics [18–29], we show that, given any

reasonable figure of merit involving power and efficiency,
the optimal control strategy is to perform infinitesimal
cycles around a fixed point. Furthermore, when the
thermalization of the relevant quantities can be described
by a single time-scale τeq (see details below), the optimal
power output becomes proportional to C=τeq, where C is the
heat capacity of the working substance (WS). Hence, the
optimization of the heat engine cycle becomes intimately
related to the maximization of C of the WS (interestingly,
maximizing C is also crucial in thermometry [30–33]).
Then, we use these insights to design many-body heat

engines that can operate at Carnot efficiency with finite
power per constituent of the WS through a supraextensive
scaling of C=τeq (e.g., in a phase transition), in the spirit of
[34,35] (see, also, [35–38]). Despite differences with
respect to previous proposals, which were based on Otto
engines [34,35], we find the same asymptotic scalings for
performance, while proving by construction their optimal-
ity in the slow-driving regime. Other recent proposals
towards the possibility of reaching Carnot efficiency at
finite power have been developed in [34–36,39–45] (see,
also, [15,46,47] for no-go results [48]).
Finite-time Carnot cycle.—We consider a quantum WS

with a driven Hamiltonian HðtÞ, which interacts alterna-
tively with a cold (Bc) and a hot (Bh) heat bath at
temperature Tc and Th, respectively (the results presented
in this Letter can be naturally extended to classical
systems). The Carnot cycle consists of four steps:
(i) While being coupled to Bc, HðtÞ is modified continu-
ously from Hð0Þ ¼ HðXÞ to Hðτ−c Þ ¼ HðYÞ for a time τc.
(ii) With the system isolated from the reservoirs, an adi-
abatic process is performed taking HðYÞ → HðYÞTh=Tc.
During this process HðtÞ satisfies ½HðtÞ; Hðt0Þ� ¼ 0∀ t, t0
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and commutes with the initial state [a Gibbs state with
respect to Hðτ−c Þ], so it is possible to perform it arbitrarily
quickly without affecting the state (hence, corresponding to
Hamiltonian quenches). (iii) While being coupled toBh,HðtÞ
ismodified back fromHðτþc Þ ¼ HðYÞTh=Tc toHðτc þ τhÞ ¼
HðXÞTh=Tc in a time τh. (iv) Finally, a second quench is
performed to restore HðXÞTh=Tc → HðXÞ, closing the cycle.
It is convenient to introduce the adimensional

Hamiltonian GðtÞ ≔ βHðtÞ, where β ¼ 1=kBT is the
inverse temperature of the bath to which the WS is coupled
(we shall set the Boltzmann constant kB equal to kB ¼ 1).
Note that the Carnot cycle becomes smooth with respect to
GðtÞ, and in what follows, we take the driving protocol to
be time-reversal symmetric, more precisely that GðsτcÞ ¼
Gðτc þ τhð1 − sÞÞ with s ∈ ½0; 1�. This property is always
satisfied by optimal heat engines in the LD regime as long
as the two baths have the same spectral density [14], which
is the subject of interest of this work. By expressingGðtÞ as

GðsτcÞ ¼
X

j

λjðsÞXj; s ∈ ½0; 1�; ð1Þ

where λjðsÞ are the control parameters and Xj the con-
jugated forces, the cycle control can be characterized by τc,
τh and its shape λ⃗ðsÞ (notice that τc ≠ τh in general; the
time-reversal symmetry is intended in the adimensional
unit s). We will not explicitly write the dependence on s,
which will be clear from the context, but will indicate
with a dot the time derivative with respect to s, i.e.,
_G≡ ð∂=∂sÞG≡ τxðd=dtÞG, x ¼ ðh; cÞ.
Now, we assume the slow driving or low dissipation

approximation, which is crucial in this work. That is,
ðd=dtÞG is finite but small, so that we can expand the
relevant quantities and keep only leading terms (formally,
the small parameter of the expansion is τeq=τx, where τeq is
the relaxation time of the dynamics). In this regime, the
state of the WS is always close to thermal equilibrium, and
the heat exchanged during the isotherms [steps (i) and (iii)]
can be divided as

