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We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen’s
geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result
which we designate the first law of complexity. As an example, we examine the complexity ¼ action
conjecture when the anti–de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a
coherent state. Remarkably, the gravitational contributions completely cancel and the final variation
reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of
Wheeler-DeWitt patch appears to act like the “end of the quantum circuit”.
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Introduction.—Quantum information has produced sur-
prising new insights into foundational questions about the
anti–de Sitter/conformal field theory (AdS/CFT) correspon-
dence, e.g., [1–11]. One fascinating concept that has
recently entered this discussion is quantum circuit complex-
ity: the size of the optimal unitary circuit or transformation
UT preparing a target state jΨTi from a given reference state
jΨRi using a set of elementary gates [12–14]. There have
been a number of different proposals for the gravitational
observables which would be dual to the complexity of a
boundary state, e.g., [15–19]. The focus of our discussion
will be the complexity ¼ action (CA) conjecture [17,18],
which suggests

CAðΣÞ ¼ IWDW=π: ð1Þ
That is, the holographic complexity of a boundary state on
the time slice Σ should be the gravitational action evaluated
on the so-called Wheeler-DeWitt (WDW) patch, defined as
the domain of dependence of a bulk spatial slice anchored
on Σ. One important feature motivating the study of
holographic complexity is that these new gravitational
observables are sensitive to the bulk physics deep in the
interior of a black hole [15,20].
Exploring the properties of the new gravitational observ-

ables and their implications for complexity in the boundary
theories is now an active area of research, e.g., [15–56].

A basic shortcoming of this research program is thatwe lack a
proper understanding of circuit complexity of quantum field
theories (QFTs). In particular, this prevents more than
qualitative tests of the gravitational results. Hence, a second
line of inquiry has become to fully develop the concept of
circuit complexity for QFT states, in particular for states in a
strongly coupled conformal field theory (CFT) (such as a
holographic boundary theory), e.g., [57–84]. This will be
essential to properly test the various holographic proposals
and ultimately to produce a derivation of one (or more) of
these conjectures. Our objective here is to begin to build a
concrete bridge between these two research directions. In
particular,we examinevariations of the target state anddemo-
nstrate a natural interpretation connecting both approaches.
Nielsen’s geometric approach [85–87] gives a frame-

work to describe the complexity of QFT states, as illus-
trated for certain simple QFTs, e.g., [63–73]. It constructs a
continuum representation of the unitary transformations

UðσÞ ¼ P⃖ exp

�
−i

Z
σ

0

dsHðsÞ
�
; ð2Þ

where s parametrizes the circuit and P⃖ signifies a right-to-
left path ordering. The “Hamiltonian” HðsÞ ¼ P

YIðsÞOI
is constructed from the (Hermitian) generators OI of the
elementary gates, and YIðsÞ are control functions specify-
ing which gates (and how many times they) are applied at
any point s in the circuit. Equation (2) actually specifies a
path UðσÞ through the space of unitaries, or through the
space of states with jψðσÞi ¼ UðσÞjψRi. With σ ∈ ½0; 1�,
the boundary conditions are

Uðσ ¼ 0Þ ¼ 1; Uðσ ¼ 1Þ ¼ UT; ð3Þ
where jΨTi ¼ UT jΨRi.
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Introducing a set of coordinates xa on the space of
unitaries described by Eq. (2) [or on the space of states
UðxaÞjΨRi], paths are described as xaðsÞ. Nielsen’s
approach [85–87] identifies the optimal circuit producing
UT by minimizing the cost

D½xaðsÞ� ¼
Z

1

0

dsFðxa; _xaÞ; ð4Þ

subject to the boundary conditions (3). The circuit com-
plexity is then the cost for the optimal trajectory, i.e.,

CðjΨTiÞ≡MinD: ð5Þ
As indicated in Eq. (4), the cost function F is chosen as a
particular functional of the position xaðsÞ and the tangent
vector _xaðsÞ. Hence, determining the complexity is analo-
gous to the physical problem of identifying a particle
trajectory by minimizing the action with Lagrangian
Fðxa; _xaÞ and then evaluating the on-shell action. The
precise form of F is not fixed, but reasonable cost functions
satisfy a number of preferred features [87]: (i) smoothness,
(ii) positivity, (iii) triangle inequality, and (iv) positive
homogeneity—see also [63,65].
In the context of holography, we do not yet have a clear

picture of the reference state, nor of the gates, nor of the
path. However, the target state has a sharp interpretation in
the AdS=CFT framework. Indeed, we are interested in
quantum states in the boundary CFT which are dual to
smooth geometries in the bulk gravitational theory. Hence,
it is natural to examine the role of the latter in holographic
complexity. In particular, we consider variations of the
holographic complexity under changes of the target state
and examine what information we can extract about the
corresponding cost function.
The first law of complexity.—Using the analogy to

classical mechanics, the variation of complexity (5) due
to changing the target state with a fixed reference state, as
illustrated in Fig. 1, yields

