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We report on the first computation of the strong running coupling at the physical point (physical pion
mass) from the ghost-gluon vertex, computed from lattice simulations with three flavors of domain wall
fermions. We find αMSðm2

ZÞ ¼ 0.1172ð11Þ, in remarkably good agreement with the world-wide average.
Our computational bridge to this value is the Taylor-scheme strong coupling, which has been revealed of
great interest by itself because it can be directly related to the quark-gluon interaction kernel in continuum
approaches to the QCD bound-state problem.
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Introduction.—Quantum chromodynamics (QCD), the
non-Abelian gauge quantum field theory describing the
strong interaction between quarks and gluons, can be
compactly expressed in one line with a few inputs: namely,
the current quark masses and the strong coupling constant,
αs [1]. The latter is a running quantity which sets the
strength of the strong interaction for all momenta. This
running can be, a priori, inferred from the theory and
encoded in the renormalization group equation (RGE) of
αs, the value of which can be thus propagated from one
given momentum to any other. The strong coupling is
expressed by either the boundary condition for its RGE,
generally dubbed ΛQCD, or its value at a reference scale,
typically the Z0-pole mass. This value is considered one of
the QCD fundamental parameters, to be fitted from experi-
ments, and amounts to αsðm2

ZÞ ¼ 0.1181ð11Þ [2], in the MS
renormalization scheme. Its current uncertainty of about
1% renders it the least precisely known of all fundamental
coupling constants in nature. But at the same time, it is
interesting to mention that a plethora of computations of
LHC processes depend on an improved knowledge of αs to
reduce their theoretical uncertainties [3]. Especially in
the Higgs sector, the uncertainty of αs dominates that
for the H → cc̄; gg branching fractions and, after the error
in the bottom mass, the one for the dominant H → bb̄

partial decay. And contrarily to other sources of uncer-
tainty, as parton distribution functions, which reduced
substantially [4], that for αs has not significantly changed
in the last decade. Moreover, the αs running and its
uncertainty also has a non-negligible impact in the study
of the stability of the electroweak vacuum, in the deter-
mination of the unification scale for the interaction cou-
plings and, generally, in discriminating different new
physics scenarios.
There are many methods to determine the QCD coupling

constant based on precision measurements of different
processes and at different energy scales. A description
can be found in the last QCD review of the Particle Data
Group (PDG) [2] or in specific reviews as, for instance,
Ref. [5]. Alternatively, lattice QCD can be applied as a tool
to convert a very precise physical observation used for the
lattice spacing setting into ΛQCD. Thus, lattice QCD
calculations can potentially be a great help to increase
the accuracy of our knowledge of αs. A review of most of
the procedures recently implemented to determine the
strong coupling from the lattice can be found in
Ref. [6]. Among these procedures, there are those based
on the computation of QCD Green’s functions (see, for
instance, Refs. [7–9]), the most advantageous of which
exploits the ghost-gluon vertex renormalized in the so-
called Taylor scheme [10–17] such that the involved
coupling can be computed from two-point Green’s
functions. As a bonus, this coupling has many phenom-
enological implications [18–25] and is connected to the
quark-gluon interaction kernel in continuum approaches to
the QCD bound-state problem [26–30]. In this letter, we
shall focus on this method and evaluate the Taylor coupling
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from lattice simulations with three Domain Wall fermions
(DWF) at the physical point. DWF (cf. [31,32] for two
interesting reviews), owing to their very good chiral
properties, are expected to suffer less the impact of
discretization artifacts.
The running coupling from QCD two-point Green’s

functions.—First, we will sketch how the strong running
coupling can be obtained from the gauge sector of QCD,
invoking only 2-point Green’s functions. Let F and D be
the form factors (dressing functions) of the ghost and gluon
propagators in the Landau gauge; the coupling will then
read [10,13]

αTðk2Þ≡ g2Tðk2Þ
4π

¼ lim
a→0

g20ðaÞ
4π

F2ðk2; aÞDðk2; aÞ; ð1Þ

renormalized in the Taylor scheme, where a stands for a
regularization cutoff (the lattice spacing that is taken to
vanish in the end of the calculation). The gauge-field two-
point Green’s functions can be obtained from lattice QCD
simulations with an extremely high level of accuracy, and
combined next as Eq. (1) indicates to produce a precise
estimate for the running of the coupling over a large
window of momenta. Roughly above 3.5–4 GeV, this
running can be very well described by [14]