Qx ¼ TxΔSx −Wdiss
x ; x ¼ ðh; cÞ; ð2Þ

where ΔSx is the reversible contribution obtained in the
quasistatic limit τx → ∞, which is given by ΔS≡ ΔSh ¼
−ΔSc ¼ S½ωðτcÞ� − S½ωð0Þ� with ωðtÞ ¼ e−GðtÞ=Trðe−GðtÞÞ
and where SðρÞ is the Von Neumann entropy. The irre-
versible termWdiss

x can be described in this regime by the so
called thermodynamic length [20–25,28]

Wdiss
x ¼ Tx

τx

Z
1

0

X

ij

_λimij
_λjds≡ Tx

Σx

τx
; ð3Þ

where mij is given, when the driven observables hXji relax
to equilibrium with the same timescale τeq, by [20–25,28]

mij ¼ τeq
∂2 lnZ
∂λi∂λj ; ð4Þ

where Z ¼ Trðe−GÞ is the partition function. Given the
time-reversal symmetry of the driving protocol, it follows
that Σh ¼ Σc [symmetric low-dissipation (SLD) regime].
Importantly, while the results presented in the main text are
based upon the standard thermodynamic metric (4), gen-
eralizations (including τeq depending on the trajectory
[24,25], the possibility of having several relaxation time-
scales, general Lindbladian dynamics [24,28], and proto-
cols in which Σh ≠ Σc) are developed in the Supplemental
Material (SM) [49].
Optimization of the cycle.—Now, we optimize the power

(and efficiency) of the Carnot engine over τc, τh and its
shape λjðsÞ, which are all the possible degrees of freedom.
This enables us to obtain a fundamental upper bound on the
power in the slow-driving regime, as well as the corre-
sponding optimal control.
The work extracted during a cycle is given by

W ¼ Qh þQc, and the total time is τ ¼ τc þ τh. Hence,
the power reads P ¼ ðQh þQcÞ=τ, and the efficiency
η ¼ ðQh þQcÞ=Qh. By substituting the expressions (2)–
(3) and appropriately setting τc and τh, one can maximize
the power of the engine (∂P=∂τj ¼ 0) obtaining [3,71]

PðmaxÞ ¼ ðΔSÞ2
4Σ

ð
ffiffiffiffiffiffi
Th

p
−

ffiffiffiffiffi
Tc

p
Þ2; ð5Þ

and the corresponding efficiency at maximum power
(EMP) is given by the Curzon-Ahlborn (CA) EMP, ηCA ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc=Th

p
[72]. In the most general case, one might

seek, in order to not sacrifice completely the efficiency
optimization over the power, to maximize a hybrid figure of
merit [7–9,15]. The maximum efficiency for any given
power output of the engine has been derived in [9] (see,
also, [7]). Analogously, we can express the best power for a
given efficiency, fixed to be a fraction of the maximum one,

η ¼ γηC; γ ≤ 1; ð6Þ

where ηC ¼ 1 − Tc=Th is the Carnot efficiency. In the SLD
regime, this leads to a maximum power (cf. SM [49]),

PðmaxÞ
γ ¼ ðΔSÞ2

4Σ
ðTh − TcÞ2γð1 − γÞ
γTc þ ð1 − γÞTh

; ð7Þ

obtained by setting τc ¼ 2ΣTc=½ΔSðTh − TcÞð1 − γÞ� and
τh ¼ τc½ThT−1

c ð1 − γÞ þ γ�. Essentially, by tuning γ in τc
and τh, one can interpolate between a maximally powerful
engine with power (5) at efficiency ηCA, and a Carnot
engine with maximal efficiency and null power.
At this point, we note a crucial observation: after the

optimization of P over τc and τh, the remaining figure of
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merit is always ðΔSÞ2=Σ, independent of the value of γ. In
fact, this is a property that can be argued to be general given
any figure of merit combining power and efficiency [49].
Now, we show how to maximize it by an opportune
use of a Cauchy-Schwarz inequality. First, using the form-
ula for the derivative of an exponential [73]: ∂e−G=∂λj ¼
−
R
1
0 e−GXje−ð1−sÞG, we can again express Σ in (3) in the

more compact form

Σ ¼ τeq

Z
1

0

dscovωð _G; _GÞ; ð8Þ

where covωðA;BÞ is the Kubo-Mori-Boguliobov inner
product: covωðA; BÞ ¼

R
1
0 dsTrfAω1−s½B − TrðωBÞ�ωsg.