δC ¼ paδxajs¼1 with pa ¼
∂F
∂ _xa ; ð6Þ

for any differentiable cost function F. The significant
feature of this result, which we designate as the first law
of complexity, is that δC only has contributions from the end
point. Hence, in the holographic setting, we can hope to

extract information about the (variation of the) cost
function in terms of bulk data describing the target state.
If the direction along the path pa is orthogonal to the

variation of the target state δxa, the first-order contribution
(6) vanishes. However, the next order variation still comes
from the end point,

δC ¼ 1

2
δpaδxajs¼1 with

δpa ¼ δxb
∂2F

∂xb∂ _xa þ δ_xb
∂2F

∂ _xb∂ _xa : ð7Þ

To explore the first law of complexity in the context of
holography, we consider the AdS vacuum as our original
target state and the backreaction of a free bulk scalar field
with a small amplitude as the perturbed target state.
Evaluating the variation of Eq. (1) yields the change in
the corresponding holographic complexity. Now this excited
state can be thought of as a coherent state of the bulk scalar.
In particular, the scalar field can be expressed as

Φ̂ðyμÞ ¼
X

½unðyμÞan þ u�nðyμÞan†�; ð8Þ
where un are eigenfunctions solving the Klein-Gordon
equation in the AdS background. The an and an† denote
the annihilation and creation operators acting on the scalar
vacuum j0i. We will assume that yμ ¼ ðρ; t;ΩÞ denote
global coordinates on the AdS background and then the sum
over n in Eq. (8) includes the radial and angular quantum
numbers. The excited state in which a few modes fjg are
given a classical expectation value can be described as a
coherent state

jεαji ¼ eε
P

DðαjÞj0i with DðαjÞ ¼ αjaj† − α�jaj; ð9Þ
where we have included a small parameter ε ≪ 1 to control
the overall amplitude of the scalar field

hεαjjΦ̂jεαji ¼ ε
X

ðαjuj þ α�ju
�
jÞ≡ εΦcl: ð10Þ

The reader will notice that our description of the perturbed
state has been entirely in terms of the bulk theory while the
aim of holographic complexity is to compute the complexity
of states in the boundary theory. However, the AdS=CFT
correspondence simply states that the bulk and boundary
theories provide alternative descriptions of the same quan-
tum states, i.e., the vacuum state j0i and the Hilbert space
spanned with the an and an†. Hence, while the details of
the description change in terms of the boundary CFT, the
perturbed states in Eq. (9) are still the same coherent states in
the boundary theory. Further, δCA is the variation of the
complexity between these coherent states and the vacuum in
the boundary theory. The bulk description of these states
lends itself to the holographic calculations for δCA.
Holographic framework.—Our example begins with a

four-dimensional bulk theory, Einstein gravity coupled to
a negative cosmological constant, and a free massless
scalar field

FIG. 1. The variation of the Nielsen circuit due to a perturbation
jΨT þ δΨi of the target state jΨTi.
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Ibulk¼
1

16πGN

Z
d4y

ffiffiffiffiffiffi
−g

p �
Rþ 6

L2
−
1

2
∇μΦ∇μΦ

�
: ð11Þ

Its vacuum AdS4 solution is

ds2AdS ¼
L2

cos2ρ
ð−dt2 þ dρ2 þ sin2ρdΩ2

2Þ; ð12Þ

where L denotes the AdS radius of curvature and the
(dimensionless) radial coordinate ρ runs from 0 to π=2, at
the asymptotic boundary.
We perturb the vacuum by turning on the scalar in a

coherent state (9) and the classical field Φcl then backreacts
on the spacetime geometry. Our calculation makes a
perturbative expansion in ε controlling the amplitude of
the scalar in Eq. (10). While the full set of modes carry
quantum numbers n ¼ ðj;l; mÞ, we focus on spherically
symmetric configurations l ¼ m ¼ 0. The scalar equation
in the AdS background reduces to

