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Variational algorithms may enable classically intractable simulations on near-future quantum computers.
However, their potential is limited by hardware errors. It is therefore crucial to develop efficient ways to
mitigate these errors. Here, we propose a stabilizerlike method which enables the detection of up to
60%–80% of depolarizing errors. Our method is suitable for near-term quantum hardware. Simulations
show that our method can significantly benefit calculations subject to both stochastic and correlated noise,
especially when combined with existing error mitigation techniques.
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Unlike their classical counterparts, quantum computers
can efficiently simulate large quantum systems [1–3]. For
example, using a quantum computer, we can efficiently find
the ground states of systems such as the Fermi-Hubbard
model or molecules [4]. Accurately determining the ground
states of quantum systems is a first step towards developing
new materials [5], more effective medicines [6], and better
catalysts [7]. On first inspection, transformative simulations
seem tantalizingly close, requiring only around 100 logical
qubits [7]. However, the required circuit depth necessitates
at least 500 000 physical qubits (based on current error rates
and fault-tolerance protocols) [7–9], which is many years
beyond our current capabilities.
In contrast, hybrid algorithms, such as the variational

quantum eigensolver (VQE) [10–12], may not require error
correction [13]. These algorithms exchange the long gate
sequences described above for a polynomial number of short
circuits, which dramatically reduces the coherence time
required. While previous small experimental demonstra-
tions of the VQE have shown it to be resilient to syste-
matic errors [14], larger experiments have shown that
noise can corrupt results [15,16]. This is perhaps unsurpris-
ing; depending on the problem tackled, errors can add or
remove particles, effectively changing the system being
simulated [17].
While error correction is needed to fully suppress these

errors, this requires considerable additional resources [18].
Alternatively, error rates can be lowered by improving the
hardware directly. However, this is an enormous challenge;
decades of research has reduced error rates to 0.1%, but this
has not been improved in several years [19–21]. While

efforts to improve error rates continue worldwide, software-
based methods to effectively reduce error rates are clearly
invaluable.
To date, several methods for mitigating errors in near-term

quantum hardware have been proposed: the linear [22,23]
and exponential [24] extrapolation methods, the quasiprob-
abilitymethod [23,24], and the quantum subspace expansion
[25]. Some of these methods have recently been experimen-
tally demonstrated [26–28]. However, these schemes are
generally limited to low error rates, where the number of
errors expected in the circuit is on the order of unity. There
also exist penalty term methods, which drive the calculation
towards a state which respects conserved quantities
[12,29,30]. While such methods mitigate some algorithmic
and coherent errors, they cannot mitigate stochastic errors.
Motivated by these limitations, we have developed a new

scheme for error mitigation. Our method uses checks on a
suitably constructed trial state to filter errors. It can be used
in isolation, or combined with previous error mitigation
techniques. We numerically demonstrate our method in an
electronic structure calculation on the hydrogen molecule.
The method is low cost, and suitable for the emerging
generation of quantum hardware. Our technique is appli-
cable to calculations of both static properties (such as ground
and excited states and vibrational spectra) and dynamical
properties (such as time evolved correlation functions).
However, herein we focus on the application of our method
to the ground state problem, for clarity of exposition.
Conventional VQE.—We can use the VQE to find

the ground state energy of physical Hamiltonians (see
Supplemental Material [31]). In molecular simulations, we
seek to arrange N electrons among M spin orbitals, such
that the energy of the system is minimized. Here, we use the
Jordan-Wigner mapping, where each qubit represents an
electron spin orbital, the occupation number of which is
stored in the j0i or j1i state of the qubit (unoccupied or
occupied, respectively). For example, a state describing the
hydrogen molecule (H2) is
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jψH2i ¼ αj0101i þ βj1010i þ γj1001i þ δj0110i; ð1Þ

where α, β, γ, δ are complex coefficients. The Hamiltonian
can be written as a linear combination of products of Pauli
operators, H ¼ P

igiĥi, where gi is a scalar coefficient
determining the strength of the term. An example of a
typical term is ĥi ¼ X0Y1Y2X3.
The VQE, as proposed in Ref. [10], augments a small

quantum processor with a powerful classical computer. The
quantum computer is used for classically intractable state
preparation and energy measurement. The state preparation
circuit consists of a number of parametrized gates. The
circuit used is known as the Ansatz, denoted by Uðθ⃗Þ. This
circuit produces a trial state, jψðθ⃗Þi. The values of the
parameters and the energy of the state they create are input
into a classical optimization algorithm, which seeks the
ground state. The energy is calculated by summing the
expectation values of each term in the Hamiltonian. To
obtain each expectation value, we repeatedly perform the
circuit, measure the state produced, and reinitialize.
Stabilizer VQE.—In variational simulations, it is often

beneficial to initialize the register in a mean-field state and
use a particle number and spin conserving Ansatz [39,40].
This produces states with the correct number of electrons
N, spin-up electrons N↑, and spin-down electrons N↓. We
refer to these states as “physical” states. As these quantities
are conserved, their relevant parity operators are also
conserved: P̂N jψi ¼ PN jψi ¼ ð−1ÞN jψi and P̂N↑=↓

jψi ¼
PN↑=↓

jψi ¼ ð−1ÞN↑=↓ jψi. This is similar to the concept
of stabilizer states used in quantum error correcting
codes [41].
There are some Ansätze, such as those suggested in

