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Quark-hadron continuity is a scenario in which hadronic matter is continuously connected to a color
superconductor without phase transitions as the baryon chemical potential increases. This scenario is based
on Landau’s classification of phases, since they have the same symmetry breaking pattern. We address the
question of whether this continuity is true as quantum phases of matter, which requires treatment beyond
the Ginzburg-Landau description. To examine the topological nature of a color superconductor, we derive a
dual effective theory for U(1) Nambu-Goldstone (NG) bosons and vortices of the color-flavor locked phase
and discuss the fate of emergent higher-form symmetries. The theory has the form of a topological BF
theory coupled to NG bosons, and fractional statistics of test quarks and vortices arise as a result of an
emergent Z3 two-form symmetry. We find that this symmetry cannot be spontaneously broken, indicating
that quark-hadron continuity is still a consistent scenario.
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Introduction.—One of the most fundamental questions in
nuclear physics is to identify possible phases of quantum
chromodynamics (QCD) [1–5]. Understanding the phase
structures at finite baryon densities is relevant to the physics
inside neutron stars and has been of interest to nuclear and
astrophysicists [6]. Hadronic matter is expected to exhibit
nucleon superfluidity at finite densities. At very high
densities, color superconductivity [7,8] appears with a
symmetric-pairing pattern among light three flavors, called
the color-flavor locked (CFL) phase [9]. As classical many-
body physics, phases of matter are classified by the pattern
of spontaneous symmetry breaking. Based on this view, it is
proposed that nucleon superfluidity and the CFL phases are
connected with a smooth crossover, since they have the
same symmetry breaking pattern: this is the quark-hadron
continuity [10].
The question we would like to address here is whether

this continuity holds beyond Ginzburg-Landau (GL) para-
digm. Classification of quantum phases, i.e., zero-temper-
ature phases of quantum many-body systems, requires
beyond-GL description, because local order parameters
cannot capture topological order. Importance of topology
has been recognized in understanding gapped quantum
phases [11,12]. A microscopic picture of topological order

is given by long-range entanglement [13–15], and its low-
energy description has spontaneously broken higher-form
global symmetry [16]. An important consequence is that
states with different topological orders cannot be contin-
uously connected and there should be a quantum phase
transition between them. In recent years, the role of
topology for gapless quantum systems has also been
gradually taken into account, and it potentially has an
impact for understanding cuprate superconductors [17,18].
The quark-hadron continuity has recently been examined

in the presence of superfluid vortices [19–21]. In the CFL
phase, the minimal superfluid circulation of vortices is a
fractional number 1=3 [22–24]. In addition to U(1) circu-
lation, they also carry color holonomies. It is pointed out
that this is a physical observable using color Wilson loops
and results in fractional statistics between test quarks and
vortices [21]. This has a certain similarity with topologi-
cally ordered phases in condensed matter physics, which
poses doubt on quark-hadron continuity as quantum phases
of matter [21].
In this Letter, we carefully examine the role of topology

in the CFL phase [25]. We first derive the low-energy
effective field theory of the CFL phase starting from the
gauged GL model. It describes Nambu-Goldstone (NG)
bosons associated with the breaking of U(1) symmetry and
superfluid vortices in a unified way. In particular, the
effective theory correctly encodes the relation between the
superfluid vortex and Wilson loop, which is responsible for
the fractional statistics of colored test particles and vortices.
We clarify that the Z3 fractional phase is a consequence of
an emergent Z3 two-form symmetry in the effective theory,
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generated by color Wilson loops. The charged object under
this symmetry is nothing but the CFL vortices. We show
that this emergent two-form symmetry cannot be sponta-
neously broken, and thus the emergent two-form gauge
field is confined. This means that the CFL phase has a
trivial topological structure, and we conclude that the
quark-hadron continuity scenario is alive also as quantum
phases of matter.
Symmetry of color-flavor locking.—We consider a three-