0 ¼ ∂2
ρΦþ 2

sin ρ cos ρ
∂ρΦ − ∂2

tΦ: ð13Þ

The corresponding eigenfunctions in Eq. (8) are

ujðt; ρÞ ¼ ejðρÞe−iωjt; ð14Þ

with frequency ωj ¼ 3þ 2j and radial profile [88]

ejðρÞ≡ 4ð−Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNðjþ 2Þðjþ 1Þ

πL2ðjþ 3
2
Þ

s

× cos3ρ2F1

�
−j; jþ 3;

3

2
; sin2ρ

�
: ð15Þ

For simplicity, we will focus on real parameters αj in
Eq. (9) which then yields

Φclðt; ρÞ ¼ 2
X

αjejðρÞ cosðωjtÞ: ð16Þ

Next we turn to the backreaction, where we follow
closely the analysis in [106–108]. For our spherically
symmetric configurations (16), we use the metric ansatz

ds2 ¼ L2

cos2ρ

�
−ae−2ddt2 þ dρ2

a
þ sin2ρdΩ2

2

�
; ð17Þ

where aðt; ρÞ, dðt; ρÞ describe the metric perturbation.
Working in the small amplitude expansion, we write

aðt; ρÞ ¼ 1þ ε2a2ðt; ρÞ þOðε4Þ;
edðt;ρÞ ¼ 1þ ε2d2ðt; ρÞ þOðε4Þ; ð18Þ

and at Oðε2Þ, Einstein’s equations reduce to three linear
first-order differential equations

∂ρa2 þ
3 − 2cos2ρ
cos ρ sin ρ

a2 ¼ ∂ρd2;

∂ρd2 ¼ −
1

4
sin ρ cos ρ½ð∂ρΦclÞ2 þ ð∂tΦclÞ2�;

∂ta2 ¼ −
1

2
sin ρ cos ρ∂ρΦcl∂tΦcl; ð19Þ

with the third being redundant. Imposing the regularity
condition a2ðt; ρ ¼ 0Þ ¼ 0 and the boundary condition
d2ðt;ρ¼π=2Þ¼0, the perturbations a2ðt; ρÞ and d2ðt; ρÞ
can be integrated in terms of Φclðt; ρÞ [107,108].
Holographic complexity.—The variation of holographic

complexity evaluated to second order in ε by the CA
conjecture (1) splits into two classes of contributions

δCAðΣÞ ¼
1

π
ðδIWDW þ IδWDWÞ; ð20Þ

where δIWDW is the variation due to the change in the
background fields within the original WDW patch, while
IδWDW is the variation due to the change in the shape (i.e.,
the position of the boundary) of the WDW patch.
First, we must recall that as well as the bulk terms

appearing in Eq. (11), the gravitational action includes a
number of surface terms [24,109]. In the present case [88],
only two will be relevant in evaluating the variation (20):
the first is the null surface term

Iκ ¼
1

8πGN

Z
∂WDW

dsd2Ω
ffiffiffi
γ

p
κ; ð21Þ

where γ is the metric determinant on the boundary of the
WDW patch. κ describes the failure of the coordinate s
along the null boundary to be affine, i.e., kμ∇μkν ¼ κkν,
where kμdxμ is the outward-directed null normal. The
second term

Ict ¼
1

8πGN

Z
∂WDW

dsd2Ω
ffiffiffi
γ

p
Θ logðlctΘÞ ð22Þ

ensures the action is invariant under reparametrizations
of the null boundaries [24]. Here, Θ ¼ ∂s log

ffiffiffi
γ

p
is the

expansion scalar of the null generators on the boundary,
and lct is an arbitrary scale needed for the argument of the
logarithm to be dimensionless.
If we consider the WDW patch anchored at t ¼ 0 in the

AdS vacuum (12), the future and past null boundaries are
given by t ¼ t�ðρÞ ¼ �ðπ=2 − ρÞ, and we choose the null
normals as kμdxμ ¼ �dtþ dρ. The boundary coordinate is
implicitly defined by ∂s ≡ kμ∂μ ¼ cos2ρ=L2ð∓ ∂t þ ∂ρÞ.
In the perturbed background, the null boundaries expe-

rience a small shift δt�ðρÞ, which is determined by

∂ρδt� ¼ �ε2ða2 − d2Þjt¼t�ðρÞ: ð23Þ
The variation δIbulk contributes to IδWDW in Eq. (20)

by the boundary integrals of δt�ðρÞ times the bulk action
evaluated for the AdS vacuum, i.e., Rþ 6=L2 ¼ −6=L2,
and to δIWDW yielding a total derivative, which is evaluated
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as a surface integral on the undeformed boundaries
t ¼ t�ðρÞ. Hence, the entire variation δCAðΣÞ is given by
surface integrals along the boundary of the WDW patch.
Turning to the contributions coming from Eqs. (21)

and (22). Above, we chose an affine boundary coordinate s,
giving κ ¼ 0 at leading order. The simplest approach is to
keep the same coordinate for the second-order calculations
and, at this order, it fails to be affine. Hence, we have a
nonvanishing variation δIκ with