αTðk2Þ ¼ αpertT ðk2Þ
�
1þ 9

k2
R(αpertT ðk2Þ; αpertT ðq20Þ)

×

�
αpertT ðk2Þ
αpertT ðq20Þ

�
1−γA2

0
=β0 g2Tðq20ÞhA2iR;q2

0

4ðN2
C − 1Þ

�
; ð2Þ

where the perturbative result is supplemented by a leading
operator product expansion (OPE) nonperturbative correc-
tion, driven by the dimension-two gluon condensate
g2Tðq20ÞhA2iR;q2

0
, including its anomalous dimension:

1 − γA
2

0 =β0 ¼ 1=4 for Nf ¼ 3 [33,34] and

Rðα; α0Þ ¼ ð1þ 1.05882αþ 1.16814α2 þ 1.95534α3Þ
× ð1 − 0.62446α0 − 0.26140α20 − 0.04275α30Þ;

ð3Þ
obtained here for Nf ¼ 3 as described in the Appendix of
Ref. [14]. The momentum q0 ¼ 10 GeV is chosen as a
subtraction point for the local operator. The perturbative
αpertT ðkÞ can be approximated at the four-loop level by the
integration of the β function [2], their coefficients being
defined in the Taylor scheme [13,35]. Thus, the purely
perturbative running reads as a function of lnðk2=Λ2

TÞ,
where ΛT stands for the ΛQCD parameter in the Taylor
scheme. The confrontation of lattice results, accurately
obtained with Eq. (1), to the running behavior predicted by
Eq. (2) allows for a precise determination of the parameters
ΛT and the gluon condensate g2Tðq20ÞhA2iR;q2

0
, both con-

trolling the result displayed by Eq. (2). Finally, as the

running coupling in Taylor and MS schemes relate as
αT ¼ ᾱ(1þ ðc1=4πÞᾱþOðᾱ2Þ), where c1 is known [35],
the ΛQCD parameters can be in turn related, owing to their
scale independence, by a subtraction of the couplings at
asymptotically large momenta, thus obtaining [14]

ΛMS

ΛT
¼ e−

c1
2β0 ¼ exp

�
−
507 − 40Nf

792 − 48Nf

�
: ð4Þ

All the procedure has been described in detail in a series of
articles, resulting from a long-term research program aimed
at the determination of ΛMS from lattice QCD, where
estimates for Nf ¼ 0 [13], Nf ¼ 2 [14], and Nf ¼ 2þ
1þ 1 (two degenerate light quarks and two nondegenerate
ones with strange and charm flavors) [15–17] have been
delivered.
The knowledge of ΛMS at a given Nf defines the

perturbative running of αMS, known to give a reliable
effective description of the physical world between the
energy thresholds of the Nfth and (Nf þ 1)th quark flavors
for Nf ≥ 3 [2]. Then, the matching formula

α
Nfþ1

MS
ðmqÞ ¼ α

Nf

MS
ðmqÞ

�
1þ

X
n

cn0ðαNf

MS
ðmqÞÞn

�
ð5Þ

can be applied to extend the running up to the threshold of
the (Nf þ 2)th quark flavor, where mq is the MS running
mass of the (Nf þ 1)th quark and the coefficients cn0 can
be found in Refs. [36,37] for n ≤ 4. One can proceed this
way up to the Z0 mass scale. Thus, the scale ΛT , obtained
for the running coupling in a Taylor scheme at a given Nf,
can be related to the benchmark value of αMSðm2

ZÞ.
The running coupling at the physical point.—Our

previous determinations of ΛMS at Nf < 3 [13,14] repre-
sented nothing but a heuristic effort, paving the way
towards more realistic computations. This is so, first,
because the lattice scale setting made by the confrontation
with empiric observations is affected by the presence of the
physical light flavors, up and down but also strange, thus
inducing strong systematic effects. But moreover, even if
one estimates and corrects the strange quark deviation in
the Nf ¼ 2 case as prescribed in Ref. [27], the matching
formula (5) can be hardly trusted at the strange-quark
threshold. On the other hand, the one for Nf ¼ 2þ 1þ 1

