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We show that coherent harmonic focusing provides an efficient mechanism to boost all-optical
signatures of quantum vacuum nonlinearity in the collision of high-intensity laser fields, thereby offering a
promising route to their first experimental detection. Assuming two laser pulses of given parameters at our
disposal, we demonstrate a substantial increase of the number of signal photons measurable in experiments
where one of the pulses undergoes coherent harmonic focusing before it collides with the fundamental-
frequency pulse. Imposing a quantitative criterion to discern the signal photons from the background of the
driving laser photons and accounting for the finite purity of polarization filtering, we find that signal
photons arising from inelastic scattering processes constitute a promising signature. By contrast,
quasielastic contributions which are conventionally assumed to form the most prospective signal remain
background dominated. Our findings may result in a paradigm shift concerning which photonic signatures
of quantum vacuum nonlinearity are accessible in experiment.

DOI: 10.1103/PhysRevLett.123.091802

Introduction.—The quantum vacuum has remarkable
properties. It is not trivial and inert, but amounts to a
complex state whose properties are fully determined by
quantum fluctuations. As these fluctuations comprise all
existing particles, the quantum vacuum even constitutes a
portal to new physics beyond the standard model of particle
physics. To obtain a measurable response, the quantum
vacuum has to be probed by some external stimulus. A
powerful means is provided by strong macroscopic electro-
magnetic fields which couple directly to the charged
particle sector. Within the standard model, the leading
effect arises from the effective coupling of the prescribed
electric E⃗ and magnetic B⃗ fields via a virtual electron-
positron pair. This process is governed by quantum
electrodynamics (QED) and supplements Maxwell’s
classical theory in vacuum with effective nonlinear cou-
plings of the electromagnetic fields [1–4]; see also [5–15].
Up to now, the corresponding deviations have never

been directly observed for macroscopically controlled fields.
This is because the effective self-interactions are para-
metrically suppressed by powers of jE⃗j=Ecr and jB⃗j=Bcr,
with critical electric (magnetic) field Ecr ¼ m2

ec3=ðeℏÞ ≃
1.3 × 1018 V=m (Bcr ¼ Ecr=c ≃ 4 × 109 T). The strongest

macroscopic fields available in the laboratory are
delivered by high-intensity lasers reaching peak fields E ≃
Oð1014Þ V=m and B ≃Oð106Þ T.While these fields clearly
fulfill jE⃗j ≪ Ecr, jB⃗j ≪ Bcr, they appear to be sufficient to
facilitate a first detection of QED vacuum signatures. The
basic idea is to collide high-intensity laser pulses and to look
for vacuum-fluctuation-induced modifications of their prop-
erties, encoded in signal photons whose kinematics or
polarization properties differ from the laser photons driving
the effect, thereby allowing for a clear signal-to-background
separation. For recent estimates of the prospective numbers
of signal photons attainable in laser pulse collisions, cf.,
Refs. [16–26]. The smallness of the signal makes its
detection challenging, even at dedicated high-intensity laser
facilities such as CILEX [27], CoReLS [28], ELI [29], and
SG-II [30].
In this Letter,we show that the number of attainable and, in

particular, discernible signal photons can be increased
significantly for a given laser pulse energy put into the
interaction volume. To this end, we rely on themechanism of
coherent harmonic focusing (CHF), pioneered by
Refs. [31,32]. Our quantitative analysis relies on the novel
numerical approach [25] allowing for first-principles simu-
lations of photonic signatures of vacuum nonlinearities. We
also provide analytical estimates based on a description of the
driving laser fields as pulsed paraxial beams; cf. Ref. [33].
References [31,32] demonstrated that CHF can pave the