κ ¼ �ε2
cos2ρ
L2

∂tða2 − d2Þ: ð24Þ

The variation δIct reduces to

δIct ¼
1

8πGN

Z
∂WDW

dsd2Ωδkμ∂μ
ffiffiffi
γ

p
: ð25Þ

We note that this result is independent of the scale lct.
Combining all contributions, the holographic complexity

variation equals

δCAðΣÞ ¼
δImat

π
¼ −

ε2

64π2GN

Z
∂WDW

dsd2Ω
ffiffiffi
γ

p ∂sðΦ2
clÞ:

ð26Þ
Above we are emphasizing that the sum of all gravitational
contributions precisely cancels and the full variation comes
entirely from the variation of the scalar field action δImat.
Given the state in Eq. (9), this becomes

δCAðΣÞ ¼
ε2

π2
X
j1;j2

αj1αj2Cj1;j2 ; ð27Þ

with the coefficients given by

Cj1;j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðj1 þ 3
2
Þðj2 þ 3

2
Þ

ðj1 þ 1Þðj1 þ 2Þðj2 þ 1Þðj2 þ 2Þ

s

× ðHj1þ1
2
þHj1þ3

2
þHj2þ1

2
þHj2þ3

2

−Hj1þj2þ5
2
−Hj1−j2−1

2
− 2þ 4 log 2Þ: ð28Þ

The Hα ¼ ∂α logΓðαþ 1Þ þ γ0 are harmonic numbers
(where γ0 is Euler’s constant). The reflection relation
H−α−1 −Hα ¼ π cotðπαÞ guarantees Cj1;j2 ¼ Cj2;j1 .
Figure 2 shows Cj1;j2 as a function of j1 for various

values of j2. We can see that these curves have two peaks,
one at j1 ¼ 1 and the other at j1 ¼ j2. However, in both
instances, the peak value decays as j2 grows. In fact, near
the diagonal peak, one has

lim
j→∞

Cj;jþδj ¼ 3
log 2j
j

þO
�
1

j

�
; ð29Þ

with fixed δj. This further indicates that the curves are
relatively flat for large j since δj only appears in theOð1=jÞ
term. We might also note that for large j1 (and fixed j2), the
curves are decaying as ðj1 − j2Þ−1=2.

Discussion.—We applied the first law of complexity to
examine variations of holographic complexity generated by a
small scalar field excitation in AdS. Our results in Eqs. (27)
and (28) depend only on the dimensionless parameters, ε and
αj, characterizing these excitations (9). These are coherent
states of the bulk scalar, but are equally described as coherent
states of the dual marginal operator (and its descendants) in
the boundary theory. Hence, these parameters and δCA have a
natural interpretation as boundary quantities. It is interesting
that δCA is scale independent, in contrast to the full holo-
graphic complexity, e.g., where the leading UV divergence
has the form CA ∼ log ð2lct=LÞVolðΣÞ=δ2 with δ being the
short-distance cutoff [28,110].
Given that our final result (27) is second order, i.e.,

δCA ∼ ε2α2, the first-order variation paδxa in Eq. (6) must
vanish. That is, the cost function appropriate for the CA
conjecture defines a geometry where the coherent state
directions are orthogonal to the direction along the circuit
preparing the CFT vacuum. Instead, the leading variation of
the holographic complexity in this example takes the form
given in Eq. (7).
It is difficult to interpret this result without further

assumptions. For example, let us assume that the cost
function has the simple form F ¼ gab _xa _xb, known as the
κ ¼ 2 measure [67]. Then the vanishing of the first-order
variation indicates that at the end point of the circuit, the
off-diagonal components of the metric gab between the
coherent state and vacuum preparation directions vanish. If
this vanishing holds in the vicinity of the end point, i.e., it
also holds for the first derivative of the metric, then the
remaining variation of the complexity takes the form
δC ¼ gabδxaδ_xb. In this scenario, comparing to Eq. (27),
the coefficients can be interpreted directly as metric
components on the corresponding space, i.e., Cj1;j2 ∼ gj1j2 .
We can compare our holographic results to the variation