flavor QCD with degenerate quark masses [30]. The system
has the global symmetry

SUð3Þf × Uð1Þ
Z3 × Z3

; ð1Þ

where SUð3Þf is the vectorlike flavor symmetry, U(1) is the
quark-number symmetry, and two Z3 factors in the denom-
inators are introduced to remove the redundancies among
SUð3Þf, U(1), and SU(3) color gauge invariance [31–33].
In the presence of large chemical potential, quarks form the
Fermi surface with large Fermi momentum. Since QCD has
asymptotic freedom, the presence of this typical large
energy scale suggests that the system is weakly coupled
and semiclassical computation becomes reliable [9]. Within
the one-gluon exchange, quark-quark interaction is attrac-
tive in the antisymmetric channel, indicating the Cooper
instability of the Fermi surface. Motivated by this obser-
vation, it is quite useful to introduce the diquark operatorΦ
using the quark field q by

Φc1f1 ¼ εc1c2c3εf1f2f3ðqtc2f2iγ0γ2γ5qc3f3Þ: ð2Þ

Here, ci and fi represent the color and flavor labels,
respectively. The diquark field Φ is in the antifundamental
representation for SUð3Þc color and SUð3Þf flavor sym-
metry, and it has charge 2 under U(1).
Using this diquark field, the simplest effective

Lagrangian is given by the gauged Ginzburg-Landau model

S ¼ 1

2g2YM
jGj2 þ 1

2
jðdþ iaSUð3ÞÞΦj2

þ Veff(Φ†Φ; detðΦÞ); ð3Þ

where aSUð3Þ is the SUð3Þc color gauge field, G is its
field strength, the effective potential Veff depends only on
the color-singlet order parameters, Φ†Φ and detðΦÞ, and
Veff has the symmetry ½SUð3Þf × Uð1Þ�=½Z3 × Z3�. For
simplicity of discussion, we neglect the effect of the
absence of Lorentz symmetry due to the chemical potential,
but the extension will be straightforward. Let us now
assume that Veff has the minima at

Φ†Φ ¼ Δ2
01: ð4Þ

Taking the determinant of both sides, we get j detΦj ¼ Δ3
0.

In the gauge-invariant language [34,35], classical vacua
break the global symmetry spontaneously as

SUð3Þf × Uð1Þ
Z3 × Z3

→
SUð3Þf × Z6

Z3 × Z3

¼ SUð3Þ
Z3

× Z2: ð5Þ

Picking up a classical vacuum with detðΦÞ ¼ Δ3
0, we can

fix the gauge of SU(3) color group so that

Φ ¼ Δ01: ð6Þ

Since Φ is in the bi-(anti-)fundamental representation of
SUð3Þc × SUð3Þf, the symmetry breaking pattern in this
fixed gauge looks like

SUð3Þc × SUð3Þf × Uð1Þ
Z3 × Z3

→
SUð3Þcþf × Z6

Z3 × Z3

; ð7Þ

where SUð3Þcþf is the diagonal subgroup of
SUð3Þc × SUð3Þf. This is why it is called color-flavor
locking [9].
Derivation of a unified theory of U(1) NG bosons and

CFL vortices.—In the CFL phase, there are massless NG
bosons associated with the spontaneous breaking of U(1)
baryon number symmetry, and we can construct the phe-
nomenological Lagrangian bynonlinear realization. Because
of the quark masses, CFL pions are massive and they can be
neglected at low energies. Starting from the gauged GL
theory with SUð3Þc color gauge group, we derive the
effective low-energy theory that satisfies this requirement.
In order to correctly describe the possible low-energy

excitations including a higher-dimensional object, it is
important to take into account the topology of the
ground-state manifold. Here, we take the gauge so that
the diquark field Φ is a diagonal matrix,

Φ ¼ Δ0

0
B@

eiϕ1 0 0

0 eiϕ2 0

0 0 eiϕ3

1
CA; ð8Þ

where ϕi is 2π periodic scalar fields. This realizes (4) and
hence indicates the symmetry breaking pattern (5). This
choice of gauge is an analog of the maximal Abelian gauge
in Yang-Mills theory with adjoint scalars [36]. In this gauge
fixing, the local gauge redundancy becomes the Cartan
subgroup of SUð3Þc,

