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We experimentally study the excitation modes of bright matter-wave solitons in a quasi-one-dimensional
geometry. The solitons are created by quenching the interactions of a Bose-Einstein condensate of cesium
atoms from repulsive to attractive in combination with a rapid reduction of the longitudinal confinement.
A deliberate mismatch of quench parameters allows for the excitation of breathing modes of the emerging
soliton and for the determination of its breathing frequency as a function of atom number and confinement.
In addition, we observe signatures of higher-order solitons and the splitting of the wave packet after the
quench. Our experimental results are compared to analytical predictions and to numerical simulations of the
one-dimensional Gross-Pitaevskii equation.
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The dispersionless propagation of solitary waves is one
of the most striking features of nonlinear dynamics, with
multiple applications in hydrodynamics, nonlinear optics,
and broadband long-distance communications [1]. In fiber
optics, one-dimensional (1D) “bright” solitons, i.e., sol-
itons presenting a local electric field maximum with one-
dimensional propagation, have been observed [2]. They
exhibit a dispersionless flow and excitation modes such as
breathing or higher-order modes [2–4]. Matter waves can
also display solitary dispersion properties. Typically, bright
matter-wave solitons are created in quasi-1D systems by
quenching the particle interaction in a Bose-Einstein
condensate (BEC) from repulsive to attractive [5].
Recent experiments demonstrated the collapse [6], colli-
sions [7], reflection from a barrier [8], and the formation of
trains [9–11] of bright solitons.
In this Letter, we experimentally study the excitation

modes of a single bright matter-wave soliton. In previous
studies, other dynamical properties have been observed,
such as the center-of-mass oscillation of solitons in an
external trap [7] and excitations following the collapse of
attractive BECs [6,12]. Here, we probe the fundamental
breathing mode of a single soliton by measuring its
oscillation frequency and the time evolution of its density
profile. In addition, we observe signatures of higher-order
matter-wave solitons, which can be interpreted as stable
excitations with periodic oscillations of the density profile
and phase, or as a bound state of overlapping modes [3,13].

The shape-preserving evolution of a matter-wave soliton
is due to a balancing of dispersive and attractive terms in
the underlying 3D Gross-Pitaevskii equation (GPE) [14].
For quasi-1D systems with tight radial confinement, we can
approximate the matter wave in the 3D GPE by the product
of a Gaussian wave function for the radial direction and a
function fðzÞ for the longitudinal direction (see Ref. [15]).
Depending on the ansatz for the Gaussian with either
constant or varying radial sizes, fðzÞ satisfies either the 1D
GPE or the nonpolynomial Schrödinger equation [18]. We
make reference to the analytical solutions of the 1D GPE in
the Letter, but use both equations in our numerical
simulations [15].
For the 1D GPE, an ansatz for the normalized longi-

tudinal wave function fðzÞ is of the form

fðzÞ ¼ 1
ffiffiffiffiffiffi

2lz
p sech

�

z
lz

�

; ð1Þ

with a single parameter lz that determines both the
longitudinal size and the amplitude of the soliton.
Solitons form with a value of lz that minimizes the total
energy and that provides a compromise between the kinetic
and the interaction energies. This is illustrated in Fig. 1(b),
which shows the energy of the wave packet for varying
sizes lz [19]. The kinetic energy provides a potential barrier
for small lz that prevents the collapse of the soliton, while
its spreading is inhibited by the interaction energy, which
increases for large lz.
Even without an external longitudinal potential, the

soliton is stable against small perturbations of lz. In a
way, a bright matter-wave soliton creates its own trapping
potential, which defines its size and excitation modes.
Variational methods provide accurate predictions of its size

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 123, 123602 (2019)
Editors' Suggestion

0031-9007=19=123(12)=123602(5) 123602-1 Published by the American Physical Society

https://orcid.org/0000-0002-7951-1721
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.123602&domain=pdf&date_stamp=2019-09-17
https://doi.org/10.1103/PhysRevLett.123.123602
https://doi.org/10.1103/PhysRevLett.123.123602
https://doi.org/10.1103/PhysRevLett.123.123602
https://doi.org/10.1103/PhysRevLett.123.123602
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


at the energy minimum which can be calculated analyti-
cally [13,20] or numerically [19]. For the fundamental
solution (order n ¼ 1) of the 1D GPE with an atom number
N, s-wave scattering length a, and radial trapping fre-
quency ωr, the size lz corresponds to the healing length at

the peak density of the soliton, i.e., lðn¼1Þ
z ¼ a2r=ðNjajÞ

[13,19]. Here, ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωrÞ
p

is the radial harmonic
oscillator length. Small deviations of lz close to the energy
minimum lead to oscillations of the soliton size. We use
those oscillations resulting from an initial mismatch of lz to
experimentally measure the self-trapping frequency of the
soliton potential.
Our experimental starting point is a Bose-Einstein