Ref. [40], which are constructed from individual gates
which conserve particle number. If a single bit-flip error
occurs, it will create or destroy an electron, radically
changing the state. For other number and spin conserving
Ansätze, like the singlet unitary coupled cluster (UCC)
Ansatz (which, in its canonical form [42], is constructed
from individual gates which do not necessarily conserve
particle number), a single error can propagate and degrade
the final state even further. A key concern for the VQE is
preserving particle number, as states with electron number
far from the true value appear to have a larger energy
variance than those with smaller particle number errors
[17]. We present below a method of detecting and removing
some of these damaging errors, while still retaining the low
qubit resources and gate count of the VQE.
In order to detect errors, we introduce an ancilla qubit

and use it to perform measurements of the conserved
quantities. When deriving error detection rates, we make
the following assumptions: (1) errors are symmetric and
depolarizing, (2) the error rate is low, such that only one
gate malfunctions, (3) the Ansatz circuit is built from
individual gates which conserve particle number and spin,

and (4) single-qubit gate error rates are negligible compared
to 2-qubit gate error rates.
While our method is still applicable under higher noise

rates, different noise models, and using other number
conserving Ansätze—as shown by our numerical simula-
tions—calculating an analytic bound becomes more diffi-
cult without these assumptions.
The simplest check is of the total electron number parity.

This procedure is shown in Fig. 1. Each CNOT gate flips the
ancilla qubit if the corresponding spin orbital is occupied
by an electron. The circuit enables the detection of any error
which changes the electron number parity by one. Under
the assumptions described above, we are able to detect and
remove 53% of error events (8=15 errors in the depolarizing
noise model, as described in the Supplemental Material
[31]). In the Supplemental Material we present an alter-
native circuit for this parity check, which can reduce the
impact of qubit readout errors. The qubit readout error rate
is currently around 1% for superconducting qubits [43].
This alternative circuit also makes it possible to combine
our method with existing variational algorithms for real
[22] and imaginary [44] time evolution.
To increase the proportion of errors detected, we can

perform the circuit shown in Fig. 2 which measures both
the spin-up parity and spin-down parity. This enables us
to detect additional 2-qubit bit-flip errors that we were
unable to detect using the single parity check above. We
can effectively filter out 66% of errors, as shown in the
Supplemental Material [31].
We can also measure the electron number and spin

numbers directly, using an iterative procedure. We first
write the electron number in binary. We then use the circuit
in Fig. 3 to measure the first bit in N, by setting m ¼ 1.
We denote the bit value measured as N1. We then repeat the
circuit in Fig. 3 to measure the second bit in N, by setting
m ¼ 2, and using our measurement of N1 in the rotation
ω2. In general, we can measure the mth bit of N using the
circuit in Fig. 3, constructing ωm using our measurements
of the m − 1 preceding bits in N. When no errors have
occurred, the ancilla is in the state

jϕi ¼ 1
ffiffiffi
2

p ðj0ai þ eNmπij1aiÞ: ð2Þ

FIG. 1. A circuit to check the particle number parity of a
physical trial state. The ancilla should be measured in
j1
2
½1 − ð−1ÞN �i. If errors occur, and the measured value of the

ancilla is not correct, the measurement of the Hamiltonian term ĥi
on the register is not performed, and the circuit is reinitialized.
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If Nm ¼ 0 we measure the ancilla in jþi, while if Nm ¼ 1
wemeasure the ancilla in j−i. Aworked example forN ¼ 3
is given in the Supplemental Material [31]. We can measure
the spin numbers using a similar procedure.
The exact fraction of errors that can be detected will

depend on the trial state produced by the Ansatz, but has a
maximum value of 80% (see Supplemental Material [31]).
In total,M log2ðNÞ control gates are needed to measure the
electron number, or both spin numbers.
While our method can filter a fraction of the possible

errors, the results will not be completely noise free.
Consequently, we can combine our technique with other
methods of error mitigation to further improve accuracy.
The most straightforward approach is to use the detection
method to filter out errors, and then use the extrapolation
technique to obtain highly accurate results.
Hardware implementation.—We now consider how to

