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We compute the full-color two-loop five-gluon amplitude for the all-plus helicity configuration. In order
to achieve this, we calculate the required master integrals for all permutations of the external legs, in the
physical scattering region. We verify the expected divergence structure of the amplitude and extract the
finite hard function. We further validate our result by checking the factorization properties in the collinear
limit. Our result is fully analytic and valid in the physical scattering region. We express it in a compact form
containing logarithms, dilogarithms, and rational functions.
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Introduction.—The abundant amount of data to be
collected by the ATLAS and CMS Collaborations in future
runs of the Large Hadron Collider at CERN opens up a new
era of precision physics. Some of the most prominent
precision observables are related to three-jet production
[1,2], which allows in-depth studies of the strong inter-
action up to the highest energy scales, including precision
measurements of the QCD coupling constant αs and its
scale evolution. The physics exploitation of these precision
data requires highly accurate theory predictions, which are
obtained through the computation of higher orders in
perturbation theory. Second-order corrections (next-to-
next-to-leading order, NNLO) were computed recently
for many two-to-two scattering processes, including two-
jet production [3]. A comparable level of theoretical
accuracy could not, up to now, be obtained for genuine
two-to-three processes, especially since the relevant matrix
elements for processes involving five external partons
including full color are known only up to one loop [4–6].
The evaluation of these two-loop five-parton matrix

elements faces two types of challenges: to relate the large
number of two-loop integrands to a smaller number of
master integrals, and to compute these master integrals
(two-loop five-point functions). Important progress was
made most recently on both issues, with the development
and application of efficient integral reduction techniques,

either analytical [7–14] or seminumerical [15,16], as well
as with the computation of the two-loop five-point func-
tions for planar [17–19] and nonplanar [20–22] integral
topologies. The latter developments have already led to first
results for two-loop five-point amplitudes in supersym-
metric Yang-Mills theory [21,23] and supergravity [24,25].
Recent progress has enabled the computation of the full

set of the leading-color two-loop corrections to the five-
parton amplitudes, represented in a seminumerical form
[10,26–28]. These results establish the technical method-
ology; their evaluation is, however, too inefficient for
practical use in the computation of collider cross sections.
Towards this aim, analytic results are preferable, which
have been obtained so far only at leading color for the five-
parton amplitudes [17,29–32]. Besides the more efficient
numerical evaluation, these results also allow for detailed
investigations of the limiting behavior in kinematical limits,
thereby elucidating the analytic properties of scattering
in QCD.
The leading-color corrections consist only of planar

Feynman diagrams. At subleading color level, nonplanar
diagrams and integrals contribute as well, leading to a
considerable increase in complexity, both in the reduction
of the integrand and in the evaluation of the master
integrals. In this Letter, we make the first step towards
the fully analytic evaluation of two-loop five-point ampli-
tudes by exploiting the recently derived nonplanar two-loop
five-point master integrals [20–22] to obtain an analytic
expression for the two-loop five-gluon amplitude with all-
plus helicities [33].
Kinematics.—We study the scattering of five gluons

in the all-plus helicity configuration. The corresponding
amplitude has a complete permutation symmetry under the
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exchange of external gluons. The five lightlike momenta pi
are subject to on-shell and momentum conservation con-
ditions, p2

i ¼ 0 and
P

5
i¼1 pi ¼ 0, respectively. They give

rise to the following independent parity-even Lorentz
invariants:

X ¼ fs12; s23; s34; s45; s15g; ð1Þ

with sij ¼ 2pi · pj, as well as to the parity-odd invariant
ϵ5 ¼ trðγ5p1p2p3p4Þ. The latter is related to the Gram
determinant Δ ¼ detðsijj4i;j¼1Þ through ϵ25 ¼ Δ.
Without loss of generality, we take the kinematics to lie

in the s12 scattering region. The latter is defined by all
s-channel invariants being positive, i.e.,

s12 > 0; s34 > 0; s35 > 0; s45 > 0; ð2Þ

and t-channel ones being negative, i.e.,

s1j < 0; s2j < 0; for j ¼ 3; 4; 5; ð3Þ

as well as by the requirement that the particle momenta are
real, which implies Δ < 0.
The external momenta pi lie in four-dimensional

