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We present a new solution to the hierarchy problem, where the Higgs boson mass is at its observed
electroweak value because such a patch inflates the most in the early Universe. If the Higgs boson mass
depends on a field undergoing quantum fluctuations during inflation, then inflation will fill the Universe
with the Higgs boson mass that corresponds to the largest vacuum energy. The hierarchy problem is solved
if the maximum vacuum energy occurs for the observed Higgs boson mass. We demonstrate this notion
with a proof-of-principle model containing an axion, a modulus field and the Higgs boson, and show that
inflation can be responsible for the weak scale.
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Introduction and basic concept.—The hierarchy problem
between the electroweak (EW) and Planck scales has been a
driving force in particle physics for many decades. Popular
solutions along the years have included the introduction of
new particles at or close to the weak scale via supersym-
metry, extra dimensions, and composite Higgs boson.
Recent years have sparked new directions for addressing
the hierarchy problem, including ideas such as Refs. [1–8].
Here we propose an alternative solution to the hierarchy

problem, where inflation can be responsible for the weak
scale permeating the entire Universe.
During inflation every scalar field has an uncertainty

of the order of the inflationary Hubble scale. Assuming
the potential of the field is very flat, classical rolling
down this potential is negligible. However, the field does
undergo a random walk due to the quantum uncertainty,
generating a spread in field value that increases with time.
At any given time, each patch of the Universe will then
have a different field value and correspondingly a differ-
ent vacuum energy. The patches with the highest vacuum
energy will inflate the most, and if inflation is long
enough, the corresponding field value will fill out most of
space by the end of inflation.
If such a scalar field is coupled to the Higgs boson, then

the Higgs boson mass parameter in the Universe will
correspond to the value of the scalar field at the maximum
of the potential. To solve the hierarchy problem, the scalar

potential is constructed such that the maximal vacuum
energy occurs when the Higgs boson mass fits the observed
value in our Universe. There might be more than one way to
build such a model. In our proof-of-concept model, given in
detail in the following sections, we single out the correct
EW mass parameter by using an axionlike field which is
sensitive to the Higgs boson mass. This axion has a
clockworklike potential [9–11], which was used in
Ref. [2] to scan the Higgs boson mass parameter.
This Letter is organized as follows. We start by elabo-

rating on the basic concept of the proposed mechanism. To
provide proof of concept, we then present a concrete model
which realizes this solution to the naturalness problem. We
describe the conditions under which the model is viable—
namely, that the observed Higgs boson mass spans the
entire Universe, without eternal inflation or fine-tuning. We
conclude with some discussion on further directions and
improvements.
Model.—Here we construct an explicit model that

realizes our proposed mechanism to solve the hierarchy
problem via inflation. This proof-of-concept model may
have several unaesthetic features, but serves to illustrate
that the proposed mechanism can be realized. The scalar
fields in the model include the standard model (SM) Higgs
boson h, an axionlike field a that couples to gluons, a
modulus field ϕ, and the inflaton. We are agnostic about the
inflaton sector, which is only assumed to end inflation after
a long inflationary period. The potential of the modulus and
axion fields is taken to be

V ¼ ðM2 þ yMϕþ � � �Þh2 þ λh4 þ yM3ϕþ � � �
þ a
f
GG̃þ Λ4

H cos
a
F
: ð1Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 122, 191802 (2019)

0031-9007=19=122(19)=191802(6) 191802-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.191802&domain=pdf&date_stamp=2019-05-17
https://doi.org/10.1103/PhysRevLett.122.191802
https://doi.org/10.1103/PhysRevLett.122.191802
https://doi.org/10.1103/PhysRevLett.122.191802
https://doi.org/10.1103/PhysRevLett.122.191802
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


HereM is the cutoff of the theory—the “natural” size of the
Higgs boson mass—and G is the gluon field strength. The
axion potential Λ4

H cosða=FÞ is generated by the non-
perturbative dynamics of a hidden confining gauge theory,
with confinement scale ∼ΛH. Theþ � � � terms refer to terms
that are higher order in ðyϕÞ. The parameter y is a spurion
that breaks a shift symmetry for ϕ (which will be very
small), and thus the potential above is technically natural.
As we will see later, the field ϕ can be a compact field; the
term modulus is used loosely here.
The Higgs boson mass parameter in Eq. (1) is promoted

to a dynamical field:

μðϕÞ2 ¼ M2 þ yMϕþ � � � : ð2Þ

The ϕ field begins at a large negative value ϕ≲ −M=y,
where the Higgs boson mass parameter is large and
negative, μ2 ≲ −M2. The field diffuses to larger values
where ϕ ∼ −M=y, including where the two contributions to
the Higgs boson mass parameter are “tuned” to give the
observed value μ2obs ≃ −ð125.= ffiffiffi

2
p Þ2 GeV2. Below we will

see how this point is “naturally” picked out. Since the field
ϕ fluctuates, and these fluctuations drive the mechanism,
we call it the fluctuon. We note that, similar to Ref. [2],
since y will be a small coupling, the field ϕ undergoes
excursions much larger than the cutoff and the Planck scale.
We expect that this should not necessarily pose a problem
for a UV completion of this model, e.g., within a clockwork
framework.
The axion potential can be seen in Fig. 1. It is composed

of the addition of two modulating potentials, one with large
amplitude and period (from the confining hidden sector)
and one with small amplitude and period (from the QCD
sector), with F ≫ f:

Va ¼ ΛðϕÞ4 cos a=f þ Λ4
H cos a=F: ð3Þ

The separation of scales, f and F, can be achieved with
multiple axions, via the clockwork mechanism [9–11]. We
model the axion potential as a simple cosine in our toy
model for illustration purposes only. Incorporating the
exact axion potential (see, e.g., Ref. [12]) will not change
the results qualitatively.
The fluctuon field ϕ begins at a large negative Higgs

boson mass, and QCD dynamics generates a potential for
the axion, ΛðϕÞ ∼ ΛQCD. Initially, the axion is misaligned
from the global minimum, trapped at a local minimum of
the QCD potential (see top panel of Fig. 1). Near the
observed EW vacuum expectation value (VEV), the ampli-
tude ΛðϕÞ4 is approximately linear in the Higgs boson
VEV, and therefore varies with ϕ. For larger ϕ values
(a consequence of diffusion), the Higgs boson VEV
decreases, and the barriers created from the QCD potential
fall. If the slope of the barriers of the QCD potential drops
below the slope of the potential from the hidden confining

sector, the axion will be free to roll down the potential (see
bottom panel of Fig. 1). The axion parameters are chosen
such that the barriers disappear when the Higgs boson mass
parameter is smaller (or equal) to the observed value in our
Universe; i.e.,

Λ4
H

F
∼
Λ4
QCD

f
: ð4Þ

(For a different use of releasing a trapped axion at small
weak scale, see Ref. [13].)
The potential energy (from ϕ and a) contributing to the

Hubble scale can be separated into two contributions:
the linear potential from the fluctuon ϕ and the potential
energy of the axion when it has reached its local minimum.
Integrating out the axion contribution and writing the
potential in terms of the Higgs boson mass parameter
gives

Veff ≃M2μðϕÞ2 − 2Λ4
HΘ(μðϕÞ2 − μ2obs): ð5Þ

FIG. 1. The axion potential. Top: The axion is initially mis-
aligned from the global minimum and is trapped at a local
minimum of the potential. Bottom: As ϕ increases and the Higgs
boson VEV drops, the QCD-induced part of the potential releases
its barriers and the axion is free to roll down to the global
minimum.
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We plot this effective potential in Fig. 2. For smaller ϕ, the
potential increases as Vϕ ∼ yM3ϕ ∼M2μ2, but there is also
a constant contribution from the axion which is trapped in a
barrier near the top of the potential Va ∼ Λ4

H. However, as ϕ
increases enough, the barrier falls, and the axion moves
towards the global minimum, Va ∼ −Λ4

H. The energy
density is therefore maximized when the Higgs boson
VEV is at the measured value in our Universe, which is
much less than the cutoff of the theory.
The potential described in Fig. 2 can potentially have

larger vacuum energies for much larger positive values of
μ2ðϕÞ than depicted. A necessary requirement is that the
confinement scale of the hidden confining gauge theory
be larger than the cutoff, ΛH > M, so that the drop in the
vacuum energy is significant at the observed Higgs boson
mass. Nevertheless, for the linear potential in Eq. (5), the
potential energy will eventually exceed the potential energy
at μ2obs. Thus a requirement of the model is that the potential
of ϕ have a global maximum for jϕj≲M=y, such that the
maximum of the total potential stays at μ2obs. One possibility
is that ϕ is compact with a sinusoidal potential and an
amplitude 1≲ Λ4