Uð1Þτ3 × Uð1Þτ8
Z2

⊂ SUð3Þc: ð9Þ

Here, Uð1Þτ3 and Uð1Þτ8 are U(1) groups generated by τ3 ¼
diag½1;−1; 0� and by τ8 ¼ diag½1; 1;−2�, respectively.
Since the rotations by π in Uð1Þτ3 and Uð1Þτ8 give the
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same transformation matrix, diag½eiπ; eiπ; 1�, the group
structure is divided by Z2. Let us denote the corresponding
U(1) gauge fields by a3 and a8, and then the low-energy
effective action (3) becomes

S¼ 1

2g20
ðjdϕ1þa3þa8j2þjdϕ2−a3þa8j2þjdϕ3−2a8j2Þ:

ð10Þ

Here, we omit the kinetic term of gauge fields since they
become heavy by Higgs mechanism, and g0 ¼ Δ−1

0 .
Each scalar ϕi is not gauge invariant, and the only gauge-

invariant combination is

φ ¼ ϕ1 þ ϕ2 þ ϕ3; ð11Þ

and this corresponds to the NG boson associated with the
spontaneous breaking of U(1) symmetry. Another impor-
tant remark is that each Wilson loop of a3 and a8 is not
observable since the gauge group is ½Uð1Þτ3 × Uð1Þτ8 �=Z2

instead of Uð1Þτ3 × Uð1Þτ8 [37]. Observable Wilson lines
are generated by

W3ðCÞ2; W8ðCÞ2; W3ðCÞW8ðCÞ; ð12Þ

whereW3ðCÞ¼expðiRCa3Þ andW8ðCÞ¼expðiRCa8Þ. As a
related fact, the normalizationof gauge fieldsa3 anda8 has to
be modified from a canonical choice of U(1) gauge fields as

Z
da3 ∈ πZ;

Z
da8 ∈ πZ; ð13Þ

with the constraint

Z
da3 ¼

Z
da8 mod 2π: ð14Þ

We are interested in the role of vortex configurations in
the CFL phase, and they are realized as the defect of the
scalar field in the gauged GL description. For description of
topological defects, it is convenient to take an Abelian
duality [38]. As preparation, let us derive [40] the Abelian
dual of the following model in four dimensions:

S ¼ 1

2g20
ðdϕþ kaÞ ∧ ⋆ðdϕþ kaÞ; ð15Þ

where ϕ is the 2π periodic scalar field, a is the U(1) gauge
field, and k ∈ Z is the U(1) charge. We can rewrite this
theory by introducing the R-valued three-form field h as

S ¼ g20
8π2

h ∧ ⋆h −
i
2π

h ∧ ðdϕþ kaÞ: ð16Þ

Solving the equation of motion of h, we get h ¼ ð2πi=g20Þ ⋆
ðdϕþ kaÞ and obtain the original action by substitution.

Instead of integrating out h, we solve the equation of
motion of ϕ first, and then we obtain

h ¼ db; ð17Þ

with a U(1) two-form gauge field b. The action becomes

S ¼ g20
8π2

jdbj2 þ i
k
2π

b ∧ da: ð18Þ

This is the dual action of the Abelian Higgs model with
charge k.
Applying this procedure to the effective action (10) for

the CFL phase, we obtain

Seff ¼
g20
8π2

X3
i¼1

jdbij2 þ
i
2π

X3
i¼1

X
A¼3;8

KiAbi ∧ daA; ð19Þ

where the matrix K is given by

K ¼

0
B@

1 1

−1 1

0 −2

1
CA: ð20Þ

This is the low-energy effective gauge theory describing the
NG boson, vortices, and color Wilson lines [41]. It has a
structure of a topological BF theory coupled with massless
NG bosons. General properties of this theory will be
discussed elsewhere [42].
Fractional statistics and an emergent two-form

symmetry.—The effective theory derived here encodes
the relation between the color holonomies and superfluid
circulations. In the dual description, we can define the
vortex operator as the Wilson surface operator