condensate of 500–2000 cesium (Cs) atoms in the state
jF ¼ 3; mF ¼ 3i at scattering length of a ¼ þ7a0, where
a0 is Bohr’s radius. The BEC is levitated by a magnetic
field gradient, and it is confined by an optical dipole trap
formed by the horizontal and vertical laser beams LH and
LV [Fig. 1(a)]. An additional magnetic offset field allows us
to tune the scattering length by means of a broad magnetic
Feshbach resonance [21]. Details about our experimental
setup, the levitation scheme, and the removal of atoms can
be found in Refs. [15,22].

Our matter-wave solitons are confined to a quasi-1D
geometry with almost free propagation along the
horizontal direction and strong radial confinement of ωr ¼
2π × 95 Hz provided by laser beam LH. They are generated
with a quench of the scattering length towards attractive
interaction (ai → af), and by a reduction of the longi-
tudinal trap frequency (ωz;i → ωz;f). When changing a and
ωz independently, the quenches excite inward and outward
motions, respectively. Usually, it is desirable to minimize
the excitations of the soliton by matching the initial
Thomas-Fermi density profile of the BEC closely to the
density profile of the soliton [inset of Fig. 1(a)]. However,
we deliberately mismatch the quench parameters to create
breathing oscillations of the soliton in order to study its
self-trapping potential. Quenches with different parameters
are labeled by the symbols Q1–Q7 (see Ref. [15]).
Following an evolution time t in quasi-1D and after a
short period of 16 ms of expansion in free space, we take
absorption images to determine the density profile of the
atoms [Fig. 1(c)]. The cloud size lzðtÞ is determined by
fitting the function A(sechðz=BÞ)2 to the integrated
1D-density profiles with fit parameters A and B [15].
The response of the atomic cloud to the different quenches

is presented in Fig. 1(d). We first quench only the longi-
tudinal confinement by 25% to ωz;f ¼ 2π × 4.3ð2Þ Hz
(quench Q1 in Ref. [15]) while keeping the repulsive
interaction strength constant [Fig. 1(d), diamonds]. The
BEC starts an outwardsmotionwith an oscillation frequency
of 2π × 7.5ð1Þ Hz ≈ ffiffiffi

3
p

ωz;f as expected for a BEC in the
Thomas-Fermi regime [23,24]. In a secondmeasurement,we
additionally quench the interaction strengthaf to−5.4a0 and
increase ωz;i to match the initial size of the BEC to the
expected size of the soliton [Q2, Fig. 1(d), squares]. As a
result,we observe almost dispersionless solitonswith a linear
increase of the cloud size of 0.7ð3Þ μm=s [Fig. 1(d), green
line]. Finally, we deliberately mismatch the initial size of the
BEC by reducing ωz;i (Q3), and generate small-amplitude
oscillations of the soliton with a frequency ωsol of 2π ×
12.8ð4Þ Hz [Fig. 1(d), circles]. This breathing frequency
of the soliton is significantly larger than any breathing
frequency of a BEC or of noninteracting atoms, 2ωz;f ¼
2π × 8.6ð3Þ Hz.We observe no discernible oscillation in the
radial direction after the quenches.
In a second experiment, we demonstrate that the breath-

ing frequency ωsol depends on the interaction term Na in
the 1D GPE, a property typical of the nonlinear character of
the soliton. We choose to change N, since the initial
removal process is independent of the interaction quench,
and we can study ωsol without changing the quench
protocol [Q4, Fig. 2(a), circles]. The measured values of
ωsol decrease for lower N, and they approach the breathing
frequency 2ωz;f for noninteracting atoms in a harmonic trap
[Fig. 2(a), dashed line].
We compare our experimental data points to two

theoretical models. In a numerical simulation of the 1D

FIG. 1. Experimental setup and oscillation measurements.
(a) Sketch of the experimental setup. Inset: Density profiles
for a BEC (solid red line) and for a soliton (dashed blue line).
(b) Total energy of a soliton, a ¼ −5.2a0, ωr ¼ 2π × 95 Hz,
N ¼ 2000, with an external trap, ωz ¼ 2π × 5 Hz (dashed blue
line), and without external trap, ωz ¼ 0 Hz (solid red line).
(c) Absorption images after a free-expansion time of 16 ms [from
dataset with circles in (d)], integrated density profile for t ¼
60 ms (blue line) and fit (dashed red line). (d) Oscillations of a
quantum gas after the quench procedure. Blue diamonds, quench
of only ωz for a BEC (Q1); red circles, additional interaction
quench to create soliton (Q3); green squares, optimized quench
parameters to minimize breathing of the soliton (Q2). Uncertainty
intervals indicate �1 standard error.
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GPE, we use the ansatz in Eq. (1) to set the starting
conditions, and we determine the breathing frequency from
a spectral analysis of the time evolution of the wave
function [15] [Fig. 2(a), triangles]. In addition, we use
an analytical approximation for the breathing frequency
(red line) calculated with a Lagrangian variational analysis
at the energy minimum of the 3D GPE [13,15]. We find that
both models agree well with the trend of the measurements
of ωsol, although our experimental data points are system-
atically lower for large N than our theoretical predictions.
We speculate that this is due to nonharmonic contributions
to the energy of the soliton on the breathing oscillations for
finite oscillation amplitudes [Fig. 1(b)].
To determine the influence of the trapping potential, we