Minkowski space. We encounter D-dimensional Feynman
integrals, withD ¼ 4 − 2ϵ, and the loop momenta therefore
live in D dimensions. We keep the explicit dependence on
the spin dimension Ds ¼ gμμ of the gluon, which enters the
calculation via the integrand numerator algebra. Results in
the t’Hooft–Veltman [34] and four-dimensional-helicity
[35] schemes can be obtained by setting Ds ¼ 4 − 2ϵ and
Ds ¼ 4, respectively. We denote κ ¼ ðDs − 2Þ=6.
Decomposition of the amplitude in terms of color

structures.—We expand the unrenormalized amplitude in
the coupling a ¼ g2e−ϵγE=ð4πÞ2−ϵ as

A5 ¼ ig3
X
l≥0

alAðlÞ
5 : ð4Þ

Because of the particular helicity configuration, the ampli-
tude vanishes at tree level [36,37] and is hence finite at
one loop.
The amplitude is a vector in color space. Adopting the

conventions of Ref. [38], we decompose the one- and two-
loop amplitudes as

Að1Þ
5 ¼

X12
λ¼1

NcA
ð1;0Þ
λ T λ þ

X22
λ¼13

Að1;1Þ
λ T λ; ð5Þ

Að2Þ
5 ¼

X12
λ¼1

ðN2
cA

ð2;0Þ
λ þ Að2;2Þ

λ ÞT λ þ
X22
λ¼13

NcA
ð2;1Þ
λ T λ: ð6Þ

Here, the fT λg consist of 12 single traces, λ ¼ 1;…; 12,
and 10 double traces, λ ¼ 13;…; 22. We have

T 1 ¼ Trð12345Þ − Trð15432Þ;
T 13 ¼ Trð12Þ½Trð345Þ − Trð543Þ�; ð7Þ

where Trði1i2…inÞ≡ TrðTai1…Tain Þ denotes the trace of
the generators Tai of the fundamental representation of
SUðNcÞ. The remaining color basis elements T λ are given
by permutations of T 1 and T 13. For the explicit expres-
sions, see Eqs. (2.1) and (2.2) of Ref. [38].
The one-loop expression can be found in Ref. [4]. Here,

we write it in a new form,

Að1;0Þ
1 ¼ κ

5

X
ST 1

� ½24�2
h13ih35ih51i þ 2

½23�2
h14ih45ih51i

�
; ð8Þ

up to OðϵÞ terms. The sum runs over the subset ST λ
of

permutations of the external legs that leave T λ invariant.
All other terms in Eq. (5) follow from symmetry and from
Uð1Þ decoupling relations.
The new representation (8) makes a symmetry property

manifest. The basic rational object is invariant under
conformal transformations, which are defined as [39]

kα _α ¼
X5
i¼1

∂2

∂λαi ∂λ̃ _αi
: ð9Þ

The property kα _αA
ð1Þ
5 ¼ OðϵÞ is obvious term by term due

to the form of the operator in Eq. (9).
In this Letter, we compute the full two-loop amplitude.

The leading color single trace terms Að2;0Þ
λ were computed

in Refs. [17,29]. Generalizations of the Uð1Þ decoupling

relation imply that the most subleading color terms Að2;2Þ
λ

can be obtained from the leading single trace Að2;0Þ
λ and the

double trace terms Að2;1Þ
λ [38]. We present explicitly the

result for the finite part of the double trace term Að2;1Þ
13 . The

other double trace terms can be obtained by analytic
continuation, as explained below.
Factorization and exponentiation of infrared

divergences.—Infrared divergences (soft and collinear) in
loop amplitudes factorize similarly to ultraviolet divergen-
ces, in the following way:

A ¼ ZAf: ð10Þ

Here, the factor Z is a matrix in color space. It contains all
infrared divergences, in the sense that we can define an
infrared finite hard function according to

H ¼ lim
ϵ→0

Af: ð11Þ

For massless scattering amplitudes, Z is known to three
loops; see Refs. [40–43]. In the present case, the tree-level
amplitude vanishes, and we therefore need only the
one-loop part of the infrared matrix, Z ¼ 1þ aZð1Þ, with
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Zð1Þ ¼ −
eϵγE

ϵ2Γð1 − ϵÞ
X5
i≠j

T⃗i · T⃗j

�
μ2

−sij

�
ϵ

; ð12Þ

where μ is the dimensional regularization scale, and
T⃗i ¼ fTa

i g are the generators of SUðNcÞ in the adjoint
representation of gluon i, which act according to Tb

i T
ai ¼

−ifbaiciTci . We set μ ¼ 1. The explicit dependence can be
recovered from dimensional analysis.
Two-loop integrand and finite field reduction to

uniform-weight master integrals.—The starting point of
our calculation is the integrand presented in Ref. [33]. The
latter was obtained using modern generalized unitarity
techniques. It is given in terms of the integrals of the type
shown in Fig. 1 (and similar integrals corresponding to
subgraphs), with certain numerator factors. We begin by
rewriting scalar products of −2ϵ-dimensional components
of loop momenta in terms of Gram determinants; see, e.g.,
Ref. [22]. In this way, one obtains numerators with up to
degree five for the eight-propagator integrals shown in
Fig. 1, as well as some of degree six for the one-loop
squared sectors. This is significantly higher as compared to
the previous calculations in N ¼ 4 super Yang-Mills
theory [21,23] and N ¼ 8 supergravity [24,25], where
numerators of up to degree one and two were required,
respectively.
We set up a system of integration by parts (IBP)

identities with the help of LITERED [44]. The task is to
reduce the IBP system to a minimal required set of
reduction identities. This is a difficult problem, and to
solve it we profit from novel finite field and functional
reconstruction techniques [7,9]. To do this, we solve the
system, modulo prime integers, for numerical (rational)
values of ϵ and of the kinematic invariants sij, using a
custom linear solver for sparse systems. In doing so, we use
a basis of dlog [22,45–47] master integrals as preferred
integrals during the solution. We then reconstruct the
analytic results from these numerical evaluations using a
multivariate reconstruction algorithm, based on the one
described in Ref. [9]. The calculation is further significantly
simplified by reconstructing reduction tables only for the
relevant combinations of integrals appearing in the repre-
sentation of the amplitude.
Analytic results for master integrals in the s12 scattering

region.—In previous work, the planar master integrals
shown in Fig. 1(a) were computed in all kinematic
scattering regions [17–19]; the master integrals of

Figs. 1(b) and 1(c) were computed in one kinematic region
only.
Since the integrals enter the amplitude in all different

permutations of the external legs, we need to know them in
several kinematic regions. In principle, the answer in
different kinematic regions can be obtained via analytic
continuation; see Refs. [19,48]. Here, we adopt a different
strategy: we consider all permutations of all required master
integrals, together with the differential equations they
satisfy, and compute them directly in the s12 channel.
Taking the permutations of the differential equations is
unambiguous, as the differential matrices are rational
functions of the kinematics. In order to streamline the
calculation, we also identify relations between integrals
with permuted external legs. In this way, we do not need to
continue the functions analytically. This workflow is also
less error-prone, as all steps are completely automatic.
The dlog master integrals f⃗ of each family satisfy a

differential equation of the form [46]