Next, we note that the Von Neumann entropy S ¼
−Tr½ω lnω� satisfies: _S¼−Trð _ωlnωÞ¼−covωðlnω; _GÞ¼
covωðG; _GÞ where we again used the formula _ω ¼
−
R
1
0 dxω1−x½ _G − Trðω _GÞ�ωx, as well as Trð _ωÞ ¼ 0 and

covωðA; 1Þ ¼ 0. Hence, we can write the total change in
entropy ΔS as

ΔS ¼ −
Z

1

0

ds covωðG; _GÞ: ð9Þ

Crucially, both ΔS and Σ can be expressed through an
infinite-dimensional scalar product given by: hA;Biω ¼R
1
0 ds covωðA;BÞ, that depends on the path fλjðsÞg. Using
the Cauchy-Schwarz (CS) inequality jhA; Bij2 ≤
hA; AihB;Bi, the ratio ðΔSÞ2=Σ can then be bounded as

ðΔSÞ2
Σ

≤
1

τeq

Z
1

0

dscovωðG;GÞ≡ 1

τeq

Z
1

0

ds C; ð10Þ

where C is the heat capacity of the WS,

C ¼ −β2
∂2 lnZ
∂β2 ¼ TrðωG2Þ − TrðωGÞ2; ð11Þ

i.e., the variance of the adimensional Hamiltonian G for its
thermal state. The CS inequality is saturated for _G ∝ G,
which means that creating quantum coherence cannot favor
the power output in the slow driving regime, in agree-
ment with Refs. [74,75]. More importantly, it shows that
optimal thermodynamic protocols take the simple form
GðtÞ ¼ λðtÞGð0Þ.
We can further maximize (10) by noting thatR

1
0 ds C ≤ maxsC. To saturate this inequality in practice,
one needs to consider cycles where the modulation of G is
small

GðτcÞ ¼ Gð0Þð1þ ϵÞ ϵ ≪ 1;

Gðτc þ τhÞ ¼ Gð0Þ; ð12Þ

around an optimal pointGð0Þwhere C=τeq is maximized [as
long as ϵ is small enough so thatGðsτcÞwith s ∈ ½0; 1� does
not change substantially along the cycle, the precise form of
GðsτcÞ is not important; see the SM for examples of explicit
cycles]. In this case, in the limit ϵ → 0 the maximal power
(7) for a given efficiency γηC is given by

PðmaxÞ
γ ¼ C

4τeq

ðTh − TcÞ2γð1 − γÞ
γTc þ ð1 − γÞTh

; ð13Þ

where C is the heat capacity atGð0Þ. We stress that (13) has
been obtained after maximizing P (for a fixed η) over all
degrees of freedom: τc, τh and the protocol fλjðsÞg. This
result shows a fundamental link between maximal power of
a finite-time Carnot cycle and the heat capacity of the WS.
The simplicity of (13) can be contrasted to exact

optimizations of heat engines [45,76–79], where the full
solution easily becomes too complex or not even comput-
able with the size of the WS, and with other geometric
optimizations which require solving geodesic equations to
design optimal paths in the parameter space
[24,26,28,29,80–82]. In our approach, from the point of
view of optimization, all that is left to do in (13) is to
maximise C over the control parameters fλjg to identify the
optimal working point Gð0Þ in (12). In Fig. 1, explicit
results are reported for the value of maximum C, for
different paradigmatic levels of control on the same system
of N qubits.
Crucially, this approach can be generalized to any metric

mij in (3) describing dissipation: in the SM [49], we show
that the optimal control problem is always reduced to
infinitesimal cycles, and the optimal working point can be
found by a scalar maximization problem. We work out
examples of standard microscopical dynamics in open
quantum systems as well: a qubit, a qutrit, or a harmonic

FIG. 1. Maximum adimensional C for a thermal system of N
qubits with different degrees of control [49]. (1)Cmax ≃ 0.44N for
N independent two-level systems with gap control. (2) For an
Ising chain HðNÞ ¼ −λ1ðtÞ

