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We derive a Feynman-Hellmann theorem relating the second-order nucleon energy shift resulting from
the introduction of periodic source terms of electromagnetic and isovector axial currents to the parity-odd
nucleon structure function FN

3 . It is a crucial ingredient in the theoretical study of the γW and γZ box
diagrams that are known to suffer from large hadronic uncertainties. We demonstrate that for a given Q2

one only needs to compute a small number of energy shifts in order to obtain the required inputs for the box
diagrams. Future lattice calculations based on this approach may shed new light on various topics in
precision physics including the refined determination of the Cabibbo-Kobayashi-Maskawa matrix elements
and the weak mixing angle.
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The electroweak box diagrams involving the exchange of
a photon and a heavy gauge boson (W�=Z) between a
lepton and a hadron (see Fig. 1) represent an important
component in the standard model (SM) electroweak radi-
ative corrections that enter various low-energy processes
such as semileptonic decays of hadrons and parity-violating
lepton-hadron scatterings. These are powerful tools in
extractions of SM weak parameters. The precise calcula-
tions of such diagrams are, however, extremely difficult
because they are sensitive to the loop momentum q at all
scales and include contributions from all possible virtual
hadronic intermediate states which properties are governed
by quantum chromodynamics (QCD) in its nonperturbative
regime. Hence, they are one of the main sources of
theoretical uncertainty in the extracted weak parameters
such as the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements [1,2] and the weak mixing angle [3] at low scale.
Modern treatments of the box diagrams are based on the

pioneering work by Sirlin [4] in the late 1970s that
separates the diagrams into “model-independent” and
“model-dependent” terms, of which the former can be
reduced to known quantities by means of current algebra.
The model-dependent terms, on the other hand, consist of
the interference between the electromagnetic and the
axial weak currents, and are plagued with large hadronic

uncertainties at Q2 ≲ 1 GeV2. Earlier attempts to constrain
these terms include varying the infrared cutoff [5–8] and the
use of interpolating functions [9], but all these methods
suffer from nonimprovable theoretical uncertainties. The
recent introduction of dispersion relations in treatments of
the γZ [10–13] and γW [14–16] boxes provides a better
starting point to the problem by expressing the loop integral
in terms of parity-odd structure functions. Since the latter
depend on on-shell intermediate hadronic states, one
could in principle relate them to experimental data.
Unfortunately, at the hadronic scale such data either do
not exist or belong to a separate isospin channel which can
only be related to our desired structure functions within
a model.
First-principles calculations of the parity-odd structure

functions from lattice QCD have not yet been thoroughly
investigated, and are expected to be challenging due to the
existence of multihadron final states. Moreover, most of the
recent developments in the lattice calculation of parton
distribution functions (see, e.g., Ref. [17]) do not apply
here because their applicability is restricted to largeQ2. But

FIG. 1. Direct and crossed box diagrams. Single and double
lines represent a lepton and a hadron, respectively. The blob
represents hadronic excitations and the wiggly lines denote the
gauge bosons.
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at the same time we also observe an encouraging develop-
ment in the application of the Feynman-Hellmann theorem
(FHT) [18,19], where external source terms are added
to the Hamiltonian, and the required hadronic matrix
elements of the source operator could be related to the
energy shift of the corresponding hadron which is easier to
obtain on lattice as it avoids the calculation of complicated
(and potentially noisy) contraction diagrams. A nonzero
momentum transfer q⃗ can also be introduced by adopting a
periodic source term. Such a method shows great potential
in the calculation of hadron electromagnetic form factors
[20], Compton scattering amplitude [21,22], parity-even
nucleon structure functions [23], and hadron resonances
[24]. Furthermore, it does not involve any operator product
expansion so its applicability is not restricted to large Q2.
Based on the developments above, we propose in this

