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We propose a self-consistency equation for the β functions for theories with a large number of flavors,N,
that exploits all the available information in the Wilson-Fisher critical exponent, ω, truncated at a fixed
order in 1=N. We show that singularities appearing in critical exponents do not necessarily imply
singularities in the β function. We apply our method to (non-)Abelian gauge theory, where ω features a
negative singularity. The singularities in the β function and in the fermion mass anomalous dimension are
simultaneously removed providing no hint for a UV fixed point in the large-N limit.
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Introduction.—There are indications that perturbative
series in quantum field theory are, in general, asymptotic
series with zero radius of convergence. In theories with a
large number of flavorlike degrees of freedom, N, a
reorganization of the perturbative expansion in powers of
1=N is convenient. It can be shown that at fixed order in
1=N expansion, the number of diagrams contributing grows
only polynomially rather than factorially: convergent series
are obtained that can be summed up within their radius of
convergence.
There is a vast literature on resummed results corre-

sponding to the first few orders in 1=N expansion, mainly
for RG functions obtained via direct diagram resummation
or critical-point methods, see, e.g., Refs. [1–22].
Since the perturbative series at fixed order in 1=N are

convergent, singularities in the (generically complex)
coupling are expected. The appearance of such singularities
on the real-coupling axis seems to be true for all the d ¼ 4
theories analyzed so far, thereby having a dramatic effect
on RG flows. In particular, the appearance of singularities
in the coefficients of the 1=N expansion for gauge and
Yukawa β functions have inspired speculations of a
possible UV fixed point [23–29].
More generally, the UV fate of gauge theories for which

asymptotic freedom is lost has broad theoretical interest,
and this is in fact the case of matter-dominated theories.
There, a nontrivial zero of the β function can be envisaged
if the large-N resummation produces a contribution
to β functions such that limg→rβ

1=NðgÞ ¼ −∞, where r
is the radius of convergence of the 1=N series. Near the

singularity, the Oð1=NÞ contribution exceeds the leading-
order result, and it is clear that a zero must emerge.
Unfortunately, close to the radius of convergence the
perturbative expansion in 1=N is broken, and higher order
cannot be neglected. Further shadow on the existence of the
fixed point as a consistent conformal field theory is cast by
studying anomalous dimensions of other operators in the
vicinity of the β-function singularity: in the case of large-N
QED truncated atOð1=NÞ, the anomalous dimension of the
fermion mass diverges [1,2], and it was recently pointed out
that in the large-N QCD the anomalous dimension of the
glueball operator breaks the unitarity bound [30]. Recently,
the first lattice simulations to investigate the existence of
possible fixed points appeared [31]. Even though these
studies are not yet conclusive, no support for the fixed point
is found.
In this Letter we provide quantitative evidence that these

singularities are an artifact of the fixed-order large-N
expansion of the β function. This follows from the
observation that a fixed-order truncation in 1=N in the
critical exponents is not equivalent to the same-order
truncation in β functions, see also Ref. [32]. Instead, a
fixed-order critical exponent induces higher-order terms in
1=N. These do not significantly affect the result far from
the singular point, but are relevant near the singularity
signaling a breakdown of the 1=N expansion. In particular,
close to the radius of convergence these contributions
diverge with alternating signs. Remarkably, such contribu-
tions can be resummed, and the final result is free of
singularities. This conclusion is essential for the studies
speculating on the UV fixed point, since they fully rely on
the existence of a singularity in the β function.
We demonstrate this method concretely for four-

dimensional gauge β function and Gross-Neveu (GN)
model in two dimensions. Generically, we find that the
fixed-order singularities are removed and the appearance of
a fixed point is not supported within the large-N framework.
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β function from the critical exponents.—Following
Ref. [32], we review the general form for the β function
in the large-N limit written in terms of the critical exponent,
ω. This critical exponent gives the slope of the β function at
the Wilson-Fisher (WF) fixed point, βðgcÞ ¼ 0,

β0ðgcÞ ¼ ωðdÞ≡ −ðd − dcÞ þ
X∞
n¼1

ωðnÞðdÞ
Nn ; ð1Þ

where d is the dimension of spacetime (in the literature, this
equation is often found as ω ¼ −β0=2. We omit this factor
for notational convenience). The large-N expansion of the β
function can be incorporated by using the following ansatz:

βðgÞ ¼ ðd − dcÞgþ g2
�
bN þ cþ

X∞
n¼1

FnðgNÞ
Nn−1

�
; ð2Þ

where dc is the critical dimension of the coupling g (in
QED, for example, g ¼ α=π, and should not be confused
with the simple gauge coupling), b and c are model-
dependent one-loop coefficients, and the functions Fn
satisfying Fnð0Þ ¼ 0 are all-order in x≡ gN.
Using the ansatz one can relate the coupling value

at the WF fixed point, gc, to the spacetime dimension,
d, and, consecutively, find the slope of the β function,
β0ðgcÞ ¼ ωðdÞ.
In Ref. [32], we noticed that the critical exponent ωð1Þ

contributes to the β function also beyond Oð1=NÞ. The
same holds for each ωðjÞ: it contributes to all Fn with
n ≥ j. In the following, we denote the contribution of

ωð1Þ;…;ωðjÞ to Fn, n ≥ j, by FðjÞ
n . It is worth to stress that

these contributions are necessary in order to obtain the
correct perturbative result from the critical point formalism.
It is tempting to assume that these originate from a specific
class of nested diagrams.
Since ωð1Þ, or equivalently F1, is known, all the F

ð1Þ
n can

be computed. These induced coefficients are found in
closed form as

Fð1Þ
1 ðxÞ ¼ F1ðxÞ ¼

Z
x

0

dt
t2
ωð1Þðdc − btÞ ð3Þ

Fð1Þ
n>1ðxÞ ¼

Z
x

0

dt
t2
Xn−1
l¼1

1

l!
cðlÞn−l−1

�
t
b

�
l dl

dtl
½t2F0

1ðtÞ�; ð4Þ

where the cðkÞm are defined iteratively:

cðkÞ0 ¼ ðF1 þ cÞk ð5Þ

cðkÞn ¼ 1

nðF1 þ cÞ
Xn
q¼1

ðqkþ q − nÞFqþ1c
ðkÞ
n−q: ð6Þ

It follows from Eq. (4) that if F1ðxÞ features a negative
singularity at a given x, this results into a sequence of

singularities of alternating signs in Fð1Þ
n . A concrete

example is given by QED: we show Fð1Þ
1 , Fð1Þ

2 , and Fð1Þ
3

in Fig. 1. This means that the negative pole in the β function

driven by F1 is not guaranteed to persist when all the Fð1Þ
n

are taken into account. In the next section, we show that all

the Fð1Þ
n ’s can be actually resummed, and the final result

features no singularity.
Self-consistency equation.—A direct resummation of the

FðjÞ
n terms is not straightforward, and we therefore employ a

different approach. Denoting

F ðx; NÞ≡X∞
n¼1

FnðxÞ
Nn−1 ; ð7Þ

the relation β0ðgcÞ ¼ ωðdÞ is rewritten as

−ðd − dcÞ þ
x2c
N
∂xF ðxc; NÞ ¼ ωðdÞ; ð8Þ

where the dimension and the critical coupling are
related via

d ¼ dc − xc

�
bþ cþ F ðxc; NÞ

N

�
: ð9Þ

Equation (8) would provide an exact solution if ω were
known to all orders. However, in practice this is not the
case, but rather we have access to the contributions induced
by ωð1Þ;…;ωðjÞ only. Nonetheless, a consistent solution to
Eq. (8) incorporating all known coefficients can be
achieved by truncating the critical exponent to

ωðdÞ ¼ −ðd − dcÞ þ
Xj

n¼1

1

Nn ω
ðnÞðdÞ; ð10Þ

which corresponds to truncating Fn to FðjÞ
n in F ðx; NÞ,

Eq. (7). The resulting function is denoted by F ðjÞðx; NÞ.
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FIG. 1. The functions Fð1Þ
1;2;3 in the case of QED.
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Let us now concentrate on the simplest case j ¼ 1, where
the truncation leads to the following differential equation
for F ð1Þ:

∂xF ð1Þðx;NÞ¼ 1

x2
ωð1ÞðdÞ

¼ 1

x2
ωð1Þ

�
dc−x

�
bþcþF ð1Þðx;NÞ

N

��
; ð11Þ

where we have used Eq. (9). If the critical exponent
as a function of the space-time dimension is known, this
is a nonlinear first-order differential equation for F ð1Þ.
Traditionally, this has been solved order by order in the
1=N expansion. Indeed, neglecting the backreaction ofF ð1Þ
on the right-hand side of Eq. (11) gives the standard solution
F ð1Þðx;∞Þ≡ F1ðxÞ. The advantage now is that we can
solve Eq. (11) as it is and only afterwards take the large-N

limit. This is equivalent to resumming all the Fð1Þ
n ’s, given

explicitly in Eq. (4), that we know to be important near the
singularity.
Where the 1=N expansion is under control, the one-loop

term in the β function, g2bN, dominates and, in particular,
no zero can emerge for a large enough N. However, there
exist examples in which the critical exponent, ωð1Þ, features
a singularity for some real value of d, potentially affecting
the previous conclusion. For instance, in QED the first

singularity of ωð1Þ
QED occurs at d ¼ −1 translating to the

Oð1=NÞ singularity of the β function at x ¼ 7.5.
Let us first consider a model where b and the singularity

in ω are of same sign: the higher-order terms would just
enhance the singularity and lead to a Landau pole as is the
case of super-QED at Oð1=NÞ [33] and in OðNÞ model at
Oð1=N2Þ [34].
On the contrary, if the singularity and b are of opposite

sign, as in QED and QCD, Eq. (11) yields a smooth
solution which, close to the would-be singularity at x ¼ xs,
approaches a scaling solution of the form:

F ð1Þðx; NÞ ¼ N

�
a
x
− b

�
− c; x≳ xs; ð12Þ

where a is typically Oð1Þ and implicitly defined by

aN ¼ −ωð1Þðdc − aÞ: ð13Þ

This indicates that the alternating singularities in theFð1Þ
n can

be resumed to yield a finite contribution. By using Eq. (12)
and recalling that x ¼ gN, the β function is found to be

βðgÞ ¼ ag g≳ gs: ð14Þ
Given that a and b need to have the same sign due to the
boundary condition F ð0; NÞ ¼ 0 and ωðdcÞ ¼ 0, a zero
cannot emerge neither for g≳ gs, nor for g < gs, where the
one-loop coefficient dominates.

When the Oð1=N2Þ term, ωð2Þ, is included in the
analysis, there are two possibilites: (1) the closest singu-

larity at x ¼ xð2Þs is positive, and (2) the closest singularity

at x ¼ xð2Þs is negative.
In the first case, the β function clearly grows faster than

before close to xð2Þs , and no zero can appear. If the new
singularity is closer, this rather implies a Landau pole. As for
the regular points before the first singularity, the contribution
ofωð2Þ is negligible for a large enoughN. An example of this
behavior is given by the OðNÞ model [34].
In the second case, the same reasoning for resumming

the alternating singularities applies and gives the asymp-
totic scaling in Eq. (14) with a modified coefficient a,

a ¼ −
1

N
ωð1Þðdc − aÞ − 1

N2
ωð2Þðdc − aÞ; ð15Þ

valid for g≳minðgs; gð2Þs Þ. The same procedure generalizes
to any finite order ωðjÞ.
To summarize, the singularities appearing in fixed-order

critical exponents do not necessarily imply singularities in
the β function. In particular no hint for a UV zero is found
in the large-N limit, as its existence relied entirely on the
presence of a singularity.
Finally, we emphasize that the resummation we have

employed is relevant also beyond the case when the β
function features singularities on the positive real axis.
In the following we will show that the wild oscillations in
the β function of the Gross-Neveu (GN) model—which
naïvely would lead to infinitely many alternating IR and
UV zeroes—can be resummed in the same way.
As explicit examples we consider two classes of models:

four-dimensional gauge theories and the GN model in two
dimensions. For the latter, the critical exponent is known up
to Oð1=N2Þ, allowing us to study the effect of higher-order
corrections.
QED and QCD.—The critical exponent for a general

gauge β function is known up to Oð1=NÞ and is given in
d ¼ 2μ by [11]

ωð1Þð2μÞ¼ ηð1Þð2μÞ
TF

ðð2μ−3Þðμ−3ÞCF

−
ð4μ4−18μ3þ44μ2−45μþ14ÞCA

4ð2μ−1ÞðμÞ
�
; ð16Þ

where TF andCF are the index and quadratic Casimir of the
fermion representation, respectively, CA is the Casimir of
the adjoint representation, and ηð1Þ reads