ViðM2Þ ¼ exp

�
i
Z
M2

bi

�
; ð21Þ

whereM2 is a vortex world sheet. Using (19), one can show
that the braiding statistics between the vortex Vi and test
quarks WA is given by [43]

hViðM2ÞWAðCÞi
hViðM2Þi

¼ exp ½2πiKþ
AilinkðC;M2Þ�; ð22Þ

where linkðC;M2Þ ∈ Z is the linking number of C andM2,
and Kþ

Ai is the Moore-Penrose inverse of K,

Kþ ¼
� 1

2
− 1

2
0

1
6

1
6

− 1
3

�
: ð23Þ

Now, let us recall that the physical Wilson loops consist
only of W2

3, W2
8, and W3W8. We find that W2

3 ¼ 1,
W2

8 ¼ ðW3W8Þ−1, and
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hViðM2ÞW8ðCÞ2i
hViðM2Þi

¼ exp

�
2πi
3

linkðC;M2Þ
�
: ð24Þ

This reproduces the observation made in a recent paper
[21]. Equation (24) indicates the emergence of a Z3 two-
form symmetry [16] in the CFL phase, where the generators
are Wilson loopsW2

8, and charged objects are CFL vortices
Vi. The explicit transformation of this two-form symmetry
is given by

b1 ↦ b1þ
1

3
λ; b2 ↦ b2þ

1

3
λ; b3 ↦ b3−

2

3
λ; ð25Þ

where λ is a flat two-form U(1) connection with
R
M2

λ ∈
2πZ for ∂M2 ¼ 0. Under this transformation, the action
changes as

ΔS ¼ i
2π

Z
λ ∧ ð2da8Þ ∈ 2πiZ; ð26Þ

using the fact that
R
λ ∈ 2πZ and

R
da8 ∈ πZ. Since

expð−ΔSÞ ¼ 1, we have confirmed that this two-form
transformation is the symmetry. Note that there is no
one-form symmetry for a, unlike the case of the BF theory
with level k. This is because dimðcokerKÞ ≠ 0, which is
equivalent to the existence of massless NG modes.
Implication for quark-hadron continuity.—If the CFL is

a superfluid phase with topological order, there should be
an emergent higher-form symmetry, and it has to be
spontaneously broken. We have seen that there exists an
emergent Z3 two-form symmetry, whose charged objects
are CFL vortices Vi. However, these vortices show the
logarithmic confinement, and hVii vanishes as vortex world
sheets become larger. This implies that the Z3 two-form
symmetry is unbroken. Consequently, there is no decon-
fined topological excitation and the emergent two-form
symmetry does not change the topological structure of
ground states. Therefore, it does not rule out the possibility
that the CFL phase is continuously connected to the
nucleon superfluidity.
This can be further supported by a general theorem of

quantum field theory, without relying on the mean field
approximation. Since the U(1) symmetry is spontaneously
broken, interaction of the low-energy Lagrangian should be
written by the derivative of the NG boson, ð1=2πÞdφ ¼
ðg20=4π2iÞ ⋆ dðb1 þ b2 þ b3Þ. If the vortex fluctuation is
heavy enough, then the topological defect of φ is negligible
in the path integral, and ð1=2πÞdφ is a conserved U(1)
current, generating the U(1) two-form symmetry. There is a
subgroup Z3 ⊂ Uð1Þ, which could be a different symmetry
from Eq. (25). Incidentally, those two symmetries act in the
same way on the physical observable expði R biÞ as 2πi=3
phase rotations. A generalized version [16] of the Coleman-
Mermin-Wagner theorem [44,45] states that the U(1) p-
form symmetry cannot be broken in less than or equal to

pþ 2 dimension, and thus U(1) two-form symmetry
cannot be broken in our four-dimensional spacetime.
Consequently, its subgroup Z3 ⊂ Uð1Þ is unbroken.
Since this symmetry has the same order parameter as the
emergent Z3 two-form symmetry, it cannot be broken
either in the CFL phase. This suggests the quark-hadron
continuity beyond Ginzburg-Landau paradigm.
Breaking SUð3Þf flavor symmetry.—Let us consider the

effect of explicit SUð3Þf breaking. To see this, we assume
that Veff has the minimum at Φ†Φ ¼ diagðΔ2

