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We provide an explicit expression for the strong magnetic field limit of the Heisenberg-Euler effective
Lagrangian for both scalar and spinor quantum electrodynamics. To this end, we show that the strong
magnetic field behavior is fully determined by one-particle reducible contributions discovered only
recently. The latter can efficiently be constructed in an essentially algebraic procedure from lower-order
one-particle reducible diagrams. Remarkably, the leading strong magnetic field behavior of the all-loop
Heisenberg-Euler effective Lagrangian only requires input from the one-loop Lagrangian. Our result
revises previous findings based exclusively on one-particle irreducible contributions. In addition, we briefly
discuss the strong electric field limit and comment on external field QED in the large N limit.

DOI: 10.1103/PhysRevLett.122.211602

Introduction.—The Heisenberg-Euler effective
Lagrangian [1–3] is a central quantity in the development
of quantum field theory. It studies the effect of quantum
fluctuations on the effective theory of prescribed electro-
magnetic fields in the vacuum, and allows for the system-
atic derivation of quantum corrections to Maxwell’s
classical theory of electrodynamics. The latter manifest
themselves in effective, nonlinear self-couplings between
electromagnetic fields, giving rise to light-by-light scatter-
ing phenomena [4]. Moreover, in electric fields the
Heisenberg-Euler effective Lagrangian develops a non-
perturbative imaginary part which can be associated with
an instability of the quantum vacuum towards the formation
of a state featuring real electrons and positrons [5]. For
reviews emphasizing various theoretical aspects as well as
prospects for the experimental detection of such effects, see
Refs. [6–18].
Here, we focus on the on-shell renormalized Heisenberg-

Euler effective Lagrangian LHE for quantum electrody-
namics (QED) in d ¼ 3þ 1 space-time dimensions and a
prescribed constant electromagnetic field Fμν. As in the
derivation of LHE the dynamical fermion and photon fields
are integrated out, LHE can be represented in terms of
Feynman diagrams featuring internal fermion and photon
lines only; cf., e.g., Ref. [19]. In turn, the only physical
dimensionful scale inherited by LHE from the microscopic
theory of QED is the electron mass m. Each coupling of a

photon to a fermion line is mediated by the elementary
charge e ¼ ffiffiffiffiffiffiffiffi

4πα
p

, implying that each internal photon line
comes with a factor of α. On the other hand, the external
field dependence of any loop diagram is entirely in terms of
the combined parameter eFμν. The latter combination
actually forms a renormalization group (RG) invariant,
and hence is independent of the renormalization scale [20].
Correspondingly, it is convenient to formally treat the
parameter α and the combination eFμν as independent.
The power of the former counts the number of internal
photon lines nγ in a given diagram, and the power of the
latter the number of couplings to the external fields.
The entire field dependence of LHE in constant fields can

be encoded in the gauge and Lorentz invariants of the
electromagnetic field, F ¼ 1

4
FμνFμν ¼ 1

2
ðB⃗2 − E⃗2Þ and

G ¼ 1
4
Fμν

⋆Fμν ¼ −B⃗ · E⃗, with dual field strength tensor
⋆Fμν. Besides,CP invariance of QED demands the effective
Lagrangian to be even in the pseudoscalar quantity G. For
field configurations fulfilling G ¼ 0 and F > 0 (F < 0) it
is always possible to find a Lorentz frame in which the field
is purely magnetic (electric). Moreover, a result determined
in purely magnetic fields B ¼ jB⃗j can always be translated
to the analogous one in purely electric fields E ¼ jE⃗j by
means of the replacement B → −iE and vice versa; cf.,
e.g., Ref. [21].
The Heisenberg-Euler effective Lagrangian admits a

diagrammatic expansion in the number of loops l of the
constituting Feynman diagrams,

LHE ¼
X∞
l¼0

Ll-loop; ð1Þ
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where L0-loop ¼ − 1
4
FμνFμν is the classical Maxwell

Lagrangian. Note that in purely magnetic fields we have
L0-loopðBÞ ¼ − 1

2
B2. The l-loop contribution scales as

Ll-loop ∼ ðα=πÞl−1, where α≡ αðm2Þ ¼ ðe2=4πÞ ≃ 1
137

is
the fine-structure constant; we use the Heaviside-Lorentz
system with c ¼ ℏ ¼ 1. Contributions beyond one loop
generically decompose into one-particle irreducible (1PI)
and one-particle reducible (1PR) diagrams [19], such that
for l ≥ 2we haveLl-loop ¼ Ll-loop