P
N
i¼1 σ

z
iσ

z
iþ1 − λ2ðtÞ

P
N
i¼1 σ

z
i , we ob-

tain Cmax ≃ 0.59N. (3) Given complete control over the spectrum
with 2N levels, Cmax ≃ N2=4. Details can be found in [49].
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oscillator as a WS in contact with bosonic thermal baths
with different spectral densities.
It is important to point out that (13) should be understood

as a theoretical ultimate upper bound on power, obtained by
taking ϵ → 0 in (12). In practice, any experimental or
realistic protocol will have finite ϵ. In this case, as long as C
is sufficiently smooth along the thermodynamic cycle (12),
the power output P [given by the integrated C in (10)] will
not change considerably, so that realistic cycles will
provide a more similar P than the theoretically maximal
one. In practice, keeping ϵ finite is also important to ensure
the consistency of the slow-driving approximation
τeq=τ ≪ 1, given that, for the optimized protocols that
lead to the power (7), one has τ ∝ ϵ, more precisely

τeq=τ ∼ ϵ−1ðTh=Tc − 1Þð1 − γÞ: ð14Þ

Note that this can always be guaranteed for high efficien-
cies γ → 1. From the same equation, we note, incidentally,
that engines whose maximum efficiency is constrained to
be low (Tc=Th ≲ 1), i.e., arguably those engines that
mostly need optimization in the high efficiency regime,
show better convergence to the absolute bound.
Reaching Carnot efficiency at finite power.—As an

example of application of the previous results, we now
use the designed optimal finite-time Carnot cycles
[Eqs. (12) where Gð0Þ will depend on each model of
interest] to explore the possibility of reaching Carnot
efficiency ηC at finite power in the macroscopic limit.
We follow the approach put forward in Refs. [34,35]:
considering an N particle WS, we aim at approaching
Carnot efficiency in the macroscopic limit N → ∞ without
giving up power per constituent.
To reach Carnot efficiency, we need γ ¼ 1 in (6), and

hence, we take 1 − γ ¼ N−ξ, where ξ > 0 can be chosen at

will. On the other hand, the maximal power PðmaxÞ
γ in (13)

depends only on C and τeq; then, we assume C ¼ c0N1þa

and τeq ¼ τ0Nb, where the meaning of the different con-
stants will be described for each model of interest later.
Expanding the relevant quantities for N ≫ 1, we obtain at
leading order in N

PðmaxÞ
γ ¼ c0ðTc − ThÞ2

4τ0Tc
N1þa−b−ξ;

τc ¼
2ϵTc

Th − Tc
τ0Nbþξ; τh ¼ τc;

W ¼ ðTh − TcÞc0ϵN1þa; σ2w ¼ 2ðTh − TcÞ
W
ϵ
;

ð15Þ

where σ2w ¼ hw2i − ðhwiÞ2 is the variance of the work
distribution, which measures the work fluctuations per
cycle of the engine (see SM [49] for details on the

calculation). Now, let us discuss two separate cases,
inspired by [34] and [35], respectively.
(a) Control on the engine and the engine-bath interaction.

First, we assume full control over the engine Hamiltonian
with 2N levels: that is, all levels can be modified at will by
the experimentalist. While this is extremely challenging in
practice, it is useful to obtain fundamental upper bounds on
the maximal power. The optimal Hamiltonian maximizing
C then consists in a ground level and a 2N − 1 degenerate
level (see [30,83]) which, as shown in Fig. 1, leads to
C ∝ N2, i.e., a ¼ 1. This supralinear scaling is obtained in
an increasingly smaller region of the parameter space,
which requires taking ϵ ∝ 1=N in (12) (see details in SM
[49]), and also, this constrains from Eq. (14) 1 − γ to scale
accordingly, i.e., ξ ¼ 1. Furthermore, it is possible to reach,
in realistic collisional scenarios, τeq ∝

ffiffiffiffi
N

p
(i.e., b ¼ 1=2),

or constant τ (b ¼ 0) if one is allowed to fine tune the
interaction between the WS and the baths [34] [84]. in
agreement with Ref. [34]. In the SM [49], we solve exactly
this proposal for a feasible driving protocol close to the
optimal one.
(b) Engine working on a phase transition point. A

promising platform to obtain supralinear scaling of power
with realistic control is by choosing the engine to work in a
phase transition point of the many-body WS. For a finite
WS operating close to the critical point, finite size scaling
theory tells us that C develops a peak of height C ∝
N1þα=ðνdÞ and width δ ∝ N−1=ðdνÞ, while τeq ∝ Nz=d (here,
α, ν, and z correspond to the specific heat, correlation
length, and dynamical critical exponents, while d is the
spatial dimension of the engine [85,86]). In order to exploit
the critical scaling of the WS, we need to perform the cycle
(12) where C becomes peaked, and hence, ϵ ∝ δ ∝ N−1=ðdνÞ,
which implies ξ ¼ 1=ðdνÞ from Eq. (14). Then, from (15)