Letter a new method to study the γW=γZ boxes, namely to
compute a generalized parity-odd forward Compton tensor
on the lattice through the second-order nucleon energy shift
upon introducing two periodic source terms, and solve for
the moments of F3 through a dispersion relation. We will
demonstrate that for a given Q2, the calculation of a few
energy shifts already provides sufficient information about
the integrand of the box diagrams, and such a calculation is
completely executable with the computational power in the
current lattice community. When data are accumulated for
sufficiently many values of Q2 at the hadronic scale, one
will eventually be able to remove the hadronic uncertainties
in the electroweak boxes and provide a satisfactory solution
to this long-lasting problem in precision physics.
We start by defining the electromagnetic current and the

isovector axial current (here we neglect the strange current
just to simplify our discussions of the two examples below,
but it is not a necessary approximation):

Jμem ¼ ð2=3Þūγμu − ð1=3Þd̄γμd;
JμA ¼ ūγμγ5u − d̄γμγ5d: ð1Þ

The spin-independent, parity-odd nucleon structure func-
tion FN

3 (N ¼ p, n) can be defined through the hadronic
tensor:

Wμν
N ðp; qÞ ¼ 1

4π

Z
d4xeiq·xhNðp⃗Þj½JμemðxÞ; JνAð0Þ�jNðp⃗Þi

¼ −
iεμναβqαpβ

2p · q
FN
3 ðxB;Q2Þ; ð2Þ

where xB ¼ Q2=ð2p · qÞ is the Bjorken variable which lies
between −1 and 1, and ε0123 ¼ −1. We stress that it is more
natural to include negative values of xB because in a
dispersion relation involving FN

3 ðxB;Q2Þ, xB acts as the
integration variable in the Cauchy integral that could lie on
both the positive and the negative real axes. Notice that
the spin label in the nucleon states are suppressed for

simplicity. From that we may define the so-called “first
Nachtmann moment” of FN

3 as [25,26]

M1½FN
3 � ¼

Z
1

0

dxΠðx;Q2ÞFN
3 ðx;Q2Þ; ð3Þ

where

Πðx;Q2Þ ¼ 4

3

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Nx
2=Q2

p
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Nx
2=Q2

p
Þ2 ð4Þ

and mN is the nucleon mass.
To see the physical relevance of the definitions above, we

shall briefly discuss some recent progress in the study of
two weak processes that play central roles in low-energy
precision tests of SM:
First, superallowed nuclear β decays represent the best

avenues for the measurement of the CKM matrix element
Vud as the corresponding weak nuclear matrix element is
protected at tree level by the conserved vector current. With
the inclusion of higher-order corrections one obtains [1]

jVudj2 ¼
2984.432ð3Þ s
F tð1þ ΔV

RÞ
ð5Þ

where F t is the product between the half-life t and the
statistical function f, but modified by nuclear-dependent
corrections. ΔV

R represents the nucleus-independent radia-
tive correction. The main theoretical uncertainty of jVudj
comes from ΔV

R , which in turn acquires its largest uncer-
tainty from the interference between the isosinglet electro-
magnetic current and the axial charged weak current in the
γW box diagram. The latter can be expressed as

ðΔV
RÞVAγW ¼

Z
∞

0

dQ2

Q2

3α

π

M2
W

M2
W þQ2

M1½Fð0Þ
3 �; ð6Þ

where Fð0Þ
3 ¼ −ð1=4ÞðFp

3 − Fn
3Þ through isospin symmetry.

A recent determination ofΔV
R based on a dispersion relation

and neutrino scattering data gives 0.02467(22) [14], which
lies significantly above the previous sate-of-the-art result of
0.02361(38) [9] and leads to an apparent violation of the
first-row CKM unitarity at the level of 4σ that calls for an
immediate resolution. Besides, scrutinizing the problems in
Vud will also lead to a better determination of Vus, because
one of the main measuring channels of the latter, the
K → μνðγÞ decay, probes the ratio jVusj=jVudj.
Second, we look at parity-odd ep scattering. The

measurement of the proton weak charge Qp
W in the

almost-forward elastic ep scattering is a powerful probe
of the physics beyond SM due to the accidental suppression
of its tree-level value 1 − 4 sin2 θW , with θW the weak
mixing angle. After including one-loop electroweak radi-
ative corrections, the quantity reads [27]
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Qp
W ¼ ð1þ Δρþ ΔeÞ½1 − 4sin2θWð0Þ þ Δ0

e�
þ□WW þ□ZZ þ□γZ; ð7Þ

among which □γZ represents the contribution from the γZ
box that bears the largest hadronic uncertainty. In the limit
of vanishing beam energy, it takes the following form:

□γZ ¼
Z

∞

0

dQ2

Q2

3α

2π
ve

M2
Z

M2
Z þQ2

M1½FγZ
3 �; ð8Þ

where ve is the electron weak charge and FγZ
3 ¼ −Fp

3 . A
recent estimation of □γZ reads 0.0044(4) [12]. In view of
the upcoming P2 experiment at mainz energy-recovering
superconducting accelerator that aims for the measurement
of sin2 θW to a precision of 0.15% [28], it is necessary for a
revisit of the γZ box to proceed coherently with γW in order
to ensure there is no unaccounted systematics as recently
discovered in the latter [14,15].
From the two examples above one sees that the object of

interest is the first Nachtmann moment of FN
3 , which probes

different on-shell intermediate states at different Q2. The
analysis of the data accumulated for an analogous parity-
odd structure function FWW

3 resulting from the interference
between the vector and axial charged weak current in
inclusive νp=ν̄p scattering indicates that (1) at Q2 <
0.1 GeV2 the first Nachtmann moment is saturated by
the contribution from the elastic intermediate state and the
lowest nucleon resonances [29] of which sufficient data are
available, and (2) at Q2 > 2 GeV2 it is well described by a
parton model with well-known perturbative QCD correc-
tions [30,31] (see also Sec. IV of Ref. [15] for a detailed
description of the dominant physics that takes place at
different Q2). On the other hand, multihadron intermediate
states dominate at Q2 ≲ 1 GeV2, and a first-principles
theoretical description at this region is absent so far.

Although there are attempts to relate, say, Fð0Þ
3 to the

measured FWW
3 in this region, such a relation is only

established within a model because it belongs to different
isospin channels. Therefore, the goal of this Letter is to
outline a method that allows for a reliable first-principles
calculation of M1½FN

3 � at Q2 ≲ 1 GeV2.
To achieve this goal, we consider the following gener-

alized forward Compton tensor:

Tμν
N ðp; qÞ ¼

Z
d4xeiq·xhNðp⃗ÞjTfJμemðxÞJνAð0ÞgjNðp⃗Þi

¼ −
iεμναβqαpβ

2p · q
TN
3 ðω; Q2Þ; ð9Þ

where ω ¼ 1=xB ¼ 2p · q=Q2, and time-reversal invari-
ance requires TN

3 ðω; Q2Þ to be an odd function of ω. Unlike
the structure function, here we do not require the inter-
mediate states to stay on shell, so one could have jωj < 1. A
dispersion relation exists between TN

3 and FN
3 :

TN
3 ðω; Q2Þ ¼ −4iω

Z
1

0

dx
FN
3 ðx;Q2Þ
1 − ω2x2

: ð10Þ

Therefore, if one is able to compute TN
3 ðω; Q2Þ at several

points of ω below the elastic threshold, then one could
extract useful information about the structure function FN

3

through Eq. (10).
Our approach is to make use of the second-order FHT

that relates the second derivative of the nucleon energy
upon the introduction of periodic source terms to TN

3 below
threshold. Let us first state our result here. We define the
momentum transfer qμ ¼ ð0; qx; qy; qzÞ so that Q2 ¼ q⃗2

and ω ¼ −2p⃗ · q⃗=q⃗2, and throughout this work we impose
the off-shell condition, i.e., jωj ¼ 2jp⃗ · q⃗j=q⃗2 < 1. We
consider the addition of two external source terms to the
ordinary QCD Hamiltonian (we choose μ ¼ 2 and ν ¼ 3 to
be definite):

HλðtÞ ¼ H0ðtÞ þ 2λ1

Z
d3x cosðq⃗ · x⃗ÞJ2emðx⃗; tÞ

− 2λ2

Z
d3x sinðq⃗ · x⃗ÞJ3Aðx⃗; tÞ: ð11Þ

The unperturbed nucleon energy with momentum p⃗ is
simply ENðp⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p⃗2
p