1PI þ Ll-loop
1PR ; of course, the

one-loop Lagrangian L1-loop is 1PI by definition.
The one- and two-loop results L1-loop and L2-loop are

known explicitly for both spinor [1,19,20] and scalar [2,22]
QED; see also Refs. [6,9,23–26]. On the three-loop level,
the first analytical results for L3-loop have been obtained in
1þ 1 dimensions [27–29].
Following the discovery of the nonvanishing of the 1PR

contributions to LHE in constant fields, a variety of further
studies focusing on 1PR contributions in external-field
QED have been performed [25,26,30–32].
Strong magnetic fields.—A particularly interesting

parameter regime is the regime of strong magnetic fields
characterized by ðeB=m2Þ ≫ 1. In this limit analytical
insights are possible at all loop orders. It is in particular
well known in the literature that the 1PI contribution to LHE
at l loops scales as [2,6,8,9,20,33–35]

L1-loopðBÞ ¼ 1

2
B2αβ1 ln

�
eB
m2

��
1þO

�
1

lnðeBm2Þ
��

and

Ll-loop
1PI ðBÞ ¼ 1

2
B2ðαβ1Þl

β2=β21
l − 1

lnl−1
�
eB
m2

�

×

�
1þO

�
1

lnðeBm2Þ
��

for l ≥ 2; ð2Þ

where β1 ¼ 1=ð3πÞ (β1 ¼ 1=ð12πÞ) and β2 ¼ 1=ð4π2Þ
(β2 ¼ 1=ð4π2Þ) are the renormalization scheme indepen-
dent coefficients of the β function of spinor (scalar) QED,

βðαðμ2ÞÞ ¼ 1

αðμ2Þ μ
2
dαðμ2Þ
dμ2

; ð3Þ

with βðαÞ ¼ β1αþ β2α
2 þOðα3Þ, governing the running

of the fine structure constant.
The structure of Eq. (2) can be derived [20] with the help

of the Callan-Symanzik equation [36,37]. It is the result of a
close connection between the short-distance behavior of
renormalized Green’s functions and the strong-field limit of
associated quantities calculated in prescribed background
fields [6,8,9,20,22,35,38,39] in the absence of zero modes
[40]; cf. in particular the review [9] and references therein.
On the other hand, Ref. [30] provides an explicit

prescription of how to construct all possible 1PR contri-
butions to a given quantity in constant electromagnetic
fields from 1PI contributions of lower loop order. Adopting

the prescription of Ref. [30] to LHE in purely magnetic
fields, we obtain

Ll-loop
1PR ðBÞ ¼

Xl−1
k¼1

X
l1m1þ���þlnmn¼l−k

�
1

2

Ll1-loop
1PI

∂B
∂
∂B

�
m1

� � �
�
1

2

Lln-loop
1PI

∂B
∂
∂B

�
mn

Lk-loop
1PI ðBÞ; ð4Þ

where the second sum is taken over all sequences of
positive integer indices fli; mi; ng ≥ 1, with i ∈ f1;…; ng,
such that

P
n
i¼1 limi ¼ l − k.

As will be shown in a moment, the leading contribution
to Eq. (4) in the strong magnetic field limit arises
from contributions involving derivatives of L1-loop only.
Correspondingly, the constituting diagrams are made up of
lf ¼ l charged-particle loops, and can be expressed as [30]

ΔLl-loop
1PR ðBÞ ¼

�
1

2

∂L1-loop

∂B
∂
∂B

�
l−1

L1-loopðBÞ: ð5Þ

For a graphical representation, see Fig. 1.
In a next step, we insert the first line of Eq. (2) into Eq. (5).