way towards extreme intensities, thereby allowing for
unprecedented experimental studies of nonperturbative
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electron-positron pair production in a highly localized
strong field region; cf. also Ref. [34]. They showed that
the reflection of a relativistically intense laser pulse of
wavelength λ from the oscillating boundary of an overdense
plasma produces a harmonic spectrum with the spectrum
intensity scaling as In ∼ n−5=2, where n ≥ 1 labels the nth
harmonic [31]. These harmonics can be focused coherently
down to a spot size of about λ=n using a concave plasma
surface of appropriate curvature [32]. While an improved
description of the process resulted in a slight revision of the
power as 5=2 → 8=3 [35], in this Letter we stick to the
original prediction of [31].
As a concrete example, we employ CHF to boost

photonic signatures of QED vacuum nonlinearity in the
head-on collision of two linearly polarized high-intensity
laser fields of given parameters. For definiteness, we
assume the initial laser pulses to agree in both wavelength
λ and pulse duration τ. One comprises an energy W and is
focused to a beam waist of w0 ¼ λ. The other is reflected at
a concave overdense plasma surface, effectively partition-
ing the laser pulse energy—which after the reflection
process is also assumed to be given by W—as W ¼Pnmax

n¼1 Wn into the individual harmonics. Here, Wn ¼
Wn−5=2=Hð5=2Þ

nmax is the energy put into the nth harmonic,

nmax is the harmonic cutoff and HðqÞ
nmax ¼

Pnmax
n¼1 1=n

q is a
generalized harmonic number. Experimentally, it has been
shown that second harmonic generation achieves efficien-
cies of 22� 8% for intensities approaching 1021 W=cm2

[36]. These efficiencies are in good agreement with the
scaling assumed for the CHF efficiency 2−5=2 ¼ 18% for
the n ¼ 2 channel and indicate the principle feasibility
of implementing CHF scenarios with low harmonics in
experiments.
The plasma surface focuses the nth harmonic to a waist

of w0;n ¼ λ=n, such that the electric peak field amplitude of

the nth harmonic scales as E0;n ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wn=ðτw2

0;nÞ
q

∼ n−1=4.

This CHF pulse collides head on with the fundamental-
frequency pulse at zero impact parameter and temporal
offset in the focus. For the impact of spatio-temporal
offsets on photonic quantum vacuum signatures, cf., e.g.,
Refs. [21,33,37,38].
Formalism.—The amplitude for emission of a single

signal photon (wave vector k⃗, polarization p) from the
electromagnetized QED vacuum reads [39]

SðpÞðk⃗Þ≡ hγpðk⃗ÞjΓint½AðxÞ; aðxÞ�j0i: ð1Þ

Here, jγpðk⃗Þi≡ a†
k⃗;p

j0i is the single signal photon state and
Γint½AðxÞ; aðxÞ� encodes the vacuum-fluctuation-mediated
interactions of the operator-valued signal photon field aðxÞ
[39] with the driving macroscopic electromagnetic field
AðxÞ treated as a classical background [40]. For fields of
frequencies ω ≪ mec2=ℏ, these effective interactions are

governed by the one-loop Heisenberg-Euler effective
Lagrangian L1-loop

HE [2], implying

Γint½AðxÞ; aðxÞ� ≃
Z

d4x aμðxÞjμðxÞ; ð2Þ

where jμðxÞ ¼ 2∂αð∂L1-loop
HE =∂FαμÞ sources the signal

photons. The above validity criterion is met for present
and near-future high-intensity lasers of optical to x-ray
frequencies.
In the Heaviside-Lorentz system and units c ¼ ℏ ¼ 1,

the leading contribution of L1-loop
HE reads [1,2]