1;Δ2
2;Δ2

3Þ.
After gauge fixing, the diquark field is

Φ ¼

0
B@

Δ1eiϕ1 0 0

0 Δ2eiϕ2 0

0 0 Δ3eiϕ3

1
CA; ð27Þ

instead of (8) (see, e.g., [46]). The absence of SUð3Þf
symmetry is translated as Δi ≠ Δj for different i, j.
Correspondingly, the dual effective action is changed as

Seff ¼
1

8π2
X3
i¼1

g2i jdbij2 þ
i
2π

X3
i¼1

X
A¼3;8

KiAbi ∧ daA; ð28Þ

with gi ¼ 1=Δi.
To find the statistics, let us consider the equation of

motion under the presence of V3ðM2Þ vortex, which again
has 1=3 circulation. Equations of motion of a3 and a8 are

db1 ¼ db2 ¼ db3: ð29Þ

Equations of motion of b1, b2, and b3 say

g21
4π2

d ⋆ db1 ¼
i
2π

dða3 þ a8Þ;
g22
4π2

d ⋆ db2 ¼
i
2π

dð−a3 þ a8Þ;
g23
4π2

d ⋆ db3 ¼
i
2π

dð−2a8Þ − iδ⊥ðM2Þ; ð30Þ

where δ⊥ðM2Þ is the two-form-valued delta function whose
support is M2. As a result, e.g., we find

hV3ðM2ÞW8ðCÞ2i
hV3ðM2Þi

¼ exp

�
2πig23

g21þg22þg23
linkðC;M2Þ

�
; ð31Þ

which is not quantized to the Z3 phase unless we require
g1 ¼ g2 ¼ g3 coming out of SU(3) flavor symmetry. In the
absence of SUð3Þf symmetry, two-form symmetry gener-
ated by Wilson loops becomes an infinite group, in general.
Since this may be regarded approximately as U(1) two-
form symmetry, the vortices should be confined by the
generalized Coleman-Mermin-Wagner theorem.
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Summary and conclusions.—We have derived the effec-
tive gauge theory of the CFL phase describing the NG
bosons and vortices. The fractional statistics between
vortices and colored test particles is shown to be a result
of an emergentZ3 two-form symmetry. Color Wilson loops
are the generator of symmetry, and the charged objects are
superfluid vortices. This emergent two-form symmetry is
unbroken since the vortex-vortex interaction shows loga-
rithmic confinement. This is also supported by the gener-
alized Coleman-Mermin-Wagner theorem since we can
find that Z3 two-form symmetry is a subgroup of the
emergent U(1) two-form symmetry generated by
ð1=2πÞdφ. Therefore, the symmetry breaking pattern of
the CFL phase is the same as that of nucleon superfluidity,
not only for ordinary symmetries, but also for higher-form
symmetries. The effect of explicit SUð3Þf breaking is also
studied, and we check that no higher-form symmetry is
spontaneously broken. Our analysis indicates that the
quark-hadron continuity scenario is consistent also as
quantum phases of matter.
Our analysis suggests that there is some continuous local

deformation of the QCD Hamiltonian at finite densities that
connects hadronic superfluid and the CFL phase without
quantum phase transition. It is important to point out,
however, that we do not know if the chemical potential
direction corresponds to this continuous deformation, so
there may exist phase transition when we change the
baryon chemical potential. The answer for this question
requires knowledge of the dynamics of finite-density QCD,
and one must go beyond the kinematical approach based on
symmetry, anomaly matching, etc.
Finally, let us make several comments. The current Letter

is based on a Lagrangian in the mean field approximation;
however the whole analysis is translated into the language
of generalized global symmetry. This indicates that the
result of our analysis does not change under the effect of
perturbative fluctuations. Vortices can appear as excited
states (by rotation, for example). There are Majorana-
fermionic excitations inside them [27,47–49]. Roles and
consequences of possible physics from those states inside
neutron stars are to be understood.