This will allow us to determine the leading contribution to
ΔLl-loopðBÞ in the limit of a strong magnetic field. As
ð∂=∂BÞ½BnlnlðBÞ� ¼ ½ð∂=∂BÞBn�lnlðBÞ½1þO(ln−1ðBÞ)�,
with fn; lg ∈ N, the leading strong field behavior arises from
the contributionwith all derivatives forB acting on the power
of B and none on the logarithm. Hence, with regard to the
extraction of the leading strong field behavior ofΔLl-loop via
derivatives forB, Eq. (2) effectively appears as quadratic inB.
The logarithm rather plays the role of an inert factor
associated with each charged-particle loop. For a graphical
illustration, see Fig. 2. In turn, we obtain

FIG. 1. Topologically distinct diagrams constituting ΔLl-loop

up to four loops. By definition, all contributing diagrams beyond
one loop are one-particle reducible. The double solid line denotes
the charged-particle propagator dressed to all orders by the
background field.
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ΔLl-loop
1PR ðBÞ¼ ðαβ1Þl

�
ln

�
eB
m2

�
þOð1Þ

�
l
�
B
2

∂
∂B

�
l−1B2

2

¼B2

2

�
αβ1 ln

�
eB
m2

��
l
�
1þO

�
1

lnðeBm2Þ
��

; ð6Þ

for l ≥ 2. This also explains why the dominant 1PR
contribution arises from the 1PR diagram involving L1-loop

insertions only: Insertions of higher-loop 1PI contributions
(2) into Eq. (4) immediately result in a subleading scaling
with respect to the power of the logarithm at a given loop
order l. Correspondingly, for l ≥ 2 the leading strong field
behavior of the 1PR contribution Ll-loop

1PR is given by the
expression in Eq. (6). Subleading 1PR contributions can, in
principle, be determined along the same lines. However, in
general their actual determination ismuchmore complicated.
A comparison of Eqs. (2) and (6) unveils that for all loop

orders l ≥ 2 the 1PR contribution dominates the 1PI one,
and the leading strong field limit is dictated by the
coefficient β1 of the QED β function alone. In turn, for
l ≥ 1 the leading strong field behavior of the Heisenberg
Euler effective Lagrangian is given by

Ll-loopðBÞ¼ 1

2
B2

�
αβ1 ln

�
eB
m2

��
l
�
1þO

�
1

lnðeBm2Þ
��

: ð7Þ

Note that this behavior is in accordance with Weisskopf’s
investigation [41] showing that the logarithmic divergence
at l ≥ 2 loop order scales at most as the lth power of the
logarithm. A resummation of Eq. (7) to all loops via Eq. (1)
yields

LHEðBÞ ¼ −
1

2
B2 þ 1

2
B2α1-loopðeBÞβ1 ln

�
eB
m2

�

×

�
1þO

�
1

lnðeBm2Þ
��

; ð8Þ

with the one-loop running of the fine structure given by

α1-loopðμ2Þ ¼ α

1 − αβ1 lnðμ
2

m2Þ
; ð9Þ

and α≡ αðm2Þ. This expression (8) is convergent for
αβ1 lnðeB=m2Þ < 1. The appearance of Eq. (9) in this
context is not surprising. The resummation of chain
diagrams as depicted in Fig. 2 is reminiscent of the
calculation of an exact two-point function by summing
up all 1PI insertions. Upon restriction to one-loop inser-
tions this generically gives rise to the one-loop running of
quantities.
Equation (8) supersedes the expression obtained in

Ref. [6] which is based on the resummation of the leading
logarithms in the 1PI sector of LHE only and completely
neglects 1PR contributions. It is interesting to note the

structural similarity of this result with L1-loopðBÞ in
Eq. (2); more specifically, we have LHEðBÞ ¼
− 1

2
B2 þ L1-loopðBÞjα→α1-loopðeBÞ. This structure is actually

not too surprising: From an effective field theory point of
view it is natural that the couplings are evaluated at the
relevantmomentum scale, which in the strongmagnetic field
limit eB ≫ m2 amounts to eB. However, what could not be
anticipated without an explicit calculation is the fact that
the prefactor of the logarithm in L1-loopðBÞ in Eq. (2) is
indeed scaling as α × B2 rather than the RG invariant
combination ðeBÞ2.
Some additional comments are in order here. The cou-

pling (9) diverges at the Landau pole μ2 ¼ m2eð1=αβ1Þ. In the
present case, the pole in the all-order result (8) cannot be
considered as the artifact of a finite-loop-order calculation
which might presumably removed by higher-loop correc-
tions within perturbative QED. Manifestly nonperturbative
lattice studies of QED indicate that it could nevertheless lie
in a region of the parameter spacewhich ismade inaccessible
by spontaneous chiral symmetry breaking [42]. In any case,
within the standard model of particle physics quantum
corrections of other particle degrees of freedom become
relevant way before the Landau pole of QED is reached.
Even though it is clearly beyond the validity regime of

perturbation theory, it is interesting to observe that in the
formal limit of αβ1 lnðeB=m2Þ ≫ 1, i.e., beyond the
Landau pole, the factor of unity in the denominator of
Eq. (9) can be neglected and the all-loop term in Eq. (8)
reproduces the classical Maxwell term − 1