L1-loop
HE ≃

m4
e

8π2
1

45

�
e
m2

e

�
4

½ðB⃗2 − E⃗2Þ2 þ 7ðB⃗ · E⃗Þ2�: ð3Þ

Equation (3) is valid for jE⃗j ≪ Ecr, jB⃗j ≪ Bcr and should
allow for the reliable study of all-optical signatures of QED
vacuum nonlinearity driven by high-intensity lasers with an
accuracy on the 1% level [25].
Upon insertion of Eq. (2) into Eq. (1), the signal photon

emission amplitude can be expressed as

SðpÞðk⃗Þ ¼
ϵ�μðpÞðk⃗Þffiffiffiffiffiffiffi

2k0
p

Z
d4x eikxjμðxÞjk0¼jk⃗j; ð4Þ

where ϵμðpÞðk⃗Þ ¼ (0; e⃗ðpÞðk⃗Þ), fulfilling je⃗ðpÞðk⃗Þj ¼ 1 and k⃗ ·
e⃗ðpÞðk⃗Þ ¼ 0 is the polarization vector of the signal photon

state jγpðk⃗Þi. Here, we label the two polarizations trans-

verse to k⃗ by p ∈ f1; 2g. Without loss of generality, we
choose the polarization basis such that the polarization
vector e⃗ð1Þðk⃗Þ always fulfills e⃗ð1Þðk⃗Þ · ϵ⃗0 ¼ 0, i.e., is

perpendicular to both k⃗ and a given constant reference
vector ϵ⃗0. Hence, e⃗ð1Þðk⃗Þ spans the polarization mode

polarized perpendicularly to ϵ⃗0, and e⃗ð2Þðk⃗Þ is the vector
completing the orthogonal basis.
With these definitions, Eq. (4) yields

SðpÞðk⃗Þ ¼ i

ffiffiffi
k
2

r Z
d4x eiðk⃗·x⃗−ktÞ

× ½e⃗ðpÞðk⃗Þ · P⃗ − e⃗ðpþ1Þðk⃗Þ · M⃗�; ð5Þ

with k¼jk⃗j and e⃗ð3Þðk⃗Þ¼−e⃗ð1Þðk⃗Þ. The polarization P⃗ and
magnetization M⃗ of the quantum vacuum are defined as [41]

P⃗ ¼ ∂L1-loop
HE

∂E⃗ and M⃗ ¼ −
∂L1-loop

HE

∂B⃗ : ð6Þ

Finally, the differential number of signal photons of polari-
zationp is related to the modulus square of Eq. (5) and reads
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d3NðpÞðk⃗Þ ¼
d3k
ð2πÞ3 jSðpÞðk⃗Þj2: ð7Þ

For a polarization insensitive measurement we have
d3N ¼ P

2
p¼1 d

3NðpÞ.
Field configuration.—To describe the electromagnetic

fields of a focused laser pulse (wavelength λ, energy W,
duration τ, waist w0 ¼ λ), we employ the spectral pulse
model [42], detailed in Sec. III D 2 of Ref. [25]. These
fields fulfill Maxwell’s equations in vacuum exactly and are
conveniently represented in terms of a complex vector
potential in radiation gauge,

A⃗ðxÞ ¼
Z

d3k
ð2πÞ3 eiðk⃗·x⃗−ktÞ

X2

q¼1

e⃗ðqÞðk⃗Þaqðk⃗Þ; ð8Þ

with spectral amplitudes aqðk⃗Þ encoding the spatio-
temporal field structure. The associated real-valued electric
and magnetic fields are given by E⃗ðxÞ ¼ ℜf−∂tA⃗ðxÞg and

B⃗ðxÞ ¼ ℜf∇⃗ × A⃗ðxÞg, respectively. For a laser pulse
propagating in �ˆκ⃗ direction, polarized along ϵ⃗� in the
focus at xμ ¼ 0, the spectral amplitudes are given by
aqðk⃗Þ → a�q ðk⃗Þ,

a�q ðk⃗Þ ¼ � ð2πÞ3=4
ik

ϵ⃗� · e⃗ðqÞðk⃗ÞΘð�kkÞ
kk
k

×
ffiffiffiffiffiffiffi
Wτ

p
λ e−ðλ=2Þ2k2⊥−ðτ=4Þ2½k−ωðλÞ�2 : ð9Þ

Here, Θð:Þ denotes the Heaviside function, ωðλÞ ¼ 2π=λ
the laser photon energy, kk ¼ ˆκ⃗ · k⃗ the momentum compo-