implement our technique in current leading architectures,
specifically trapped ion and superconducting systems. The
circuit structure required is similar to that of a stabilizer
evaluation for a topological code, which has been inves-
tigated for both platforms [45,46]. As can be seen from
Fig. 1, the optimal implementation requires nonlocal gates.
Trapped ion systems can perform gates between non-
adjacent ions [47], so these circuits do not present any
particular difficulty. Moreover, modular architectures are
feasible designs for trapped ion systems [48,49]. Such
architectures are networklike and could be constructed with
the connectivity required for our circuits. As the coherence
times of trapped ion qubits are considerably longer than
their readout times [50], it is possible to carry out the
checks using a single ancilla that is repeatedly measured
and reinitialized.
In contrast, superconducting qubits typically have more

limited connectivity, that may be nearest neighbor. With

such an architecture, we can implement our particle number
check by usingOðMÞ SWAP gates to move the ancilla along
the qubit register. It is possible to realize the parity checks
with a shorter circuit, which was discussed in Ref. [51],
and which we reproduce in the Supplemental Material [31].
In contrast, the number of gates required for a general UCC
Ansatz is OðM3Þ [52]. For physical systems of interest,
requiring M ¼ 50–100 qubits, the gate count will be
dominated by the Ansatz circuit. Consequently, we expect
the additional gates to have little impact on the detection
rates derived above. For superconducting qubits, the
measurement time can be of a comparable order of
magnitude to the coherence time [53]. As such, it may
be preferable to use multiple ancilla qubits, rather than to
repeatedly reinitialize a single ancilla. This modest over-
head constitutes two ancilla qubits for the spin number
parity check and log2N ancilla qubits for the spin num-
ber check.
Results.—We tested our method’s efficacy in a VQE

calculation on the simplest model of H2, with two electrons
in four spin orbitals. We used a spin-conserving UCC
Ansatz applied to the Hartree-Fock state. We did not
consider the parameter update step of the VQE, so as to
examine the effect of errors without consideration of a
classical optimization algorithm [17]. Numerical simula-
tions were performed using QUEST [54], and the simulation
code can be found in Ref. [55]. Our aim was to measure the
energy to within “chemical accuracy” (1.6 mhartree), which
enables the prediction of reaction rates to within an order of
magnitude at room temperature.
To detect errors, we performed error-prone checks of

both the spin-up and spin-down parity numbers, using the
circuit shown in the Supplemental Material [31]. This
circuit has nearest-neighbor connectivity, and so lower
bounds the efficacy of our method. We designed our
simulations to mimic the actions of an experimentalist;
the expectation value of each term in the Hamiltonian was
found by repeating the circuit and measurement procedure
many times. The number of measurements used is dis-
cussed in the Supplemental Material [31].
Initially, we considered energy measurements on a trial

state that contained all four possible vectors, as described
by Eq. (1). We used a symmetric depolarizing noise model,
and set the 2-qubit gate error rate to be 10 times larger than
the single-qubit gate error rate. We measured the energy of
the state prepared by the Ansatz under the following
conditions: (1) no parity check, errors, no extrapolation;
(2) no parity check, errors, extrapolation; (3) parity check,
errors, no extrapolation; (4) parity check, errors, extrapo-
lation. We compare these results to the true energy
extracted in the limit of infinite measurements and no gate
errors. The results are shown in Fig. 4, using 2-qubit
gate error rates ranging from 0.1% to 2%. There were 92
single-qubit gates and 56 2-qubit gates in the UCC Ansatz
circuit—which we can approximate as 65 2-qubit gates.

FIG. 3. The circuit that measures the mth bit of the electron
number Nm. The Rm gates are given by diagð1; eπi=2m−1Þ. The
gate ωm is given by diagð1; e−decðNm−1…N1Þπi=2m−1Þ, where
decðNm−1…N1Þ is the decimal representation of the binary string
Nm−1…N1. We define ω1 as the identity matrix. Measurement of
the ancilla is in the X basis.