2
B2 such

that LHEðBÞ → 2L0-loopðBÞ.
Strong electric fields.—As noted in the introduction,

the result for a purely electric field follows from the
purely magnetic field one by means of the replacement
B → −iE. Taking into account that lnðeB=m2ÞjB→−iE ¼
lnðeE=m2Þ − iπ=2, it is straightforward to infer that

α1-loopðeBÞjB→−iE ¼ α

1 − αβ1 lnðeEm2Þ
�
1þO

�
1

lnðeEm2Þ
��

:

ð10Þ

FIG. 2. In the strong field limit the one-loop Lagrangian (2)
effectively acts as quadratic in B (open wiggly lines). The
logarithm can be considered as an inert factor associated with
each charged-particle loop (silver pearl). Each coupling comes
with a factor of

ffiffiffi
α

p
. The leading strong field behavior of

ΔLl-loopðBÞ is encoded in the chain featuring l pearls.
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In turn, the leading strong electric field behavior of LHE is
given by

LHEðEÞ ¼
1

2
E2 −

1

2
E2α1-loopðeEÞβ1

�
ln

�
eE
m2

�
− i

π

2

�

×

�
1þO

�
1

lnðeEm2Þ
��

: ð11Þ

Note again the structural similarity of the all-order
result (11) and the analogous expression for L1-loopðEÞ.
The latter can be read off from Eq. (2) and we have
LHEðEÞ ¼ 1

2
E2 þ L1-loopðEÞjα→α1-loopðeEÞ.

From Eq. (11) we can straightforwardly infer the all-loop
strong electric field limit of the vacuum decay rate wðEÞ ¼
2ImfLHEðEÞg [1,3]; cf. also Refs. [6,9,43] and references
therein. Its explicit expression is given by

wðEÞ ¼ E2α1-loopðeEÞβ1
π

2

�
1þO

�
1

lnðeEm2Þ
��

: ð12Þ

Previously it was believed that the corresponding one-loop
result, w1-loopðEÞ ¼ E2αβ1ðπ=2Þ½1þOð1= lnðeE=m2ÞÞ�,
does not receive corrections from higher loops
as long as αβ1 lnðeE=m2Þ≲ 1 [6]. As wðEÞ=w1-loopðEÞ≃
α1-loopðeEÞ=α, these quantities may, however, differ signifi-
cantly from each other, and the new all-loop result (12) in
general predicts a larger vacuum decay rate.
External field QED in the large N limit.—In the

following, we briefly comment on the structure of the
Heisenberg-Euler effective Lagrangian for QED with N
charged particle flavors of equal mass m. In contrast to
standard QED, this theory features N generations of
electrons and positrons. More specifically we consider
the ‘t Hooft limit, characterized by sending

N → ∞; while keeping Nα ¼ const: ð13Þ

At first sight, Eq. (13) necessarily implies eFμν ∼ 1=
ffiffiffiffi
N

p
,

which would render this limit rather uninteresting as
physics would then be dominated by processes at zero
field. However, we can easily arrive at an more interesting
limit by demanding in addition that

Fμν ∼
ffiffiffiffi
N

p
; such that eFμν ¼ const: ð14Þ

As the intensity of the prescribed field scales quadratically
with Fμν, and the intensity generically scales linear with the
number N of (microscopically unresolved) photons form-
ing the macroscopic external field, physically Eq. (14) can
be associated with the case where N ∼ N.
The effective Lagrangian LHE for QED with N charged

particle flavors of equal mass follows straightforwardly
from the one of ordinary QED with N ¼ 1: Aiming at
extracting the former from the latter, it is helpful to

