
 

Euclidean Axion Wormholes Have Multiple Negative Modes
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We show that Euclidean axion wormholes in theories of gravity coupled to a single axion have several
independent inhomogeneous perturbations that lower the Euclidean action. Our analysis relies on a
judiciously chosen gauge-invariant variable which makes the negative mode structure about axion
wormholes transparent. Perturbations lowering the action are concentrated in the neck region and exist for
wormholes in flat space and in AdS. Their presence means axion wormholes are not relevant saddle points
of the functional integral in quantum gravity. This resolves the paradoxes associated with these solutions
from the viewpoint of AdS/CFT.
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Introduction.—Euclidean axion wormholes [1,2] are
regular extrema of the action in semiclassical quantum
gravity theories that connect two distant regions or even
two disconnected asymptotic regions. Despite much work
over many years, their status as saddle points of the
functional integral remains unclear. Wormholes might be
irrelevant, provide an imprint of other vacua of the land-
scape on our vacuum, or give rise to an intrinsic random-
ness of the observed constants of nature (see, e.g., [3–5])
with interesting phenomenological implications for cos-
mology and particle physics (see [6] for a recent review).
The weak gravity conjecture [7] lends some support to

the physical relevance of wormholes, because its generali-
zation to instantons implies the existence of superextremal
instantons which, when sourced by axions, correspond to
Euclidean axion wormholes [8–12].
On the other hand, wormholes connecting two asymptotic

regions are deeply puzzling in the context of AdS/CFT
[13,14]. From the field theory viewpoint the correlation
functions across the two boundaries should factorize, while
from the gravity point of view wormhole saddle point
contributions would seem to introduce correlations between
the two field theories.
One might have hoped that string theory would have

avoided the paradoxes associated with Euclidean axion
wormholes by not producing effective low-energy theories
allowing wormhole solutions. After all, the existence of
regular wormhole solutions depends delicately on the
number of axions and dilatons in the theory and their
couplings. However, that does not appear to be the case. In

recent years, clean embeddings of axion wormholes in
string theory have been given [14–16], further sharpening
the paradox with AdS/CFT.
In this Letter, we provide evidence for a natural reso-

lution of this paradox by analyzing the behavior of the
action in the neighborhood of Euclidean axion wormholes
(see [17–20] for earlier, inconclusive work on this). We
work with four-dimensional theories of gravity coupled to a
single axion and a cosmological constant Λ ≤ 0. In these
theories, we show that macroscopic axion wormholes
which are everywhere in the semiclassical regime always
have several independent inhomogeneous perturbations
that lower the Euclidean action. This strongly suggests
that axion wormholes are not relevant saddle points of the
Euclidean functional integral.
To analyze whether there are physically meaningful

perturbations that lower the action requires a careful choice
of the perturbation variable for which the Euclidean action is
well behaved and bounded below for normalized fluctua-
tions. The theories we consider have a single physical scalar
perturbation degree of freedom that is a combination of the
axion and scalarmetric perturbations about thesewormholes.
We identify the conjugate momentum ΠX of the gravita-
tionally dressed gauge-invariant axion perturbation X as a
suitable variable which makes the negative mode structure
about wormholes transparent.
To derive the perturbation action, we follow the func-

tional integral procedure developed in a series of papers
[21–24] in which the degrees of freedom are identified in
Lorentzian signature before the perturbation action is
continued to the Euclidean. The boundary condition that
the axion charge remains constant at the mouth of the
wormhole implies vanishing Dirichlet boundary conditions
onΠX . We find that this sets the homogeneous perturbation
to zero, which, in turn, means the conformal factor problem
does not interfere with our analysis.
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The action of perturbations that are inhomogeneous on
three spheres at a constant scale factor is manifestly positive
in the asymptotic regions of the wormhole, as one expects
from the field theory limit. The kinetic term is positive
everywhere, but the potential is negative (though bounded
below) in the near-neck region. It is this feature, which is
particular to axions, that gives rise to multiple independent
perturbations concentrated in the near-neck region that
lower the action.
The presence of negative modes often points towards the

existence of a lower action saddle point. The fact that the
perturbations lowering the action are inhomogeneous,
however, suggests that in this case macroscopic wormholes
fragment, ultimately breaking up the connection between
the asymptotic regions.
Axions in Euclidean space.—Axionic scalars χ have a

shift symmetry at the level of the classical action. The axion
charge Q under this symmetry is related to the radial
derivative of the axion:

Q ∼ grr
ffiffiffi
g

p ∂rχ: ð1Þ
Euclidean axion wormhole solutions are usually interpreted
as instantons that violate axion charge conservation. This is
because half wormholes describe the creation or absorption
of baby universes, a process which from the point of view
of the mother universe amounts to the loss or creation of
axion charge.
Wormholes in this interpretation must be viewed as

saddle points of the path integral in momentum space, since
the boundary condition is that one fixes Q at both worm-
hole ends [25]. This, as Eq. (1) shows, amounts to fixing the
Euclidean axion momentum. Schematically, the axion
charge transition amplitude reads

K ≡ hΠFj expð−HTÞjΠIi; ð2Þ

where jΠi are axion momentum eigenstates, defined via a
functional Fourier transform:

jΠi ¼
Z

d½χ�ei
R
Σ
χΠjχi: ð3Þ

Here Π is the radial component of a one-form that is
orthogonal to the spacelike slice Σ. Hence, jΠi ¼ jQi, and
momentum eigenstates are charge eigenstates.
It is well known (see, e.g., [6,14,25,26]) that axions have

a kinetic term with the wrong sign in the Euclidean
signature if one looks for saddle points of path integrals
with fixed momentum boundary conditions. Equivalently,
one can consider imaginary configurations in theories with
normal sign kinetic terms as contributions to the transition
amplitude (2). However, it is arguably more appealing to
regard the Hodge dual formulation of the axion as funda-
mental, in which the axion enters as a (D − 1)-form field
strength F and the action reads

S ¼ −
1

2κ2

Z ffiffiffiffiffi
jgj

p �
R −

1

2

1

ðD − 1Þ!F
2 − Λ

�
; ð4Þ

with D the dimension. In this formulation, the axion has a
standard kinetic term, and the saddle points are real solutions.
Hodge duality transforms this action into the following:

S ¼ −
1

2κ2

Z ffiffiffiffiffi
jgj

p �
Rþ 1

2
∇χ∇χ − Λþ∇ðχ∇χÞ

�
: ð5Þ

This action has a wrong-sign kinetic term, at least when the
axion is taken to be real. It also has an additional total
derivative which provides an important contribution to the
on-shell action.
Wormhole solutions.—We consider the simplest possible

model with axionic wormholes, consisting of gravity
coupled to a single axion and a negative cosmological
constant Λ ¼ −ðα=l2Þ, where l2 is the AdS radius and
α ¼ ðD − 1ÞðD − 2Þ. We write the metric of spherically
symmetric wormhole solutions as

ds2 ¼ fðrÞ2dr2 þ aðrÞ2dΩ2
D−1; ð6Þ

together with the axion profile χðrÞ. The axion equation of
motion □χ ¼ 0 can be conveniently solved in terms of the
radial harmonic function hðrÞ defined as dh ¼ fa1−Ddr.
One finds that χ ∝ h where the constant of proportionality
squared, �

dχ
dh

�
2 ≡ c > 0; ð7Þ

is precisely the axion chargeQ squared, i.e., the constant of
motion associated with the shift symmetry of the axion.
Using this, the Einstein equation reduces to a single first-
order equation for the scale factor [26,27]:

�
a0

f

�
2

¼ 1þ a2

l2
−

c
2α

a−2ðD−2Þ; ð8Þ

where a0 ≡ ∂ra. Hence, a wormhole solution can be
written as

ds2 ¼
�
1þ τ2

l2
−

c
2α

τ−2ðD−2Þ
�

−1
dτ2 þ τ2dΩ2; ð9Þ

where τ is the scale factor a. The solutions asymptote to
Euclidean AdS (EAdS) at large τ regardless of the value of
c. When c ¼ 0, the solution is EAdS everywhere. In
models (5) with a normal scalar rather than an axion,
turning on the scalar yields c < 0, which gives a singular
solution that is a spikelike deformation of EAdS [26]. By
contrast, for axions, c > 0 and the solutions describe
smooth wormholes with a minimum value aðr ¼ 0Þ ¼
a0 of the scale factor given by
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a0 ¼
�

c
2α

�
1=ð2D−4Þ

þOðc=l2ðD−2ÞÞ2: ð10Þ

Macroscopic wormholes which are everywhere in the
semiclassical regime must have a0 ≫ 1 in Planck units
and, hence, require c ≫ 1. The regularity of the solutions at
the neck means one does not expect these wormholes to
carry a net axion charge. One can rather think of them as
charge conduits [11], where both mouths carry opposite
charges. The regularized Euclidean action of a full worm-
hole is

S ¼ VolðSD−1Þ
2κ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD − 1Þπ2
ðD − 2Þ

s ffiffiffi
c

p þOða0=lÞ; ð11Þ

where
ffiffiffi
c

p
is proportional to the quantized axion charge Q.

In theories withmultiple axions and saxions (dilatons), the
axionkinetic term is replaced by a sigmamodel,Gij∂ϕiϕj, of
indefinite signature. The instantons are then geodesic curves
with −c equal to the geodesic velocity squared [15].
Negative modes.—We now turn to the behavior of the

action around the axionic Euclidean wormhole saddle
points. We focus on wormholes in four dimensions, but
our results likely generalize to other dimensions D > 2. As
discussed above, the action of quadratic perturbations of
wormholes yields crucial input to elucidate the role—if any
—of these wormholes in semiclassical quantum gravity. In
particular, the existence and number of negative modes
around the wormholes should, we believe, be a major
consideration in their interpretation [17,23,28].
To determine whether there are physically meaningful

negative modes, it is imperative to work with well-behaved
perturbation variables for which the Euclidean action is
bounded below for normalized fluctuations. To this end, we
follow the functional integral procedure developed in a
series of papers [21–24] in which the physical degrees of
freedom are carefully identified in Lorentzian signature
before the perturbation action is continued to the Euclidean.
Perturbation action.—We write the line element of a

general scalar perturbation of the Lorentzian continuation
of the wormholes as follows:

ds2 ¼ b2f−ð1þ AÞ2dη2 þ ∂iBdxidη

þ ½ð1 − 2ψÞγij þ ∂i∂jE�dxidxjg; ð12Þ

where we have adopted conformal gauge f ¼ a, with b the
conformal scale factor and η ∈ ½0;∞½ the conformal time.
The three-metric γij is the metric on S3. Together with the
fluctuation δχ of the scalar (axion) field, this results in five
scalar perturbation fields in total.
Our starting point is the second-order Lorentzian action

for a general linear scalar perturbation of this kind [22]. The
constraints enforcing gauge invariance are imposed by
introducing canonically conjugate momenta to rewrite

the action in first-order form and then functionally inte-
grating over the nondynamical fields. One then has some
choice in deciding which linear combination of the remain-
ing variables to use in order to describe the single physical
scalar degree of freedom of the system. A suitable variable
which makes the negative mode structure transparent is one
whose Euclidean action is bounded below for normalized
fluctuations around the backgrounds in question that obey
the appropriate boundary conditions. This condition cor-
responds to having a positive kinetic term in the Euclidean
action for all values of the Laplacian Δ on the three-sphere.
It turns out that for axion wormholes a good physical
choice of variable is the gauge-invariant combination X
defined as

X ¼ ψ þ b0

bχ0
δχ; ð13Þ

where the prime is now a derivative with respect to
conformal time η. Substituting δχ for X in the action
and performing the remaining functional integrals, we get
the action of X [24].
It is convenient to decompose the perturbations in modes

Xn multiplying spherical harmonics on the three-sphere
where n labels the eigenvalues −n2 þ 1 of Δ, with n > 0.
The complete set of fluctuation modes divides into the
n ¼ 1 mode, which is Oð4Þ invariant in the Euclidean
region, and the n > 2 modes, which describe inhomo-
geneous perturbations on the three-sphere. The n ¼ 2mode
is pure gauge. Continuing the action for Xn to Euclidean
signature proceeds via ρ ¼ iη, ψ → ψ , and a Wick rotation
of the axion field, this yields the results of Ref. [24] with z
changed to iz:

S2 ¼
VolðS3Þ

κ2

Z
dρðAn

_X2
n − BnX2

nÞ; ð14Þ

where a dot is a derivative with respect to Euclidean time ρ
and the functions An and Bn are given by

An ¼
b2z2

1þ z2=ð4 − n2Þ ; ð15Þ

Bn ¼ An ×

�
2

1þ z2=ð4 − n2Þ
_zb

z _b
þ 5 − n2

�
; ð16Þ

respectively, with z≡ _χb= _b and n ≠ 2. This variable z
differs by a factor i from the corresponding variable in
Ref. [24], which considers saddle points involving a scalar
instead of an axion. The overall sign of the action (14)
follows from the requirement that perturbations must be
well behaved away from the neck region or, more generally,
in the limit where gravity decouples [29].
We emphasized earlier that axionic wormholes should be

viewed as saddle points of the Euclidean path integral in
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momentum space, with vanishing Dirichlet boundary con-
ditions on the axion momentum at both wormhole ends.
Our variable X is the gravitationally dressed axion. To
complete the derivation of the perturbation action, we
therefore express the action (14) in terms of the conjugate
momentum Πn

X :

S2 ¼
VolðS3Þ

κ2

Z
dρ½−B−1

n ð _Πn
X Þ2 þ A−1

n ðΠn
X Þ2�: ð17Þ

Stability analysis.—The kinetic term in this action is
everywhere positive. The potential is bounded from below
and negative only in the near-neck region. Moreover, the
action has no divergences, and the gradient terms contribute
positively. Hence, the momentum variable Πn

X is a good
physical choice of variable in which the negative mode
structure around axionic wormholes can be analyzed.
In the absence of a cosmological constant, the coefficients

An and Bn in the action (17) follow from Eqs. (7)–(9) that
specify the wormhole backgrounds and read, respectively,

An ¼
ffiffiffiffiffi
jcj
12

r
ð4 − n2Þ coshð2ρÞ

3þ ð4 − n2Þsinh2ð2ρÞ ; ð18Þ

Bn ¼
ffiffiffiffiffi
jcj
12

r
ð4 − n2Þ coshð2ρÞ

3þ ð4 − n2Þsinh2ð2ρÞ

×

�
−4ðn2 − 4Þcosh2ð2ρÞ
ðn2 − 4Þsinh2ð2ρÞ − 3

− n2 þ 5

�
: ð19Þ

For the homogeneous n ¼ 1 perturbation, we have B1 ¼ 0,
which implies _Π1

X ¼ 0 everywhere, consistent with earlier
results [20] but in contrast with the non-gauge-invariant
treatment in Ref. [17]. This means there is no homogeneous
propagating degree of freedom. This is precisely what one
expects, since the boundary conditions we selected on
physical grounds fix the charge Q, leaving us with the
Hamiltonian constraint (8) only. This also means we do not
encounter a conformal factor problem with these boundary
conditions, which resonates with Ref. [30].
Next, we consider the action of inhomogeneous n > 2

perturbations. Figure 1 shows the functions An and Bn for
n ¼ 3. Their behavior across the entire wormhole is
qualitatively similar for all n > 2. There is a singular point
at ρ ¼ ρ� where A−1

n and B−1
n both vanish. For ρ > ρ�, in

the asymptotic region of the wormhole where gravity is not
important, the action is manifestly positive. By contrast, the
potential is negative for ρ < ρ�, in the neck region, leading
to the possibility that perturbations confined to the neck
region lower the action. The critical value ρ� decreases for
increasing n. The Sturm-Liouville problem associated with
the action (17) reads OΠn