FIG. 2. A circuit to measure the spin parities. We compute the
spin-up parity onto the ancilla and measure it. We then reset the
ancilla to j0i and measure the spin-down parity.
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The parity checks contributed an additional eight error-
prone 2-qubit gates.
We see from Fig. 4 that the error detection method alone

improves the accuracy of our energy measurements. While
detection is less effective than extrapolation, a greater
benefit can be obtained by combining the two methods.
The accuracy of the combined method does not worsen
significantly as the error rate increases, unlike the two
individual methods. We observe from the inset plot that the
fraction of detected errors falls approximately linearly with
increasing error rate. When the error rate is small we detect
around 53% of the errors. If we assume that we can only
detect errors which occur during the Ansatz circuit (due to
the use of nearest-neighbor gates for the parity checks),
then our detection probability is given by the probability of
an error happening in the Ansatz circuit (65=73) multiplied
by the probability of detection (10=15), which is roughly
59%.We attribute the deviation of our result from this value
to the use of a UCC Ansatz, which enables errors to
propagate. At higher error rates, multiple errors are able to
occur in the circuit, which reduces the fraction of errors that
we can detect to close to one third.
We also used our method when calculating the dissoci-

ation curve of H2. We compare the true energy values with
noisy measurements without error mitigation, noisy mea-
surements with extrapolation, and noisy measurements
with detection and extrapolation. The 2-qubit depolarizing
error rate was 0.1%, which has been achieved in a
controlled setting [20,21], and should be targeted in
near-future quantum computers. We combined this with
temporally correlated over or under rotations of up to 1%
(see Supplemental Material [31]). While previous exper-
imental VQE calculations on H2 have achieved accurate

results with higher error rates [14–16,26,27,56], these
experiments used fewer gates (and often fewer qubits)—
obtained using simplifications that are applicable to H2, but
not to larger molecules. We chose to use the nonoptimized
circuits to ensure that our simulations were representative
of general chemistry problems.
We see from Fig. 5 that our method can obtain

chemically accurate energies, even when the results would
otherwise be corrupted by noise. The combined mitigation
method achieves quantitatively accurate results, with a
mean absolute residual of 0.2 mhartree. Compared to the
unmitigated results, the deviation from the true value is
reduced by a median factor of 239 (with a range of 141–818
and a mean of 340) by combining the error mitigation
techniques. Compared to the extrapolated results, the
deviation from the true value is reduced by a median factor
of 9.1 (with a range of 6.6–35.6 and a mean of 15.0)
by combining the two mitigation methods. As energies
are exponentiated when calculating reaction rates, this
improvement will be magnified when performing calcu-
lations of interest.
Discussion.—We have introduced a method to mitigate

errors in near-term digital quantum simulations, which
requires minimal additional resources. Our technique can
be used to detect errors which change conserved quantities.
It can be applied to calculations of both static and
dynamical properties.
Our method can improve the accuracy of variational

calculations, especially when combined with the extrapo-
lation method of error mitigation. We simulated a noisy
VQE calculation of the hydrogen molecule, and found that
using this approach reduced the deviation from the true

FIG. 4. Comparing methods of mitigating errors in simulations
of H2. The detection rates shown in the inset were obtained
from the numerical simulations. The true energy value was
−1.1227 hartree. The error bars upper bound the standard error
in the result.

FIG. 5. Comparing methods of mitigating errors in simulations
of H2. The error model is described in the main text. The inset
shows the residual from the true value. The dashed lines in the
inset mark chemical accuracy (�1.6 mhartree). The error bars
show the standard error in the result, given in Ref. [31].
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result by 2 orders of magnitude. Our simulations were
performed with nearest-neighbor connectivity, showing the
method’s practicality.
Recent work has shown that surpassing classical simu-

lation techniques with non-error-corrected quantum com-
puters will likely require at least 104 gates [52,57,58].
However, it is difficult to foresee error rates below 0.01%—
at which point we would expect an error to occur in every
circuit, on average. Error mitigation techniques, such as
those presented herein, may enable us to extract meaningful
results from these simulations, providing a practical use for
near-term quantum hardware. Consequently, implementing
these techniques on recently announced devices [59–62]—
which will be cloud accessible, have 2-qubit-gate fidelities
approaching 99%, and possess tens of qubits—would
provide an interesting avenue for future study.
While our method can detect a large proportion of

errors, additional mechanisms will be required to provide
error resilience for long circuits on non-error-corrected
machines. One possibility is to combine our method with a
2-qubit phase-error detection code. Alternatively, one could
utilize other invariant quantities. It was noted in Ref. [63]
that the Hamiltonians of small molecules contain several
symmetries. Evolution under a Hamiltonian variational
Ansatz may conserve these quantities, enabling the design
of additional checks. Future work will investigate the
performance of concatenated mitigation methods for larger
problems [31–38].

We thank S. Endo for insightful discussions. This work
was supported by BP plc and the EPSRC National
Quantum Technology Hub in Networked Quantum
Information Technology (EP/M013243/1). We acknowl-
edge the use of the University of Oxford Advanced
Research Computing facility [64].

Note added.—Recently, a relevant work was posted by
Bonet-Monroig et al. [51]. They suggest a similar method
of error mitigation, and an elegant method for error
mitigation via postprocessing. While their results focus
on comparing their techniques, our results are consistent
and can be compared.
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