H. Alternatively, since the full potential of
ϕ contains terms such as y2M2ϕ2, y3Mϕ3, etc., it could
very well be that VðϕÞ is maximized on the range
jϕj ≲M=y, without a periodic potential.
The patches where the Higgs boson VEV matches the

observed value have the highest vacuum energy, and
therefore expand exponentially faster than the rest of the
Universe. If inflation is long enough, most of the Universe
(by volume) will have the observed Higgs boson mass.
Thus, inflation solves the hierarchy problem by filling the
Universe with the correct Higgs boson mass.
Basic requirements.—Having set up the model, we now

move to the conditions such that the mechanism works
within this model. We derive the necessary conditions on

the model parameters such that the Universe is filled with
OðEWÞ scale Higgs boson mass, and that the probability of
being found in a patch with Higgs boson mass much larger
than the observed value is close to zero. Furthermore, we
will give the conditions that the spread in the observable
Universe is small.
We assume that the inflaton dynamics is external to the

dynamics of the Higgs boson mass, and that the inflaton
dominates the energy density during inflation. The Hubble
scale at this time can be expanded around the ϕ=a
contribution,

H ≃Hinf þ ΔH; ΔH ≃
V

2Hinfm2
pl

; ð6Þ

with V ¼ yM3ϕþ Va, where Va is the vacuum energy of
the axion and Hinf ≡M2

inf=mpl is the Hubble scale from
inflation. Note that since the inflaton dominates the energy
density, Minf ≳M.
First, it is important that when the barriers release the

axion, it rolls sufficiently down the potential so as to
generate a sizable change in the vacuum energy of the
Universe. This imposes two requirements: (i) that the
classical motion of the axion dominates over its quantum
fluctuations, in order that all patches roll towards the
minimum, and (ii) that during inflation the axion has rolled
enough such that its contribution to the potential has
dropped relative to the variance in the ϕ potential.
In one Hubble time, the axion field undergoes quantum

fluctuations of order Δaqu ≈Hinf, and rolls classically
Δacl ≈ ð1=H2

infÞ½∂VðaÞ=∂a�. For the potential Eq. (1),
the requirement of classical motion beating quantum
fluctuations for the axion thus implies an upper bound
on the cutoff of the theory:

M ≲Minf <
Λ2=3
QCDm

1=2
pl

f1=6
≃ 107 GeV

�
108 GeV

f

�
1=6

: ð7Þ

Here we used the relationship in Eq. (4), that Vϕ;a < V inf ,
and took ΛQCD ¼ 0.1 GeV. Translating this bound to a
bound on F gives F > 1040 GeV, for the values taken in
Eq. (7), which can be accommodated in a clockwork
mechanism.
Further requiring condition (ii), that the axion contribu-

tion to the potential decreases byOðΛ4
HÞ, by movingOðFÞ,

during inflation, imposes that inflation takes place for a
sufficiently long time,

N>
M4M4

inff
2

Λ8
QCDm

2
pl

≃1044
�

f
108 GeV

�
2
�

MMinf

ð107 GeVÞ2
�

4

; ð8Þ

where N ¼ Hinftinf is the number of e-folds and tinf is the
time assume the initial axion misalignment does not place
the axion at the top of the potential. However, if the

FIG. 2. Total contributions to the vacuum energy. The green
dashed curve shows the axion potential energy at the end of
inflation, the dashed orange curve depicts the ϕ potential, and the
total contributions are shown in solid blue.

PHYSICAL REVIEW LETTERS 122, 191802 (2019)

191802-3



distribution of the initial condition for the axion is spread
over local minimum, then the axion will be at the top of the
potential in most of the Hubble patches. We have checked
that our mechanism works in that case as well and that the
requirement in Eq. (8) is then weakened. We leave this for
future work.
Next we study the diffusion and growth of the distribu-

tion of ϕ during inflation, which is similar to the evolution
originally studied in models of chaotic eternal inflation
[14,15], the Higgs boson field during inflation [16–18], and
the relaxion [19,20]. One needs to find the fraction of the
physical volume of the Universe that is filled with the
observed EW scale, and require that this probably is very
close to unity. A complete analysis of the probability
distribution requires solving the full Fokker-Planck diffu-
sion equations for ϕ and a, which is being studied in detail
in upcoming work [21].
For the case where quantum fluctuations of ϕ dominate

over classical motion (which we will quantify below) and
that the fluctuon ϕ contribution to the Hubble scale
is small, an approximate solution can be obtained. The
distribution factorizes into two contributions: the
Gaussian distribution that characterizes standard diffusion
in a comoving volume and the growth of the volume with
the Hubble scale:

Pðϕ; tÞ ∼ Pdiff × Pgrowth

∼ exp

�
−
½ϕðtÞ − ϕclðtÞ�2

H3
inft

�
exp ð3ΔHtÞ; ð9Þ

where ϕclðtÞ is the classical expectation value of the
fluctuon field and ΔH is given in Eq. (6).
In order for the fluctuon to move up the potential, its

quantum fluctuations must be larger than the classical
motion, which is condition (iii):

y <
M6

inf

M3m3
pl

≃ 10−33
�

Minf

107 GeV

�
6
�
107 GeV

M

�
3

: ð10Þ

The growth from inflation has dominated over the diffusion
when the EW vacuum has a larger density than the classical
value, e.g., PðϕEW; tinfÞ ≫ Pðϕcl; tinfÞ. Requiring inflation
is long enough—condition (iv)—imposes that the number
of e-folds must be greater than

N >
mpl

yM
≃ 1044

�
107 GeV

M

��
10−33

y

�
; ð11Þ

where we used the fact that ϕEW − ϕclðtinfÞ ≈M=y.
We now require that the EW-scale VEVs are

present across the entire Universe, so that the hierarchy
problem is solved everywhere. After a long enough time of
inflation [given by Eq. (11)], the distribution is dominated

by inflationary growth, Pðϕ; tinfÞ ∝ exp ð3ΔHtinfÞΘ
(ϕðtinfÞ − ϕEW). The probability to be found in a patch
less than −δμ2 from the observed value is

Pðμ2 < μ2obs − δμ2Þ ≃ exp

�
−
3M2tinf
Hinfm2

pl

δμ2
�
: ð12Þ

Requiring this probability be small for δμ2 ∼ jμobsj2, which
is condition (v), imposes

N >
H2

infm
2
pl

M2jμobsj2
≃ 1010

�
Minf

107 GeV

�
4
�
107 GeV

M

�
2

: ð13Þ

Given Eqs. (11) and (13), the likelihood of a patch with
Higgs boson mass much larger than the observed value is
close to nil.
Therefore, given moderately long inflation, the expo-

nential growth of the inflationary period will fill the
Universe with EW-scale VEVs that are much smaller than
the cutoff. The longer the period of inflation, the smaller the
spread in the electroweak scale across the Universe. In the
following section, we will discuss postinflationary dynam-
ics of the fluctuon field and the spread of the EW scale
within the observable Universe.
Postinflationary dynamics.—If the fluctuon field ϕ

continues to classically roll after inflation, it can change
the electroweak scale and the vacuum energy that was
picked out by inflation. Thus we require that the change in
the Higgs boson mass and the vacuum energy from post-
inflationary classical rolling of ϕ be less than the observed
values today. The postinflationary change in ϕ until today
can be estimated as Δϕ0 ≈ yM3=H2

0, where H0 is the
Hubble scale today. The subsequent constraints on the
slope from the Higgs boson mass and vacuum energy,
conditions (vi) and (vii), are

y <
jμjH0

M2
≃ 10−54

�
107 GeV

M

�
2

ð14Þ

and

y <
Λccmpl

M3
≃ 10−86

�
107 GeV

M

�
3

; ð15Þ

respectively, where Λcc ≃ 10−122m2
pl is the observed cos-

mological constant. Using this constraint, along with
Eq. (11), we find that in order to avoid rolling of the
EW scale after inflation, the number of e-folds must be
N > 1097 for the parameters chosen.
Typical models of slow-roll inflation can maximally

inflate for

Nslow-roll ≲
m2

pl

H2
inf

≃ 1044
�
107 GeV
Minf

�
4

; ð16Þ
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before the Universe is eternally inflating. While there are
unsolved problems in eternal inflation, it is possible that
our Universe is eternally inflating, or that the inflationary
model is not a standard slow-roll model. If allowing for
eternal inflation, then for small enough y and long enough
inflation, the Higgs boson mass can be driven to arbitrary
uniformity throughout the Universe.
Here we offer an approach which avoids eternal infla-