Y. T. appreciates useful discussions with Aleksey
Cherman and Srimoyee Sen. The work of Y. T. was partly
supported by Special Postdoctoral Researcher Program of
RIKEN and also by a JSPS Overseas Fellowship. The work
of Y. H. was supported in part by the Korean Ministry of
Education, Science and Technology, Gyeongsangbuk-do
and Pohang City for Independent Junior Research Groups
at the Asia Pacific Center for Theoretical Physics.

*yuji.hirono@apctp.org
†ytaniza@ncsu.edu

[1] M. A. Stephanov, QCD phase diagram and the critical point,
Prog. Theor. Phys. Suppl. 153, 139 (2004); Int. J. Mod.
Phys. A 20, 4387 (2005).

[2] K. Fukushima and T. Hatsuda, The phase diagram of dense
QCD, Rep. Prog. Phys. 74, 014001 (2011).

[3] H.-c. Ren, Color superconductivity of QCD at high baryon
density, arXiv:hep-ph/0404074.

[4] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schafer,
Color superconductivity in dense quark matter, Rev. Mod.
Phys. 80, 1455 (2008).

[5] R. Casalbuoni, Lecture notes on superconductivity: Con-
densed matter and QCD, arXiv:1810.11125.

[6] J. M. Lattimer and M. Prakash, The physics of neutron stars,
Science 304, 536 (2004).

[7] B. C. Barrois, Superconducting quark matter, Nucl. Phys.
B129, 390 (1977).

[8] D. Bailin and A. Love, Superfluidity and superconductivity
in relativistic fermion systems, Phys. Rep. 107, 325 (1984).

[9] M. G. Alford, K. Rajagopal, and F. Wilczek, Color flavor
locking and chiral symmetry breaking in high density QCD,
Nucl. Phys. B537, 443 (1999).

[10] T. Schafer and F. Wilczek, Continuity of Quark and Hadron
Matter, Phys. Rev. Lett. 82, 3956 (1999).

[11] X. G. Wen, Topological order in rigid states, Int. J. Mod.
Phys. B 04, 239 (1990).

[12] X.-G. Wen, Quantum Field Theory of Many-Body Systems:
From the Origin of Sound to an Origin of Light and
Electrons, Oxford Graduate Texts, reissue ed. (Oxford
University Press, Oxford, 2007).

[13] M. Levin and X.-G. Wen, Detecting Topological Order in a
Ground State Wave Function, Phys. Rev. Lett. 96, 110405
(2006).

[14] A. Kitaev and J. Preskill, Topological Entanglement
Entropy, Phys. Rev. Lett. 96, 110404 (2006).

[15] X. Chen, Z. C. Gu, and X. G. Wen, Local unitary trans-
formation, long-range quantum entanglement, wave func-
tion renormalization, and topological order, Phys. Rev. B
82, 155138 (2010).

[16] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, J. High Energy Phys. 02
(2015) 172.

[17] S. Chatterjee, S. Sachdev, and M. Scheurer, Intertwining
Topological Order and Broken Symmetry in a Theory of
Fluctuating Spin Density Waves, Phys. Rev. Lett. 119,
227002 (2017).

[18] S. Sachdev and S. Chatterjee, Insulators and metals with
topological order and discrete symmetry breaking, Phys.
Rev. B 95, 205133 (2017).

[19] M. G. Alford, G. Baym, K. Fukushima, T. Hatsuda, and M.
Tachibana, Continuity of vortices from the hadronic to the
color-flavor locked phase in dense matter, Phys. Rev. D 99,
036004 (2019).

[20] C. Chatterjee, M. Nitta, and S. Yasui, Quark-hadron con-
tinuity under rotation: Vortex continuity or boojum, Phys.
Rev. D 99, 034001 (2019).