nent along ˆκ⃗, and k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2k

q
≥ 0. The amplitudes (9)

have been constructed such that the zeroth-order paraxial
Gaussian beam is reproduced for weak focusing and long
pulse durations [42,43].
To model our scenario of a fundamental-frequency laser

pulse (propagation direction ˆκ⃗, polarization ϵ⃗þ in the focus)
colliding head-on with a CHF pulse (polarization ϵ⃗− in the
focus) containing nmax harmonics, we choose the spectral
amplitudes in Eq. (8) as

aqðk⃗Þ → aþq ðk⃗Þ þ
Xnmax

n¼1

ffiffiffiffiffiffiffi
Wn

W

r
a−q ðk⃗Þ

����
λ→λ=n

: ð10Þ

Subsequently, we refer to the laser pulse propagating in �ˆκ⃗
direction as “�” pulse; the “þ” (“−”) pulse is the
fundamental-frequency (CHF) pulse.
The coherent superposition of the nmax diffraction

limited harmonics to form the CHF pulse results in a
narrow, strongly peaked pulse shape of effective waist
wCHF ≈ λ=nmax [32]. For large values of nmax, the effective
pulse duration in the focus τCHF becomes essentially
independent of the envelope τ of the contributing modes.

Instead, it is also determined by the wavelength and given
by τCHF ≈ λ=nmax [32]; cf. Fig. 1.
Results.—In the remainder, we use the following param-

eters: λ ¼ 800 nm, τ ¼ 5 fs, and W ¼ 25 J. Both pulses
are linearly polarized; the angle between their polarization
vectors in the focus is ϕ ¼ ∢ðϵ⃗þ; ϵ⃗−Þ. The value of τ ¼ 5 fs
is chosen mainly for numerical convenience, allowing us to
scale nmax up to 12. Such small pulse durations were so far
only achieved at sub-Joule pulse energies [44]; state-of-the-
art high-intensity laser pulses feature durations≳20 fs [29].
We have explicitly confirmed for nmax ¼ 6 and ELI-NP
[29] parameters (λ ¼ 800 nm, τ ¼ 20 fs, W ¼ 200 J) that
the studied effects persist for longer pulse durations; cf. the
Supplemental Material [45].
As will be demonstrated below, to a very good approxi-

mation the signal photons N�
ðpÞ emitted into the “�” half-

space, characterized by wave vectors k⃗ fulfilling�ˆκ⃗ · k⃗ > 0,
can be interpreted as arising from the “�” pulse and being
quasielastically scattered off the “∓” pulse. Manifestly
inelastic scattering processes characterized by an energy
transfer ofOðωÞ are suppressed in comparison to the elastic
contributions [22,39,46]. The study of photon scattering in
the head-on collision of two linearly polarized paraxial
beams [47] suggests that an angle of jϕj ¼ π=2 between
the polarization vectors ϵ⃗� maximizes the signal photon
number N attainable in a polarization insensitive measure-
ment.By contrast, the numberN⊥ of signal photons scattered
into a perpendicularly polarized (⊥) mode should become
maximum for an angle of jϕj ¼ ðπ=4Þmod π. We have
explicitly confirmed this behavior in our simulations (see
Fig. 1 in the Supplemental Material [45]) and stick to these
optimal choices ofϕwhen providing results forN andN⊥ in
the remainder.
Aiming at the analysis of the polarization-flipped signal

photons propagating into the “�” half-space, we choose

FIG. 1. Characteristics of the CHF pulse with total energy
W ¼ 25 J, envelope τ ¼ 5 fs, and fundamental wavelength
λ ¼ 800 nm for different nmax. Left: temporal profile in the
focus. Right: transverse focus profile. The energyW is partitioned
into nmax harmonics of wavelength λn ¼ λ=n and energy Wn.
Each mode is focused to its diffraction limit w0;n ¼ λn. For
nmax ¼ 12, the effective 1=e2 pulse duration and waist of the CHF
pulse are as small as τCHF ¼ 168 as and wCHF ¼ 173 nm.
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ϵ⃗0 → ϵ⃗�. This immediately implies that e⃗ð1Þðk⃗Þ spans the
mode polarized perpendicularly to ϵ⃗�, respectively, and
N⊥ ≔ Nð1Þ. At the same time, this choice ensures that none
of the driving laser photons N are perpendicularly polari-
zed; cf. Eq. (9).
Figure 2 depicts the attainable numbers of signal photons