with a ¼ α=ðνdÞ and b ¼ z=d, supralinear scaling of PðmaxÞ
γ

is possible if

α − zν − 1 > 0: ð16Þ

This condition is the same found for the Otto cycle
proposed in [35]. Examples of physical systems where
(16) is satisfied are also provided in [35], particularly in the
presence of critical speed-ups of thermalization (z < 0
[87–89]).
Besides efficiency and power, another crucial aspect of a

heat engine is its reliability, i.e., the fluctuations in the
output power. In fact, it has been recently pointed out in
[36] that the Otto-cycle of [35] suffers from macroscopic
fluctuations in the thermodynamic limit. For the Carnot
cycle considered here, from (15), the relative work fluc-
tuations read fw ¼ σw=W ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðTh − TcÞ=ϵW
p

. First of
all, in case (a) where a ¼ 1 and ϵ ∝ N−1 in (15), one has
fw ∼Oð1Þ in the macroscopic limit. A similar situation
takes place for the critical heat engine (b) as one
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simultaneously has ϵ ∝ N−1=ðdνÞ and a ¼ α=ðdνÞ, and
hence, fw ∝ Nð−2þdνþαÞ=ðdνÞ. Hence, using the relation
dν ¼ 2 − α [90], we obtain fw ∼Oð1Þ. Therefore, for both
proposals, fw ∼Oð1Þ in the thermodynamic limit, hence,
hindering their reliability, which is the same result found in
[36] for the Otto cycle. Despite fw ∼Oð1Þ, these fluctua-
tions can be suitably avoided when the numberM of cycles
is large (the argument below applies to the Otto and Carnot
cycle). Given M cycles, we have that fw ∝ 1=

ffiffiffiffiffi
M

p
as the

average work W ∝ M whereas the work fluctuations σw ∝ffiffiffiffiffi
M

p
(think of a biased random walk). Therefore, the ratio

between the fluctuations per unit time and the power goes
to zero as M grows even when the fluctuations per single
cycle are large. Since we have that M ∝ τtot=τeq, for a total
time τtot of observation, fluctuations can be suitably
avoided, e.g., for critical speed-ups where τeq ∝ Nb

with b < 0.
In actual implementations, the technical requirements to

realize such optimized Carnot cycles are global control of
the WS, HðtÞ ¼ λðtÞHð0Þ, and enough precision to engi-
neer small cycles in the region where C=τeq has supralinear
scaling withN. Since the width ϵ of this region shrinks with
N, in a realistic implementation, the supralinear scaling will
eventually be lost as the control precision is limited [50].
We remark that, even when the experimental control may
be limited, our considerations provide upper bounds on the
maximal power of finite-time Carnot engines.
Conclusions.—We have characterized the optimal cycle

of a finite-time Carnot engine in the low-dissipation
regime. The dissipation has been characterized by the
thermodynamic metric (4), which is justified when the
thermalization of the WS is well described by a single
timescale τeq. In this case, the optimal cycle turns out to be
remarkably simple: it consists of modulations in the form
λðtÞHð0Þ, where Hð0Þ is the Hamiltonian of the WS. The
power output is then proportional to the heat capacity C of
the WS, linking the optimal performance to the nature of
the WS: as an application, we showed how the critical
scaling of C can enable the design of optimal engines with
extensive power reaching Carnot efficiency. These results
have been generalized to general metrics in the SM [49],
which we have used to derive the optimal cycle and
corresponding power output of different WS (qubit,
three-level system, or harmonic oscillator) interacting with
a bosonic thermal bath. Putting everything together, our
results provide a general framework to efficiently optimize
the control of slowly driven Carnot engines.
We hope this work stimulates further investigations in

the interplay between many-body physics and heat engines
[35–38,51–57], as well as connections between perfor-
mance, fluctuations, and degree of control [58]. In par-
ticular, our results hint at the answer for two open
problems: (1) small cycles are optimal for engine

performance in all regimes [17,45,78], and (2) the perfor-
mance of the proposals [34,35] cannot be improved.
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