[15–17] cannot be considered as a fully realistic estimate
either, as far as it relies on lattice simulations where the
lightest pseudoscalar mass ranges from 270 to 510 MeV
and where chiral fits were required to take experimental fπ
and mπ at the physical point [38,39].
We repeat here the analysis with two ensembles of

gauge-field configurations with 2þ 1 DWF simulated at
the physical point and a third one with a pion mass of
around 300 MeV (see Table I). Furthermore, we follow
Ref. [40] and perform a very careful scrutiny of discretiza-
tion lattice artifacts, which corresponds to taking a → 0 in
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Eq. (1), and approach thus the continuum limit. It can be
outlined as follows: bare coupling and dressing functions
are combined as Eq. (1) reads and Oð4Þ-breaking artifacts
cured by applying theHð4Þ-extrapolation [41–43]; residual
Oð4Þ-invariant artifacts are then removed by identifying
Oða2Þ corrections after a thorough comparison of results
from the two different simulations at the physical point (as
described in Sec. III. B of Ref. [40]); and, finally, the
outcome is checked by applying the same Oða2Þ correc-
tions to the third simulation’s results.
Figure 1 shows the coupling data for the three ensem-

bles, exhibiting an excellent overlap and displaying a nice
running behavior. Besides the good chiral properties of the
DWF, a second ace of the exploited ensembles at the
physical point is their large physical volume, which is made
apparent by the absence of finite-volume effects when their
results compare with those for the half-volume third
ensemble. The upper bound of the running window, defined
by kað2.25Þ ¼ π=2, corresponds to the largest lattice
momenta which, being conservative, can be safely cured
for discretization artifacts.
The rightness of Eq. (2) and the need of the gluon

condensate g2Tðq20ÞhA2iR;q2
0
for the appropriate description

of the momentum running of MOM-renormalized gauge-
field Green’s functions have been very well established
[8,9,13–17,53–56]. Its nature and implications have been
also thoroughly investigated in a exhaustive bunch of
different analyses [57–70], and its little dependence with
the number of dynamical flavors found as well. Indeed, the
effect of the heavier flavors can be thought to be negligible.
Therefore, we have made the weighted-by-the-errors aver-
age of 2.7(1.0) and 4.5ð5Þ GeV2 for the gluon condensate at,
respectively, Nf ¼ 2 [14,71] and Nf ¼ 4 [16]; and thus
finding for Nf ¼ 3, g2Tðq20ÞhA2iR;q2

0
¼ 4.1ð1.1Þ GeV2,

where the uncertainty has been conservatively estimated
by adding the errors in quadrature. We have then applied
this value to Eq. (2) and inverted it numerically for all the
lattice calculations at the physical point of αTðk2Þ, with
k > 3 GeV, and obtained thus the estimates of ΛT , con-
verted to ΛMS through Eq. (4) and displayed in Fig. 2. The
plot shows a slow systematic decreasing below 3.62 GeV
which, as proven in Refs. [16,17] forNf ¼ 4, reflects that in
this range higher-order nonperturbative corrections need to
be included in Eq. (2). Above 3.62 GeV, a small plateau
appears: 11 points for which their central values differ as
much as one per mil, their statistical errors being of the order
of 1%. However, the plateau is too small to apply the same
fitting strategy developed in Refs. [16,17], with two free
parameters and the lowest bound of the fitting window to be
determined by the minimization of χ2. We make here no fit
but take from literature the value of the condensate and
evaluate ΛMS instead from the largest available momentum
(We have performed correlated and uncorrelated fits forΛMS
within this small plateau, extracting central values with
similar statistical errors and differing less than 2 MeV;
and similarly for the derivative of ΛMS, with the central
value appearing to be of the order of 5 MeV=GeV and
the result compatible with zero. All strongly corroborating

TABLE I. Setup parameters for the Nf ¼ 2þ 1 ensembles
exploited here [44–48], which are generated with the Iwasaki
gauge action [49] and the DWF action [50,51]. The two physical
point ensembles use the Möbius kernel [52], while the heavier
one uses the Shamir kernel [50,51].