measure the variation of ωsol as we reduce the longitudinal
trapping frequency ωz;f (Q5). Two regimes of ωsol can be
identified in Fig. 2(b) for varying the values ofωz;f. For large
values ofωz;f, the trap dominates the breathing of the soliton
and ωsol increases like 2ωz;f. For small values of ωz;f, inter-
actions dominate the breathing of the soliton andωsol reaches
a constant value. This offset of the breathing frequency is a
result of the “self-trapping” potential of a free soliton.
Again, we compare the experimental results with our

theoretical model [Fig. 2(b), red line] and the numerical

simulations of the 1D GPE. The blue band in Fig. 2(b)
indicates the simulated frequencies for N ¼ 1300 to
N ¼ 1500. The simulation predicts a lower breathing
frequency for the free soliton than the analytical approxi-
mation, but all curves are within the uncertainly range of
the experimental data.
External trapping potentials can in principle alter the

soliton dynamics [7,25,26], causing, e.g., modulations of
the soliton’s tails due to residual nonautonomous terms of
the 1D GPE in a harmonic potential [27]. For the following
experiments, however, we employ trap frequencies that are
significantly smaller than the observed oscillation frequen-
cies of the soliton (2ωz < ωsol) to decouple the influence of
the trapping potential. In summary, for small-amplitude
oscillations we find good agreement of ωsol between
our experimental results and analytical and numerical
predictions based on the 1D GPE (and nonpolynomial
Schrödinger equation [15]).
Breathing oscillations of lz close to the equilibrium size

are not the only possible excitation modes of solitons. The
existence of higher-order solitons has been predicted in the
nonlinear Schrödinger equation [3], and has been observed
for optical solitons in silica-glass fibers [2,4]. A soliton of
order n can be interpreted as a bound state of n strongly
overlapping solitons [13]. By exploiting the equivalence of
the nonlinear Schrödinger equation and 1D GPE, similar
effects were later proposed for bright matter-wave solitons
[13,28], where it was suggested that nth-order solitons can
be generated by a rapid increase of the attractive interaction
strength by a factor n2. Similarly, our simulations of the 1D
GPE show that higher-order solitons can be created for an
increased initial size of the wave packet. An nth-order
soliton forms for a sech-shaped wave function with an

initial size lðnÞz that is the n2 multiple of the healing length

lð1Þz , i.e., lðnÞz ¼ n2lð1Þz [15].
Within the 1D GPE theory, both creation methods result

in the periodic development of multipeaked structures for
higher-order solitons [3,29]; e.g., they create a sharp central
peak with side wings for a second-order soliton [Fig. 3(a)]
and a double peak for a third-order soliton [15]. Sizes and
interaction quenches that do not fulfil the previous con-
ditions lead to a “shedding” of the atomic density in the z
direction. The wave packet oscillates and loses particles
until its size and shape match the next (lower n) higher-
order soliton [3]. For a second-order soliton, the predicted
oscillation period Tð2Þ is [13]

Tð2Þ ¼ 8π

ℏ
m

�

a2r
Njafj

�

2

: ð2Þ

Recently, excitation modes of higher order have also
been used as a test bed for various theoretical models
beyond GP theory. The fragmentation of solitons with an
increased initial width was predicted within the multi-
configurational time-dependent Hartree method for bosons