[21] A. Cherman, S. Sen, and L. G. Yaffe, Anyonic particle-
vortex statistics and the nature of dense quark matter, arXiv:
1808.04827.

[22] A. P. Balachandran, S. Digal, and T. Matsuura, Semi-
superfluid strings in high density QCD, Phys. Rev. D 73,
074009 (2006).

[23] E. Nakano, M. Nitta, and T. Matsuura, Non-Abelian strings
in high density QCD: Zero modes and interactions, Phys.
Rev. D 78, 045002 (2008).

PHYSICAL REVIEW LETTERS 122, 212001 (2019)

212001-5

https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1142/S0217751X05027965
https://doi.org/10.1088/0034-4885/74/1/014001
http://arXiv.org/abs/hep-ph/0404074
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/RevModPhys.80.1455
http://arXiv.org/abs/1810.11125
https://doi.org/10.1126/science.1090720
https://doi.org/10.1016/0550-3213(77)90123-7
https://doi.org/10.1016/0550-3213(77)90123-7
https://doi.org/10.1016/0370-1573(84)90145-5
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1103/PhysRevLett.82.3956
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1103/PhysRevLett.119.227002
https://doi.org/10.1103/PhysRevLett.119.227002
https://doi.org/10.1103/PhysRevB.95.205133
https://doi.org/10.1103/PhysRevB.95.205133
https://doi.org/10.1103/PhysRevD.99.036004
https://doi.org/10.1103/PhysRevD.99.036004
https://doi.org/10.1103/PhysRevD.99.034001
https://doi.org/10.1103/PhysRevD.99.034001
http://arXiv.org/abs/1808.04827
http://arXiv.org/abs/1808.04827
https://doi.org/10.1103/PhysRevD.73.074009
https://doi.org/10.1103/PhysRevD.73.074009
https://doi.org/10.1103/PhysRevD.78.045002
https://doi.org/10.1103/PhysRevD.78.045002


[24] M. Eto, Y. Hirono, M. Nitta, and S. Yasui, Vortices and other
topological solitons in dense quark matter, Prog. Theor.
Exp. Phys. 2014, 12D01 (2014).

[25] Earlier works along this direction include [26,27], in which
the effects of color holonomies are not considered. In
Ref. [28], Aharonov-Bohm scattering of quark off-color
magnetic fluxes is studied in the 2SC phase, in which
vortices are not topologically stable. In Ref. [29], scattering
of color-neutral particles off CFL vortices is discussed.

[26] Y. Nishida, Is a color superconductor topological?, Phys.
Rev. D 81, 074004 (2010).

[27] T. Fujiwara, T. Fukui, M. Nitta, and S. Yasui, Index theorem
and Majorana zero modes along a non-Abelian vortex in a
color superconductor, Phys. Rev. D 84, 076002 (2011).

[28] M. G. Alford and A. Sedrakian, Color-magnetic flux tubes
in quark matter cores of neutron stars, J. Phys. G 37, 075202
(2010).

[29] C. Chatterjee and M. Nitta, Aharonov-Bohm phase in high
density quark matter, Phys. Rev. D 93, 065050 (2016).

[30] The effect of mass difference will be discussed later.
[31] H. Shimizu and K. Yonekura, Anomaly constraints on

deconfinement and chiral phase transition, Phys. Rev. D
97, 105011 (2018).

[32] D. Gaiotto, Z. Komargodski, and N. Seiberg, Time-reversal
breaking in QCD4, walls, and dualities in 2þ 1 dimensions,
J. High Energy Phys. 01 (2018) 110.

[33] Y. Tanizaki, Anomaly constraint on massless QCD and the
role of Skyrmions in chiral symmetry breaking, J. High
Energy Phys. 08 (2018) 171.

[34] A. Cherman, S. Sen, M. Unsal, M. L. Wagman, and L. G.
Yaffe, Order Parameters and Color-Flavor Center Symmetry
in QCD, Phys. Rev. Lett. 119, 222001 (2017).

[35] Y. Tanizaki, Y. Kikuchi, T. Misumi, and N. Sakai, Anomaly
matching for phase diagram of massless ZN-QCD, Phys.
Rev. D 97, 054012 (2018).