of the complexity for a free massless scalar field in a fixed
AdS geometry (12) by evaluating the circuit complexity of
the vacuum state and the coherent states (9) following
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FIG. 2. The plot for Cj1;j2 with fixed j2. Each curve has peaks at
j1 ¼ 1 and j1 ¼ j2. The envelope of the latter is shown with the
dashed gray line. Although we draw continuous curves to help
guide the eye, one should only think of j1 as taking integer
values, i.e., j1 ¼ 0; 1; 2;….
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[63,67]. In this setup, the reference state is an unentangled
state of local scalar field degrees of freedom in the AdS
space, while in holography, it corresponds to an unen-
tangled state of quantum gravity degrees of freedom (and so
presumably there is no spacetime). The circuit complexity
in the QFT depends on the choice of the cost function (see
[67,89] for further details); however, a characteristic result
for the κ ¼ 2 measure is

δCκ¼2 ¼
X 2ε2α2n

μ2x20ðωn=Rμ − 1Þ log
�
ωn

Rμ

�
; ð30Þ

where ωn ¼ 3þ 2jþ l is the eigenfrequency for modes
with n ¼ ðj;l; mÞ, μ is the frequency characterizing the
reference state, x0 is a scale appearing in the definition of the
gates producing the coherent state [67], and R is an addi-
tional length scale introduced to produce a dimensionful
time in the metric (12). This QFT variation is second order;
i.e., the coherent state directions are orthogonal to the
direction of the circuit preparing the QFT vacuum, as in
our holographic framework. Its large radial quantum number
limit, i.e., ωn ∼ 2j matches the large j limit of the holo-
graphic result given in Eq. (29). In contrast to the holo-
graphic result, all the coherent state directions are mutually
orthogonal due to the orthogonality of the scalar modes (14)
making Eq. (30) diagonal (with j ¼ j1 ¼ j2). Furthermore,
the absence of scales in the holographic result would require
the QFT scales to be dependent, e.g., μx0 ∼ 1 ∼ μR.
There is an important assumption in our derivation of

the first law of complexity. When the complexity (5) is
described as the minimal cost of circuits preparing the
desired target state, we mean the global minimum over all
possible circuits. When we perturb the target state, we
assume that the circuit which globally minimizes the cost
remains close to the original optimal circuit; i.e., the family
of globally minimizing circuits is continuous in the
amplitude of the perturbation. While one can imagine
examples where this is not the case (e.g., geodesics between
“nearly” conjugate points on a sphere), our expectation is
that this assumption is valid for the example studied here.
In particular, it is explicitly seen in the QFT complexity
calculations [67]. Of course, it would also be interesting to
identify situations (in either QFT or holography) where our
assumption does not hold.
Returning to the holographic calculations, we recall the

inclusion of the counterterm (22) was essential for the
cancellation of the gravitational contributions to the action
variation leading to δCA entirely determined by the scalar field
contributions. This featuremay add to the essential role of this
boundary term for the CA proposal [43,110], despite not
being necessary to have a well-defined variational principle
for the gravitational action [24]. It would be interesting to
better understand this cancellation and how generally it
applies, e.g., does it hold beyond spherical symmetry.
Irrespective of the previous cancellation, another feature

of our calculations was that all of the contributions reduced

to surface contributions on the boundaries of the WDW
patch. In analogy to the derivation of our first law, this
property essentially arises because we are considering
variations of the bulk action evaluated around background
on-shell configurations. In the case of the Nielsen geom-
etry, the boundary contribution comes from the (target
state) end of the circuit, e.g., see Fig. 1. Hence, we are led to
speculate that the boundary of the WDW patch may
correspond to the “end of the circuit” in the CA conjecture.
This suggests a picture where the AdS spacetime is built up
through adding layers of null cones. This interpretation
may have connections with the surface or state correspon-
dence of [111].
The first law of complexity provides a new approach to

investigate holographic complexity and in particular, to
build a concrete bridge to standard approaches to circuit
complexity. While we have provided one application of this
method here, this is only a starting point. It will be
straightforward to extend our calculations to other fields
(e.g., massive scalars or gravitons), higher spacetime
dimensions, or other quantum states. The same approach
can also be used to investigate the complexity ¼ volume
[15,16] and complexity ¼ spacetime volume [19] conjec-
tures. While we initially assumed that complexity is defined
by a Nielsen geometry, a similar extremization arises in the
Fubini-Study approach of [64] and in the path integral
optimization procedure of [59–62]. Hence, our approach
should be useful to investigate these directions as well.
More generally, it provides a unified perspective with
which to investigate variations of holographic complexity,
e.g., see [55–59]. We will explore several of these questions
in [89].
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