represent it in terms of Feynman diagrams. As each fermion
loop comes with a factor of N, the contribution of a
Feynman diagram containing lf fermion loops is to be
multiplied with an overall factor of Nlf . On the other hand,
in the ‘t Hooft limit (13) each internal photon line comes
with a factor of α ∼ 1=N. Hence, a Feynman diagram
featuring lf fermion loops and nγ internal photon lines
scales as Nlf−nγ , such that the diagrams maximizing the
difference lf − nγ > 0 dominate in the large N limit. At a
given loop order l, at most all loops are fermionic ones, i.e.,
l ¼ lf. To connect these lf fermion loops without
forming an additional loop nγ ¼ lf − 1 photon lines are
needed, and the respective class of diagrams scales linear
with N, independently of the loop order. Given that such
diagrams exist, this immediately implies that the leading
diagrams at any loop order exhibit the same scaling with N
and thus are equally important.
In purely magnetic fields, the latter class of diagrams is

precisely generated by Eq. (5), which also governs
the leading strong magnetic (electric) field behavior of
ordinary QED; cf. also Fig. 1. For the analogous result in
arbitrary constant electromagnetic fields, see Ref. [30].
Correspondingly, the strong magnetic field limit of the
Heisenberg-Euler effective Lagrangian in the ‘t Hooft limit
(13) and (14) is given by

LlargeN
HE ðBÞ ¼ −

1

2
B2 þ 1

2
B2

Nαβ1
1 − Nαβ1 lnðeBm2Þ ln

�
eB
m2

�

×

�
1þO

�
1

lnðeBm2Þ
��

: ð15Þ

The analogous expression for a purely electric field is

LlargeN
HE ðEÞ ¼ 1

2
E2 −

1

2
E2

Nαβ1
1 − Nαβ1 lnðeEm2Þ

�
ln

�
eE
m2

�
− i

π

2

�

×

�
1þO

�
1

lnðeEm2Þ
��

: ð16Þ

We emphasize that even though for N ¼ 1 Eqs. (15) and
(16) reproduce the ordinary QED results discussed in
Eqs. (8) and (11), they would even be correct when the
correspondingly 1PI contributions in Eq. (2) would exhibit
the same logarithmic scaling as in Eq. (6), the reason being
that the 1PI contributions with l ≥ 2 loops are generically
suppressed by factors of 1=N.
Finally, we note that prior to the discovery of the

nonvanishing of the 1PR contributions to LHE by
Ref. [19], the one-loop result L1-loop had been the only
loop diagram which would have been considered as
yielding a contribution ∼N. Instead, infinitely many 1PR
diagrams contribute at linear order in N.
Conclusions and outlook.—In this Letter, we have

explicitly determined the strong magnetic field limit of
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the Heisenberg-Euler effective Lagrangian. After demon-
strating that beyond one loop this limit is fully determined
by one-particle reducible contributions which were dis-
covered only recently [19], we extracted the leading
contribution at each loop order l. In a next step, we
resummed these leading contributions to obtain the leading
strong magnetic field behavior of the all-loop Heisenberg-
Euler effective Lagrangian. This result could then be
straightforwardly translated to the case of a purely electric
field, by means of the replacement B → −iE.
Finally, we briefly commented on external field QED in

the large N ‘t Hooft limit. Here, we emphasized in
particular the fact that the leading large N behavior of
the Heisenberg-Euler effective Lagrangian receives con-
tributions from infinitely many one-particle reducible
diagrams. The latter can, however, be efficiently con-
structed in an essentially algebraic procedure from the
one-loop Heisenberg-Euler Lagrangian. This facilitates
unprecedented analytical studies of the large N all-loop
Heisenberg-Euler Lagrangian at arbitrary field strengths.
Focusing on the paradigmatic example of the strong

electric (magnetic) field limit of the Heisenberg-Euler
effective Lagrangian, our results clearly illustrate that the
whole class of 1PR tadpole diagrams in constant external
fields [30], which until recently [19] were believed to
vanish identically, are not only nonzero but may even
dominate physical observables of interest.
We expect our findings to be of interest not only for the

research field of external-field QED, but also for other field
theories in prescribed external fields, such as quantum
chromodynamics (QCD) in (gluo)magnetic background
fields where constant-field 1PR tadpole contributions were
so-far not accounted for.
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comments on thismanuscript. Thiswork has been funded by
the Deutsche Forschungsgemeinschaft (DFG) under Grant
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