. After the introduction of the
external source terms, this energy becomes EN;λðp⃗Þ. We
remind the readers that, since the source terms break
translational symmetry, the nucleon eigenstate with energy
EN;λðp⃗Þ is no longer a momentum eigenstate. The second-
order FHT states that

�∂2EN;λðp⃗Þ
∂λ1∂λ2

�
λ¼0

¼ iqx
Q2ω

TN
3 ðω; Q2Þ: ð12Þ

One could then express the amplitude TN
3 in terms of the

dispersion integral (10) to obtain

�∂2EN;λðp⃗Þ
∂λ1∂λ2

�
λ¼0

¼ 4qx
Q2

Z
1

0

dx
FN
3 ðx;Q2Þ
1 − ω2x2

; ð13Þ

which is the central result of this Letter. For later conven-
ience, we define the function Λðx;ωÞ ¼ 1=ð1 − ω2x2Þ.
Below we shall outline a proof of Eq. (12) based on the

Euclidean path integral, which is closely connected to
standard treatments in lattice QCD [32] (we also refer
interested readers to Ref. [22] that contains all details of an
almost identical derivation for the case of the parity-even
Compton amplitude). Throughout, Euclidean quantities
will be labeled by a subscript E. Also, if a quantity is
supposed to be affected by the source terms but appears
without a subscript λ, that implies its limit at λ1, λ2 → 0.
First, the existence of extra source terms in Eq. (11) implies
a shift of the Euclidean action:
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SE;λ ¼ S0E þ 2λ1

Z
d4xE cosðq⃗ · x⃗ÞJ2emðxEÞ

− 2λ2

Z
d4xE sinðq⃗ · x⃗ÞJ3AðxEÞ: ð14Þ

Next, we define a two-point correlation function:

CN
λ ðp⃗; tEÞ¼

Z
d3xe−ip⃗·x⃗hΩλjTfχNðx⃗; tEÞχ†Nð0ÞgjΩλi; ð15Þ

with tE > 0. Here, χN is an interpolating operator that
possesses the same quantum numbers as the nucleon N. We
remind the readers that a time-ordered correlation function
of arbitrary operators Oi with respect to the vacuum state
jΩλi can be expressed in terms of a Euclidean path integral:

hΩλjTfO1ðt1EÞ…OnðtnEÞgjΩλi

¼ 1

ZE;λ

Z
DϕO1ðt1EÞ…OnðtnEÞe−SE;λ ; ð16Þ

with ZE;λ the Euclidean partition function. Based on the
asymptotic behavior of CN

λ , we define an “effective
energy”:

Eeff
N;λðp⃗; tE; τEÞ ¼

1

τE
ln

�
CN
λ ðp⃗; tEÞ

CN
λ ðp⃗; tE þ τEÞ

�
; ð17Þ

that reduces to the nucleon energy in the large-time limit
(which is only true when jωj < 1):

lim
tE→∞

Eeff
N;λðp⃗; tE; τEÞ ¼ EN;λðp⃗Þ: ð18Þ

Therefore, one may obtain the partial derivatives of EN;λðp⃗Þ
with respect to λi through the partial derivatives of Eeff

N;λ. An
advantage in doing so is that one could see explicitly that
the “vacuum matrix elements,” i.e., terms with ∂ZE;λ=∂λi,
do not contribute. We find that the first derivative vanishes:

�∂EN;λðp⃗Þ
∂λi

�
λ¼0

¼ lim
tE→0

�∂Eeff
N;λðp⃗; tE; τEÞ

∂λi
�

λ¼0

¼ 0: ð19Þ

The underlying reason is simple: the external source terms
induce a momentum shift of �q⃗ upon each insertion;
therefore according to usual perturbation theory, the linear
energy shift is proportional to hp⃗jp⃗� q⃗i ¼ 0 for q⃗ ≠ 0.
We are interested in the second derivative of EN;λðp⃗Þ

which reads

�∂2EN;λðp⃗Þ
∂λ1∂λ2

�
λ¼0

¼ lim
tE→∞

1

τE

�
Rðp⃗; q⃗; tEÞ
CNðp⃗; tEÞ

− ðtE → tE þ τEÞ
�

ð20Þ

where

Rðp⃗;q⃗;tEÞ¼
Z

d3xe−ip⃗·x⃗

×hΩjT
�
χNðx⃗;tEÞχ†Nð0Þ

�∂SE;λ
∂λ1

��∂SE;λ
∂λ2

��
jΩi:

ð21Þ

One then splits the time-ordered product in Rðp⃗; q⃗; tEÞ into
different time regions, and finds that at large tE the
dominant piece is the one with the two currents sandwiched
between χN and χ†N . We may then insert two complete sets
of states between the interpolating operators and the
current product, and since the off-shell condition ensures
ENðp⃗� 2q⃗Þ > ENðp⃗Þ, we find that the dominant piece
consists of a time-ordered nucleon matrix element with the
same momentum p⃗ in the initial and final states. We
therefore isolate this piece and make use of the following
identity:

Z
tE

0

dy4E

Z
tE

0

dz4EhNðp⃗ÞjTfJ2emðy⃗; y4E − z4EÞJ3Að0ÞgjNðp⃗Þi

→ tE

Z
∞

−∞
dy4EhNðp⃗ÞjTfJ2emðy⃗; y4EÞJ3Að0ÞgjNðp⃗Þi ð22Þ

to obtain

ENðp⃗Þ
�∂2EN;λðp⃗Þ

∂λ1∂λ2
�

λ¼0

¼ −
Z

d4yE sinðq⃗ · y⃗Þ

× hNðp⃗ÞjTfJ2emðyEÞJ3Að0ÞgjNðp⃗Þi: ð23Þ

We can now switch back to the Minkowskian space time
through a Wick rotation:

R
d4yE → i

R
d4y. Finally, we

substitute the result into Eq. (9) and make use of crossing
symmetry T3ð−ω; Q2Þ ¼ −T3ðω; Q2Þ to arrive at Eq. (12).
This completes the proof.
Now let us discuss the practical use of Eq. (13). Ideally, it

allows for a reconstruction of the full structure function
FN
3 ðx;Q2Þ by calculating the second-order energy shift at

n ≫ 1 discrete points of ω: we simply discretize the
dispersion integral to obtain a matrix equation:

�∂2EN;λðp⃗Þ
∂λ1∂λ2

�
λ¼0

ðωi; Q2Þ ≈
Xn
j¼1

Aωi;xjF
N
3 ðxj; Q2Þ; ð24Þ

and notice that the matrix A does not possess any
singularity with ω below the elastic threshold. We may
then invert A to obtain FN

3 ðx;Q2Þ at the discrete points
fxjg. However, such an approach is accurate only when n is
large, which is difficult to achieve with the current lattice
computational power when Q2 ≲ 1 GeV2. To see this, one
first recalls that any momentum in a finite lattice can only
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take discrete values: k⃗ ¼ ð2π=LÞðnkx; nky; nkzÞ, with
L the spatial lattice size and fnkx; nky; nkzg are integers.
The requirements that Q2 ¼ q⃗2 ≲ 1 GeV2 and jωj ¼ 2jp⃗ ·
q⃗j=q⃗2 < 1 imply two conditions:

4π2

L2
ðn2qx þ n2qy þ n2qzÞ ≲ 1 GeV2; ð25Þ

2jnpxnqx þ npynqy þ npznqzj
n2qx þ n2qy þ n2qz

< 1: ð26Þ

In particular, with a fixed choice of q⃗, the second condition
determines the allowed discrete values of ω at which the
nucleon energy can be extracted on lattice. To understand
how low in Q2 one can probe, we consider a typical
lattice setup: the configuration cA2.09.48 from the ETM
Collaboration that features a spatial lattice size of
48 × 0.0931 fm ≈ 4.47 fm [33]. For such a configuration,
we get Q2≈0.38GeV2 with the choice q⃗¼ð2π=LÞð2;1;0Þ,
but Eq. (26) restricts the number of allowed jωj to three:
0, 2=5, and 4=5. Such a small amount is obviously
insufficient to perform the matrix inversion of Eq. (24)
to any satisfactory level of accuracy.
Fortunately, in studies of the electroweak boxes we do not

need the full FN
3 ðx;Q2Þ as a function of x, but rather its

first Nachtmann moment. Therefore, the real question is
whether one could form a linear combination of the
functions fΛðx;ωiÞg that appear in the dispersion integral
(13) with all allowed values of ωi to approximate the
function Πðx;Q2Þ to a satisfactory level, especially at small
x [because apart from the known, isolated elastic contribu-
tion at x ¼ 1 FN