ηð1Þð2μÞ ¼ ð2μ − 1Þðμ − 2ÞΓð2μÞ
4ΓðμÞ2Γðμþ 1ÞΓð2 − μÞ : ð17Þ

For the Abelian case, the first singularity occurs at
μ ¼ −1=2, while the non-Abelian system has a singularity
already at μ ¼ 1.
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We compute the β function by solving Eq. (11) numeri-
cally for a benchmark value N ¼ 100. In the notation of
Eq. (11), QED corresponds to b ¼ 2=3, c ¼ 0, while QCD
is characterized by b ¼ 2=3; c ¼ −11. The scaling solu-
tions are given by aQED ≈ 4.995, aQCD ≈ 1.985. In Fig. 2
we show the numerical solution to Eq. (11) for QCD with
N ¼ 100; for QED the plot looks qualitatively the same. As
expected from the general analysis above, the singularities
and the putative UV fixed points at x ¼ 3 for QCD and
x ¼ 7.5 for QED have both disappeared.
In the QED case, the fermion mass anomalous dimension

has a singularity at the same coupling value as the first
singularity of ωð1Þ, x ¼ 7.5. A fixed point in this coupling
region would have the operator ψ̄ψ violating the unitarity
bound. Similarly to the critical exponent, ω, we truncate the
fermion mass anomalous dimension to Oð1=NÞ:

γm ¼ γð1Þm ðdÞ
N

¼ γð1Þm ½dc − xðbþ cþF ð1Þðx;NÞ
N Þ�

N
; ð18Þ

where the Oð1=NÞ result is given by γð1Þm ð2μÞ ¼
−2ηð1Þð2μÞ=ðμ − 2Þ [10]. Evaluating Eq. (18) with the
solution for F ð1Þ, we obtain γm in the same truncation as
the β function. We find that the singularity in γm is also
removed, and the anomalous dimension reaches a constant
value above x ¼ 7.5 given by

γ̃m ¼ 1

N
γð1Þm ðdc − aQEDÞ: ð19Þ

For N ¼ 100, we find γ̃m ≈ −0.14.
Gross-Neveu model.—The critical exponent, λðdÞ ¼

β0ðgcÞ, for the GN model is currently known up to
Oð1=N2Þ [18]. TheOð1=NÞ coefficient is explicitly given by

λð1Þð2μÞ ¼ 4ðμ − 1Þ2Γð2μÞ
Γð2 − μÞΓðμÞ2Γðμþ 1Þ ; ð20Þ

while the expression for λ2ðdÞ can be explicitly found
in Ref. [18].
In the notations of Eq. (2), the GNmodel is characterized

by dc ¼ 2, b ¼ −1, and c ¼ 2. We solve again Eq. (11)
numerically for the benchmark value N ¼ 100 both using
only the Oð1=NÞ and Oð1=N2Þ critical exponent, λ. We
show the resulting β functions in Fig. 3 along with the β
function computed directly up to Oð1=N2Þ using Eq. (2).
The scaling solution using only λð1Þ is given by að1Þ ≈ −8.6,
while including λð2Þ modifies this to að2Þ ≈ −6.3. The result
shows no hint for an IR fixed point in agreement with
previous studies [35,36].
Conclusions.—We have shown that singularities in a

fixed-order large-N critical exponent do not necessarily
imply singularities in the β function. This is due to the fact
that a fixed-order critical exponent generates contributions
to every subsequent order in 1=N in the β function. We
proposed a self-consistency equation to properly include
these contributions.
In the case of negative singularities that have inspired

speculations of UV fixed points, it turns out that the same
singularity appears with alternating signs at higher-order
terms, and resumming these contributions yields an asymp-
totic linear growth of the β function rather than a UV zero.
As concrete examples we showed this scaling behavior in
the case of QED, QCD, and the GN model. For QED and
QCD, the singularities are removed and in the GN model
the wild oscillations tamed. For QED, this procedure
simultaneously cures the singularity of the fermion mass
anomalous dimension.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0.00

0.02

0.04

0.06

0.08

0.10

0.12

g

(g
) 0.032 0.033 0.034

0.063

0.065

0.067

FIG. 2. The β function for QCD for N ¼ 100 computed
numerically according to Eq. (11). Dashed line indicates the
scaling solution. The dotted line shows the singular solution one
would encounter neglecting the backreaction of F ð1Þ on the right-
hand side of Eq. (11).
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We stress that the linear scaling is very sensitive to the
higher-order corrections in 1=N to the critical exponent that
could potentially turn it into a Landau-pole behavior.
Nonetheless, the emergence of a fixed point remains
incompatible within any finite set of higher-order correc-
tions. Our result invalidates fixed points based on the
singularities in the large-N β function. A hypothetical fixed
point could thus be supported only through a nonperturba-
tive computation beyond the 1=N expansion.
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