FIG. 2. Breathing frequency ωsol of the soliton. (a) Atom
number dependence (Q4). Red circles, experimental data; the
uncertainty bars for the atom number indicate the standard
deviation of N over the first 100 ms of each frequency
measurement. Blue triangles, simulation of the 1D GPE [15].
Red line, analytical approximation [13,15]. Dashed gray line,
oscillation frequency of a noninteracting gas, 2ωz;f . (b) Depend-
ence of ωsol on the trap frequency (Q5). Red circles, experimental
data points forN ≈ 1450. Blue area, simulation of the 1D GPE for
N ¼ 1300–1500. Red line, analytical approximation. Dashed
gray line, 2ωz;f .
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[30] and critically discussed [31], and the influence of
quantum effects on the dissociation process was inves-
tigated [32–34].
Here, we apply two different quench protocols to study

the evolution of strongly excited solitons. Depending on the
initial size and the quench parameters, we observe shedding
and fragmentation of the wave packet, and we measure
oscillation frequencies that indicate the creation of higher-
order solitons. To demonstrate the effect of a strong quench
of an elongated BEC, we increase ai and reduce ωz;i before
ramping a and ωz to −5.3a0 and 2π × 0.0ð6Þ Hz in 13 ms
(Q6). Our quench induces an initial spreading of the wave
packet, followed first by a strong shedding of atoms, and
then by the formation of a soliton that contains approx-
imately 1=3 of the initial atom number [Fig. 3(b)]. We
determine the soliton width and find a slow oscillation of
lzðtÞ with a frequency of 2π × 2.4ð2Þ Hz [Fig. 3(c)]. This
frequency is significantly smaller than the expected breath-
ing frequency of first-order solitons, 2π × 6.0 Hz, and it
matches well to the expected frequency of 2π × 2.3 Hz for
second-order solitons in Eq. (2).
Observing shedding and oscillations agrees with the

predictions for higher-order solitons within the 1D GPE
[3]; however, we find a strong dependence on details of the
quench protocol and on the dynamical evolution during the
quench. For a closer match to theoretical works [13], we
implement a double-quench protocol, with a first quench
to generate a soliton with weak attractive interaction,
af ¼ −0.8a0, ωf ¼ 2π × 1.4ð2Þ Hz, and, after a settling
time of 25 ms, a second quench of only the interaction

strength, af ¼ −4.6a0 (Q7). Starting with approximately
2200 atoms, we observe no shedding but a small loss of 300
atoms during the first 60 ms. The vertical density profiles in
our absorption images [Fig. 4(a)] resemble the expected
profiles of a second-order soliton [Fig. 3(a)], and the
vertical width of the wave packet oscillates with a fre-
quency of 2π × 5.6ð6Þ Hz [Fig. 4(b)], which matches the
expected frequency of 2π × 5.2 Hz for second-order sol-
itons (2π × 13.2 Hz for the first-order solitions).
For both measurements [Figs. 3(c) and 4(b)], a small

percentage of absorption images show a splitting of the
soliton into two fragments [inset of Fig. 4(b)], and they are
omitted from the fitting procedure. Because of the destruc-
tive nature of our absorption images it is difficult to
conclude on the evolution and on the cause of the splitting
process. A double-peak structure in the density profile can
indicate the generation of a third-order soliton, fragmenta-
tion due to quantum effects, or simply an insufficient
technical control of our quench parameters. For our setup,
the control of horizontal magnetic field gradients to avoid
longitudinal accelerations is especially challenging [22].
The percentage of images that show a splitting of the wave
packet increases for longer evolution times, and we indicate
their fraction in Fig. 4(b) with a histogram.
In conclusion, we experimentally studied the creation

and the excitation of breathing modes of bright matter-
waves solitons in a quasi-one-dimensional geometry after a
quench of interaction and longitudinal confinement. We
measured the “self-trapping” frequency ωsol for first-order
solitons and its dependence on N and ωz. For stronger
excitations and for a double-quench protocol, we observed
signatures of second-order solitons and the shedding and
splitting of the wave function. Further measurements of the

FIG. 4. Second-order soliton and splitting after the double
quench Q7. (a) Absorption images at time t after the quench and
after 7 ms of free expansion. (b) Time evolution of the measured
width lz of the central wave packet (red circles), sinusoidal fit
with period 180(20) ms (dashed red line). The expected period
from the 1D GPE simulations is 192 ms. The histogram counts
the fraction of images showing a splitting of the wave function
(9 repetitions per time step). Inset: Absorption image of a split
matter wave for t ¼ 210 ms.

FIG. 3. Time evolution after a strong quench of interactions
and trap frequency (Q6). (a) 1D GPE simulation of the
density profiles for a second-order soliton with 1100 atoms,
af ¼ −5.3a0, and with an oscillation period Tð2Þ of 432 ms.
(b) Absorption images at time t after the quench and after 11 ms
of free expansion. (c) Time evolution of the measured width lz of
the central wave packet (red circles), sinusoidal fit with period
420(30) ms (dashed red line). The uncertainty intervals indicate
�1 standard deviation.
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splitting process and the damping of the oscillations due to
shedding are necessary to distinguish technical fluctuations
from higher-order solitons and fragmentation due to quan-
tum effects [32–34].
The data used in this publication are openly available at

the University of Strathclyde KnowledgeBase [35].
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