3 ðx;Q2Þis non-zero only at x < xπ ¼
Q2=ð2mNMπ þM2

π þQ2Þ, with Mπ the pion mass]. As a
proof of principle, let us still consider the example above.We
define the following linear combination:

ΛtotðxÞ ¼ aΛðx; 0Þ þ bΛðx; 2=5Þ þ cΛðx; 4=5Þ; ð27Þ
and fit the parameters fa; b; cg to match Πðx;Q2Þ at
Q2 ≈ 0.38 GeV2. We find that they come to a good
agreement at x < 0.9 with the choice a ¼ 7.82446,
b ¼ −7.58605, and c ¼ 0.734787, as shown in Fig. 2.
That means we could obtain a very good approximation
to M1½FN

3 � by adding the values of ðQ2=4qxÞ×
ð∂λ1∂λ2EN;λÞλ¼0 calculated at ω ¼ 0, 2=5, 4=5 with the
weighting coefficients fa; b; cg, respectively. We shall also
discuss the efficiency of this procedure for different values of
Q2: with the same L, at larger Q2 one has more available
values of ω and the global fitting to Πðx;Q2Þ will be even
better; this is encouraging becauseQ2 > 0.38 GeV2 already
fully covers the so-called “intermediate distances” in Ref. [9]
that contain most of the hadronic uncertainties. On the other
hand, at smaller Q2 (such as Q2 ¼ 0.1 GeV2) the allowed
values of ω are less so one is not able to reproduce M1½FN

3 �
with the same accuracy. The readers, however, should not be

discouraged because (1)ω ¼ 0 is always an accessible point,
which gives the first Mellin moment of FN

3 according to
Eq. (13). This will provide important constraints for model
parametrizations of the residual multihadron contributions to
FN
3 ðx;Q2Þ at small Q2, and (2) future efforts in the increase

of the lattice size (see, e.g., Ref. [35]) will then allow for a
precise calculation of M1½FN

3 � at smaller Q2 with our
proposed method.
We shall end by commenting on the required level of

precision for lattice calculations. We take the γW box as an
example: in Ref. [15], the contribution from multiparticle
intermediate states atQ2 ∼ 1 GeV2 to ΔV

R is estimated to be
ðα=πÞ × ð0.48� 0.07Þ through a simple Regge-exchange
model, with a ∼15% error coming from the νp=ν̄p
scattering data. Possible systematic errors due to the
simplicity of the model itself are not accounted for. In
this sense, a successful lattice calculation of the second-
order nucleon energy shift at a few points of ω with a
precision level of 15% will already be able to match the
precision of the model and start to challenge its accuracy.
This is completely executable with current lattice tech-
niques as a similar calculation for parity-even structure
functions has already been performed in Ref. [23] with a
10% overall projected error. Also, by employing a larger L
one is able to probe smallerQ2, and when sufficiently many
points of M1½FN

3 � between 0.1 GeV2 < Q2 < 1 GeV2 are
determined, one will be able to reduce the hadronic
uncertainties in the γW and γZ boxes to a level compatible
with current and future precision experiments.

The authors thank Akaki Rusetsky, Gerrit Schierholz,
and Mikhail Gorchtein for inspiring discussions. This work
is supported in part by the DFG (Grant No. TRR110) and
the NSFC (Grant No. 11621131001) through the funds
provided to the Sino-German CRC 110 “Symmetries and
the Emergence of Structure in QCD,” by the Alexander
von Humboldt Foundation through a Humboldt Research

FIG. 2. Comparison between the function Πðx;Q2Þ at Q2 ¼
0.38 GeV2 (blue solid line) and ΛtotðxÞ (red dashed line) defined
in Eq. (27).
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