Nþ andNþ⊥ as a function of nmax. The simulation results are
remarkably well described by

Nþ
ðpÞðnmaxÞ ¼ cþðpÞ

1

nmaxð1þ 2n2maxÞ
ðHð1=4Þ

nmax Þ4
ðHð5=2Þ

nmax Þ2
; ð11Þ

with polarization dependent numerical constants cþðpÞ.
Equation (11) follows from Eqs. (7) and (10) of
Ref. [33] upon identification of the probe (pump) with
the fundamental frequency (CHF) pulse and assuming
wCHF ¼ w0=nmax as well as τCHF ∼ zR;CHF ∼ 1=nmax. It only
accounts for quasielastically scattered signal photons. The
CHF peak field energy per spot size is determined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WCHF=w2

CHF

p
→

Pnmax
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wn=w2

0;n

q
. Analytical estimates

for the angular decay of N�
ðpÞ as well as the radial

divergences θ�sig of the signal photons emitted into the
“�” space can be derived along the same lines; see the
Supplemental Material [45].
Equation (11) implies that CHF can increaseNþ

ðpÞ at most
by a factor of

Nþ
ðpÞðnmax ≫ 1Þ

Nþ
ðpÞðnmax ¼ 1Þ ≃

128

27ζ2ð5
2
Þ ≈ 2.6 ð12Þ

relative to the collision of two fundamental-frequency
pulses. Asymptotically, the increase of the CHF peak field
with nmax is compensated by a decrease of the effective
focusing volume. The ratio of the coefficients cþ and cþ⊥
extracted in Fig. 2 is cþ=cþ⊥ ≈ 23.0, and thus roughly
agrees with that found for counter-propagating paraxial
beams cþ=cþ⊥ ¼ 197

9
≈ 21.8 [47].

Subsequently, we focus on simulation data for the signal
photon spectra. In Fig. 3 we highlight the CHF case with
nmax ¼ 12. For a simple and fair assessment of the benefits
of CHF, we compare the results of this CHF scenario with
those for the collision of two fundamental frequency pulses
of the same energy (nmax ¼ 1). To assess the separability of
the signal photons from the background, we also analyze
the spectrum of the driving laser photons. The integrated
numbers of laser photons inferred from our simulation are

nmax 1 12

N 2.0 × 1020 1.86 × 1020

constituting the background from which the signal has
to be separated. These results are in good agreement
with the analytical estimates obtained with Eq. (8) in the
Supplemental Material [45].
We call the differential number of signal photons

discernible from the background if it fulfills the discern-
ibility criterion d3NðpÞ=d3k > d3N ðpÞ=d3k. Summing over

FIG. 2. Scaling of the signal photon numbers Nþ (blue dots;
left scale) and Nþ⊥ (green diamonds; right scale) with nmax. The
solid lines are least-squares fits to Eq. (11).