X ¼ λΠn
X with the quadratic

operator O given by

O ¼ B−1
n

d2

dρ2
þ _B−1

n
d
dρ

þ A−1
n : ð20Þ

One can find negative modes either by an explicit diago-
nalization of this operator or by finding explicit test
functions Πn

test that obey our boundary conditions and
describe perturbations with negative action. Given that
the potential term in the action is negative in the near-neck
region, the latter method proves easier. Indeed, one readily
sees that, e.g., the test function Πn

test ¼ ½coshð4ρÞ�−1 lowers
the action, since hΠn

testjOjΠn
testi < 0. Given the large degen-

eracy of the spherical harmonics on S3, this means the
action of macroscopic wormholes has multiple negative
modes in the inhomogeneous sector. A single negative
mode would have been consistent with an interpretation of
the saddle points as mediating tunneling transitions. The
negative determinant would in that case provide the
imaginary piece of the Hamiltonian [28]. The presence
of multiple negative modes means the wormhole saddle
points do not contribute to any amplitude, in particular, not
to the axion charge transition (2) of interest. All fluctuations
lowering the action are concentrated around the wormhole
neck, so it is really the nontrivial wormhole structure that is
at the core of the instability. Although one can construct
perturbations with negative action for all n > 2, larger
values of n require those perturbations to die off faster.
When Λ < 0, the metric of the wormholes is known only

numerically in conformal gauge. A straightforward numeri-
cal analysis of the functions in the action (17) for nonzeroΛ
shows that they exhibit a qualitatively similar behavior.
Hence, also axionic wormholes connecting two asymptoti-
cally AdS regions have multiple negative modes. By
contrast, a similar perturbation analysis applied to the class
of instantons with a spike at the neck that are sourced by a
dilaton, i.e., a scalar without shift symmetry which enters in
the Euclidean theory with a normal kinetic term, shows that
these have no negative modes.
Discussion.—We have calculated the second-order varia-

tion of the action of axion and scalar metric perturbations
about macroscopic Euclidean axion wormholes in theories
of gravity coupled to a single axion in flat space and in

0.2 0.4 0.6 0.8 1.0

–0.2

0.0

0.2

0.4

0.6

0.8

FIG. 1. The coefficients A−1
n (blue curve) and B−1

n (orange
curve) entering in the action for perturbations about axion
wormholes, shown here for n ¼ 3 (and with c ¼ 1).
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AdS. We have shown that there are multiple inhomo-
geneous small perturbations that lower the Euclidean action
of these wormholes. This means that axion wormholes do
not provide relevant saddle point contributions to the
functional integral in semiclassical quantum gravity speci-
fying axion charge transition amplitudes.
Our perturbation analysis is based on two crucial insights

which resolve the ambiguities plaguing previous calcula-
tions and which make the negative mode structure about
wormholes transparent. First, we have identified a gauge-
invariant variable, the conjugate momentum of the gravi-
tationally dressed axion perturbation, for which the
Euclidean action is everywhere well behaved and bounded
below. Second, we have imposed Dirichlet boundary
conditions on this to account for the fact that wormholes
are saddle points of the functional integral in momentum
space. It would be interesting to generalize our analysis
to axion dilaton wormholes which in the Euclidean have
kinetic terms of the form −ð∂ϕÞ2 þ ebϕð∂χÞ2, where ϕ is
the dilaton and b a coupling constant. The addition of a
dilaton allows for extremal D-instanton solutions, around
which perturbations should have a manifestly positive
quadratic action.
The presence of negative modes about a saddle point is

usually a perturbative indication of the existence of a saddle
point with lower action. In the case at hand, the fact that we
find negative modes in the inhomogeneous sector suggests
that macroscopic wormholes fragment. The lower action
configuration one flows to might consist of an ensemble of
microscopic “quantum wormholes” with unit charge. This
is suggested by timelike T duality which relates axion
wormholes to superextremal objects with Q > M, which
one expects fragmentate into superextremal particles of unit
charge because the gravitational pull is weaker than electric
repulsion.
But quantum wormholes have Planckian-sized necks and

are not valid (regular) semiclassical saddle points. The
above reasoning thus suggests that smooth geometric
wormhole connections between distant regions are basi-
cally broken in gravitational theories with axions, thereby
plausibly resolving the various paradoxes with AdS/CFT
associated with these. The classically singular nature of
microscopic quantum wormholes also means our stability
analysis does not apply to these. Hence, our results leave
open the possibility that unit charge wormholes enter as
nonperturbative contributions to the axion potential, break-
ing the shift symmetry, with appealing implications for
phenomenology.
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