tion. We take the fluctuon ϕ to also be an axionlike field
that develops a periodic potential after inflation ends,
Λ4
ϕ cosðϕ=fϕÞ. During inflation this cosine potential is

inactive if Hinf > Λϕ, but is reactivated after inflation. For
Λ4
ϕ=fϕ ≳ yM3, there are local minima along the ϕ potential

in which the field can settle. Within quantum field theory
[22] and string theory [23], the technical naturalness of y
for “noncompact axions” can be problematic, but is
realizable within the clockwork mechanism [9].
This automatically solves the problem of the fluctuon

rolling after inflation, since within each period fϕ, ϕ will
roll to a fixed value. We require that in the last N60 ¼ 60
e-folds ϕ does not fluctuate larger than fϕ, or else some of
the observable patches will end up in different minimum
after inflation:

Δϕ ¼
ffiffiffiffiffiffiffiffi
N60

p
Hinf < fϕ: ð17Þ

This leads to a condition on y:

y <
1ffiffiffiffiffiffiffiffi
N60

p H3
inf

M3
≃ 10−34

�
Minf

107 GeV

�
6
�
107 GeV

M

�
3

: ð18Þ

Here, eternal inflation can be avoided if the cutoff is
brought down to, e.g., M ≲ 106 GeV.
Model discussion.—In short, we have derived the

necessary conditions on the model parameters for the
mechanism to solve the hierarchy problem. During infla-
tion we require that the axion a rolls down the potential
during inflation, so that when the barriers release the axion
potential energy significantly lowers, Eqs. (7) and (8), that
the fluctuon ϕ quantum fluctuates up the potential,
Eq. (10), that inflationary growth drives the distribution
towards the maximum potential energy, Eq. (11), and that
the likelihood of a patch with Higgs boson mass much
larger than the observed value is close to nil, Eq. (13).
Postinflation, the fluctuon ϕ must not roll sufficiently
back down the potential changing the Higgs boson mass
and vacuum energy, Eqs. (14) and (15). These last two
constraints can be relaxed to Eq. (18) if ϕ generates local
minima after inflation.
We remark that as in Ref. [2], the model above generates

a large θ angle in the absence of a tuning, and therefore
reintroduces the strong-CP problem. There are several
possible solutions to this problem which could be applied
to the framework here, such as using a QCD0 sector, an

additional axion, the Nelson-Barr mechanism, or particle
production, as in Refs. [2,24–27]. These would also relate
to the possible signatures of the model, with similar
phenomenology to the relaxion. These include the pos-
sibility to discover the QCD0 sector at the LHC or another
collider, the fluctuon as dark matter [28,29], and signatures
similar to those of relaxion-Higgs boson mixing [30],
such as possible fifth force constraints, star-cooling or
supernova bounds, and cosmological constraints from big
bang nucleosynthesis (BBN) and cosmic microwave back-
ground (CMB). Additionally, the model proposed here
does not address the cosmological constant problem, and
we do not explain why the patches with the maximal
vacuum energy during inflation will have very little vacuum
energy afterwards.
Finally, we comment on the use of measure probabilities

[31–34] in this work. Since inflation can be noneternal, we
have adopted the measure to be the physical volume at the
end of inflation. Furthermore, the patches with the wrong
Higgs boson VEV will have negative vacuum energy, and
will crunch after inflation. Therefore we expect much of the
typical ambiguity of defining measures during inflation to
be addressable here.
Summary.—In this work we have proposed a new

mechanism to solve the hierarchy problem. We have shown
that if the Higgs boson mass is a dynamical variable that is
coupled to a fluctuating light field, inflation can be respon-
sible for the electroweak scale by filling the Universe with
the observed Higgs boson mass if it maximizes the scalar
potential. We have constructed a simple proof-of-concept
model that realizes this idea, and contains a modulus field, an
axion, and the Higgs boson, and derived the conditions for
such a model to work. For small enough coupling and long
enough inflation, the Higgs boson mass can be driven to
arbitrary uniformity throughout the Universe. Although in
the prototype model the hierarchy problem is solved for very
long inflation and very small couplings, we expect that
future models that use the proposed “fluctuon” mechanism
would improve on this.
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