FIG. 3. Spectra of the driving laser photons N and signal
photons N attainable in a polarization insensitive measurement
for nmax ¼ 12. White dashed circles indicate lines of constant
photon energy k ¼ nω, n ∈ N. Different color scales are used in
the top, middle, and bottom panels. In the top panel θ ¼ 1=π
denotes the radial divergence of a diffraction limited Gaussian
beam. The radial divergences highlighted in the middle panel are
determined from Eqs. (2) and (4) in the Supplemental Material
[45]. The bottom panels focus on the spectral domain where the
differential number of signal photons surpasses the differential
number of driving laser photons. Here, we compare the spectrum
of the driving laser photons with the filtered signal photon
spectrum fulfilling the criterion d3N=d3k > d3N =d3k adopting
the same linear color scale. Integrating the latter, we obtain Ndis ≈
26.06 discernible signal photons per shot.
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the two transverse polarizations p and integrating over the
spectral regions where this criterion holds, we obtain

nmax 1 12

Ndis 2.15 × 10−6 26.06

discernible signal photons per shot at ≈2ω. This implies
that essentially none of the quasielastically scattered signal
photons, which dominate the total numbers of signal
photons NðpÞ [cf. Eq. (12) and Fig. 2], can be discerned
from the background of the driving laser photons.
Microscopically, the discernible signal photons at ≈2ω
appear to arise from the merging of two counter-
propagating fundamental-frequency laser photons in the
localized strong field of the CHF pulse. For an analogous
scenario with ELI-NP [29] laser parameters and nmax ¼ 6,
we obtain Ndis ≈ 314 at ≈2ω; see Fig. 3 in the
Supplemental Material [45].
Specializing the above criterion to the ⊥ polarization

mode, we obtain

nmax 1 12
for P ¼ 0,

N⊥;dis 57.93 151.31

amounting to the polarization purity of an ideal polarization
filter. These signal photons are predominantly emitted in
“þ” forward direction at ≈ω. This can be explained by the
fact that the driving laser photons have zero overlap with
the ⊥ mode, allowing for an essentially background free
measurement of the quasielastic scattering signal. The gain
of≈2.6 achieved by CHFwith nmax ¼ 12 relative to nmax ¼
1 observed here is fully compatible with the gain of ≈2.8
derived for the quasielastically scattered signal photons in
Eq. (6) of the Supplemental Material [45]. The signal
photons constituting N⊥;dis do in general not form a subset
of Ndis, because both sides of the discernibility criterion are
inherently polarization sensitive. For a realistic polarization
filter with P ≠ 0 the discernibility criterion reads
d3N⊥=d3k > Pd3N =d3k. In this case, the gain achieved
by CHF is substantially larger and the number of dis-
cernible signal photons using an ambitious polarization
purity becomes

nmax 1 12
for P ¼ 10−10.

N⊥;dis 6.59 × 10−3 10.44

These signal photons again feature an energy of ≈2ω. The
corresponding spectra qualitatively agree with those
depicted in Fig. 3 upon identifying N → PN and
Ndis → N⊥;dis.
The results for Ndis and N⊥;dis for P ≠ 0, which are—at

least in principle—accessible in experiment, clearly under-
pin the substantial enhancement of several orders of
magnitude in the numbers of discernible signal photons
achieved by CHF. It is interesting to note that such a

dramatic enhancement could not be expected from the
comparably moderate increase of the total numbers of
signal photons NðpÞ [cf. Eq. (12) and Fig. 2] as well as the
results for N⊥;dis based upon the existence of a perfect
polarization filter with P ¼ 0. In this sense, our results
exemplify that the criterion of the principle possibility of an
experimental measurement of the effect based on real-
world limitations, like a nonzero polarization purity, may
significantly impact the assessment if the implementation
of an advanced scheme, such as CHF, in experiment is
worthwhile or not.
Our results exemplify that the assessment of an advanced

scheme, such as CHF, necessarily requires the consider-
ation of real-world limitations. In the present case, the mere
existence of a rather small polarization purity leads to a
decisive change of perspective on the relevance of the CHF
scheme.
Conclusions.—We have demonstrated in an idealized

setup that CHF can substantially increase the number of
discernible signal photons in the collision of high-intensity
laser pulses for a given energy put into the interaction
volume. We are confident that our findings will stimulate
many further theoretical ideas and proposals as well as
dedicated experimental campaigns aiming at the first
verification of quantum vacuum nonlinearity using CHF
and replications based on conventional higher-harmonic
generation techniques.
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