∂Xf⃗ðX; ϵÞ ¼ ϵ∂X

�X31
i¼1

ai logWiðXÞ
�
f⃗ðX; ϵÞ; ð13Þ

where ai are constant matrices, andWiðXÞ are letters of the
so-called pentagon alphabet [49], algebraic functions of the
kinematic variables X encoding the branch cut structure of
the solution. The matrices ai are peculiar to the family and
to the precise choice of basis f⃗, but the set of letters fWig is
the same for all massless two-loop five-particle integrals.
Solving the differential equations requires a boundary

point. We choose

X0 ¼ f3;−1; 1; 1;−1g: ð14Þ

This point lies in the s12 scattering region and is symmetric
under p1 ↔ p2, or any permutation of fp3; p4; p5g. We fix
the boundary values analytically by requiring the absence
of unphysical singularities. See Refs. [19,20,48] for a more
detailed discussion. In this way, all boundary values are
related to a few simple integrals. The latter are found in the
literature [50,51].
We verify the boundary values numerically for two

permutations of the integrals of Fig. 1(c) and for some
integrals of Fig. 1(b). This is done by computing all master
integrals numerically, using PYSECDEC [52,53], at the
symmetric point X0. We find it convenient to do this for
an integral basis in D ¼ 6 − 2ϵ dimensions. Moreover,
we check the boundary values of the planar integrals of
Fig. 1(a) against the program provided in Ref. [19].
We expand the solution to (13) in ϵ up to order ϵ4,

corresponding to weight-four functions. The latter are
expressed in terms of Chen iterated integrals. We adopt
the same notation as in Ref. [19] and write the iterated
integrals as

(a) (b) (c)

FIG. 1. Two-loop five-particle Feynman integral topologies.
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½Wi1 ;…;Win �X0
ðXÞ ¼

Z
γ
d logWinðX0Þ

× ½Wi1 ;…;Win−1 �X0
ðX0Þ; ð15Þ

where the integration path γ connects the boundary point
X0 to X. In the following we do not explicitly show the
dependence on the kinematic point X.
In order to have a common notation, we rewrite the Z

factor, as well as all other ingredients to the hard function,
in the same iterated integral notation. In this way, we
analytically perform simplifications for the hard function at
the level of iterated integrals. Remarkably, as observed
previously for the planar case, we find that all weight-three
and weight-four pieces cancel out. Therefore, we only need
iterated integrals up to weight two. We rewrite them in
terms of logarithms and dilogarithms. For example,

½W1�X0
¼ log ðs12=3Þ; ð16Þ

½W5=W2;W12=W2�X0
¼ −Li2ð1 − s15=s23Þ: ð17Þ

Note that all functions are manifestly real valued in the s12
channel. As a consequence, imaginary parts can only
appear explicitly through the boundary values.
The analytic integrand expression, the IBP reductions,

and the ϵ expansion of the master integrals in terms of
iterated integrals, as well as the infrared subtraction, are
combined numerically using finite fields. From this
method, we analytically reconstruct the hard function.

At this stage, we make a remarkable observation: all
dilogarithms and logarithms, as well as all imaginary parts,
can be absorbed into (the finite part of) one-mass box
functions, which are defined as

I123;45 ¼ Li2ð1 − s12=s45Þ þ Li2ð1 − s23=s45Þ
þ log2ðs12=s23Þ þ π2=6: ð18Þ

Considering all permutations of external momenta provides
30 independent functions. The analytic continuation of the
latter to the physical scattering region is simply achieved by
adding a small positive imaginary part to each two-particle
Mandelstam invariant, sij → sij þ i0. This procedure cor-
rectly generates all imaginary parts in the amplitude.
Analytic result for the hard function.—We express the

hard function in the same coupling expansion (4) and color
decomposition (6) as the amplitude. It can be written in
terms of just two color components,

Hð2Þ ¼
X

S5=ST 1

T 1H
ð2Þ
1 þ

X
S5=ST 13

T 13H
ð2Þ
13 ; ð19Þ

where each sum runs over the 5! permutations of the
external legs, S5, modulo the subset ST λ

of permutations

that leave T λ, and thus Hð2Þ
λ , invariant.