[36] G. ‘t Hooft, Topology of the gauge condition and new
confinement phases in non-abelian gauge theories, Nucl.
Phys. B190, 455 (1981).

[37] O. Aharony, N. Seiberg, and Y. Tachikawa, Reading
between the lines of four-dimensional gauge theories,
J. High Energy Phys. 08 (2013) 115.

[38] A dual action for the CFL phase in which gluons are also
dualized is studied in Ref. [39]. Here we take the dual
of U(1) NG bosons only.

[39] Y. Hirono, T. Kanazawa, and M. Nitta, Topological inter-
actions of non-Abelian vortices with quasiparticles in high
density QCD, Phys. Rev. D 83, 085018 (2011).

[40] T. Banks and N. Seiberg, Symmetries and strings in field
theory and gravity, Phys. Rev. D 83, 084019 (2011).

[41] Let us point out that the effective theory in (19) is four-
dimensional field theory, and thus it is different from the
five-dimensional theory proposed in [21].

[42] Y. Hirono and Y. Tanizaki, Effective gauge theories of
superfluidity with topological order arXiv:1904.08570.

[43] The denominator is necessary to cancel nontopological
contributions due to the coupling of vortices with massless
NG bosons.

[44] S. R. Coleman, There are no Goldstone bosons in two-
dimensions, Commun. Math. Phys. 31, 259 (1973).

[45] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One-or Two-Dimensional
Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133
(1966).

[46] M. Eto, M. Nitta, and N. Yamamoto, Instabilities of Non-
Abelian Vortices in Dense QCD, Phys. Rev. Lett. 104,
161601 (2010).

[47] S. Yasui, K. Itakura, and M. Nitta, Fermion structure of non-
Abelian vortices in high density QCD, Phys. Rev. D 81,
105003 (2010).

[48] S. Yasui, K. Itakura, and M. Nitta, Majorana meets Coxeter:
Non-Abelian majorana fermions and non-Abelian statistics,
Phys. Rev. B 83, 134518 (2011).

[49] Y. Hirono, S. Yasui, K. Itakura, and M. Nitta, Non-Abelian
statistics of vortices with multiple Majorana fermions, Phys.
Rev. B 86, 014508 (2012).

PHYSICAL REVIEW LETTERS 122, 212001 (2019)

212001-6

https://doi.org/10.1093/ptep/ptt095
https://doi.org/10.1093/ptep/ptt095
https://doi.org/10.1103/PhysRevD.81.074004
https://doi.org/10.1103/PhysRevD.81.074004
https://doi.org/10.1103/PhysRevD.84.076002
https://doi.org/10.1088/0954-3899/37/7/075202
https://doi.org/10.1088/0954-3899/37/7/075202
https://doi.org/10.1103/PhysRevD.93.065050
https://doi.org/10.1103/PhysRevD.97.105011
https://doi.org/10.1103/PhysRevD.97.105011
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.1007/JHEP08(2018)171
https://doi.org/10.1007/JHEP08(2018)171
https://doi.org/10.1103/PhysRevLett.119.222001
https://doi.org/10.1103/PhysRevD.97.054012
https://doi.org/10.1103/PhysRevD.97.054012
https://doi.org/10.1016/0550-3213(81)90442-9
https://doi.org/10.1016/0550-3213(81)90442-9
https://doi.org/10.1007/JHEP08(2013)115
https://doi.org/10.1103/PhysRevD.83.085018
https://doi.org/10.1103/PhysRevD.83.084019
http://arXiv.org/abs/1904.08570
https://doi.org/10.1007/BF01646487
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.104.161601
https://doi.org/10.1103/PhysRevLett.104.161601
https://doi.org/10.1103/PhysRevD.81.105003
https://doi.org/10.1103/PhysRevD.81.105003
https://doi.org/10.1103/PhysRevB.83.134518
https://doi.org/10.1103/PhysRevB.86.014508
https://doi.org/10.1103/PhysRevB.86.014508