Since the most subleading color components Hð2;2Þ
λ can

be obtained from the planar Hð2;0Þ
λ and double trace Hð2;1Þ

λ
ones through color relations [38], we present explicitly only
the latter here:

Hð2;0Þ
1 ¼

X
ST 1

�
−κ

½45�2
h12ih23ih31i I123;45 þ κ2

1

h12ih23ih34ih45ih51i
�
5s12s23 þ s12s34 þ

tr2þð1245Þ
s12s45

��
; ð20Þ

Hð2;1Þ
13 ¼

X
ST 13

�
κ

½15�2
h23ih34ih42i ½I234;15 þ I243;15 − I324;15 − 4I345;12 − 4I354;12 − 4I435;12�

− 6κ2
�

s23tr−ð1345Þ
s34h12ih23ih34ih45ih51i

−
3

2

½12�2
h34ih45ih53i

��
; ð21Þ

where I was defined in Eq. (18), and tr�ðijklÞ ≔
1
2
tr½ð1� γ5Þpipjpkpl�.
The planar component (20) is in agreement with the

previous result in the literature [17]. The nonplanar one
(21) is entirely new. Remarkably, it exhibits the same
striking simplicity: all functions of weight one, three, and
four cancel out, and the remaining weight-two ones can all
be expressed as permutations of the one-mass box function.
While the calculation was performed in the s12 scattering
region, the above formula can be analytically continued to
any other region by the i0 prescription mentioned above.

Note that the rational factors multiplying the transcen-
dental part of the hard function (20) and (21) are permu-
tations of one object that appeared already in the one-loop
amplitude (8). Remarkably, this object is conformally
invariant. Moreover, the weight-two functions accompany-
ing it are also governed by conformal symmetry. The latter
manifests itself through anomalous conformal Ward iden-
tities [54–56].
Verification of correct collinear factorization.—In the

limit where particles 1 and 2 are collinear, the full color
five-gluon amplitude factorizes as follows:
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Að2Þð1þ; 2þ; 3þ; 4þ; 5þÞ

→
1jj2

Að2ÞðPþ; 3þ; 4þ; 5þÞSplitð0Þð−P−; 1þ; 2þÞ
þAð1ÞðPþ; 3þ; 4þ; 5þÞSplitð1Þð−P−; 1þ; 2þÞ
þAð1ÞðP−; 3þ; 4þ; 5þÞSplitð1Þð−Pþ; 1þ; 2þÞ; ð22Þ

where the sum goes over the color index of the gluon
labeled by “P”. After inserting expressions for the splitting
amplitudes SplitðlÞ [57–60] and four-gluon amplitudes
[61,62], we rewrite the collinear limit in terms of the trace
decomposition (6).
We verify the limits 1jj2, 2jj3 and 3jj4 of the double trace

term T 13. It vanishes in the first two limits but has a
nontrivial structure in the 3jj4 limit. We find perfect
agreement.
Discussion and outlook.—In this Letter, we analytically

computed, for the first time, all integrals needed for two-
loop massless five-particle scattering amplitudes in the
physical scattering region. This required computing the
master integrals in all permutations of external legs,
including their boundary values, in the physical scattering
region.
In view of future phenomenological applications, it is

highly desirable to provide fast numerical implementations
of the nonplanar pentagon functions computed here, for
example, along the lines of [19].
We used the expressions for the master integrals to

analytically compute the five-gluon all-plus helicity ampli-
tude at two loops. The amplitude has the correct singularity
structure and collinear behavior. In the infrared-subtracted
finite part, we observed remarkable cancellations of all
weight-one, three, and four functions.
Intriguingly, we found that parts of the amplitude are

governed by conformal symmetry. It would be interesting
to find an explanation for these observations.
Our work opens the door for further analytic calculations

of massless two-loop five-particle amplitudes. On the one
hand, the complete information on the integral functions is
now available. On the other hand, the integral reductions
required for the present calculation are of comparable
complexity as to what is expected to be needed for other
helicity amplitudes, or amplitudes including fermions.
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