β L3×T=a4 a−1 [GeV] mπ [MeV] mπL V [fm4] confs

2.13 483 × 96 1.7295(38) 139.4 3.9 5.473×10.93 350
2.25 643×128 2.3586(70) 139.2 3.8 5.353×10.70 330
2.25 323 × 64 2.3833(86) 303.2 4.1 2.653 × 5.30 330
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FIG. 1. Running coupling data for the three lattice ensembles
of Table I, after being cured for the discretization artifacts.
The errors have been obtained by applying the jackknife
method. The black solid line displays the result of Eq. (2)
for ΛT ¼ 581.5 MeV, corresponding to ΛMS ¼ 320 MeV, and
g2Tðq20ÞhA2iR;q2

0
¼ 4.1 GeV2.
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FIG. 2. Estimates of ΛMS (red solid circles) for all the lattice
calculations of αTðk2Þ with k > 3 GeV, made through the
numerical inversion of Eq. (2) with g2Tðq20ÞhA2iR;q2

0
¼ 4.1ð1.1Þ.

The error bars displayed in the plot correspond to the propagation
of the uncertainty in the lattice determination of αT .
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that a plateau is reached. We prefer however to make no fit,
take the largest momenta for the estimate and, being
conservative, propagate the large uncertainty for the gluon
condensate to our final error budget and estimate the
possible impact of higher-order nonperturbative correc-
tions.): ΛMS ¼ 320ð4Þð13Þ MeV; the first quoted error
results from propagating the one of αT for this momentum
into ΛMS determined by Eq. (2), while the second one
propagates the larger uncertainty from the condensate value.
The central values for ΛMS and the condensate applied to
Eq. (2) produce the black solid curve in Fig. 1.
Beyond this, one can also incorporate the same sort of

higher-order nonperturbative correction effectively identi-
fied in Ref. [16] and try thus the same fit made therein. In so
doing, one would obtain a nice plateau for momenta
ranging from 2 to 3.7 GeV and a very consistent best fit
for ΛMS ¼ 313 MeV, which will be used here only to
estimate an uncertainty of 7 MeV resulting from the
possible impact of higher-order nonperturbative correc-
tions. Thus, following the matching procedure described in
the previous section, we will be left with

αMSðm2
ZÞ ¼ 0.1172ð3Þð9Þð5Þ; ð6Þ

where the first error propagates the uncertainty in the lattice
determination of the Taylor coupling, the second does so
for the value of the condensate and the last one stands for
higher-order nonperturbative corrections.
Nf ¼ 2þ 1þ 1 versus Nf ¼ 2þ 1 results.—Let us

complete this analysis by relating the current results with
our previous ones for Nf ¼ 2þ 1þ 1 [16]. The lattice
actions employed for the fermionic sector differ, twisted
mass for the latter and DWF for the former, although
consistent results from both are expected in the continuum
limit, if all discretization artifacts are indeed under control.
The benchmark value of αMSðm2

ZÞ here is 0.1172(11), all
the errors combined in quadrature, and 0.1200(14) in
Ref. [16]; both compatible with the current PDG world
average [2], 0.1181(11), but not with each other within their
1-σ errors. This little difference might be due to a simple
statistical deviation but can also reflect a small systematic
effect in Ref. [16], caused by the larger pion mass (The pion
mass effect on the UV momentum running is seen to be
very small in Fig. 1, but effects on the physical scale setting
and on the impact of the discretization artifacts cannot be
excluded. Specially the latter would require a very accurate
control of the continuum limit that might not have been
achieved in Ref. [16].). This new updated result from the
Taylor coupling, now at the physical point, lies closer to the
FLAG lattice average (It includes determinations from
current two-point correlators [72–74], Schrödinger func-
tional [75], and Wilson loops [76]): 0.11823(81) [6,77];
but even closer to the nonlattice average of PDG:
0.1174(16) [2]. The PDG lattice unweighted average is
in turn 0.1188(13), including the ghost-gluon determination

[16,17] among a few others [72–76]. However, updating for
the ghost gluon with the current result, one is left with
0.1184(13), closer to the FLAG central value. A very
accurate αMSðm2

ZÞ ¼ 0.11852ð84Þ, obtained from the
Schödinger functional and renormalized couplings defined
via the gradient flow, has been also recently reported [78],
with which our estimate agrees as well. It is noteworthy that
this agreement demonstrates and strongly confirms the
approaches being radically different, that lattice systematics
are well under control. In Ref. [79] DWF have also been
employed for the extraction of αs from the hadronic
vacuum polarization function albeit not at the physical
point. Their result is less precise, 0.1181(27), but anyhow
in good agreement with ours.
Beyond this, Fig. 3 displays a direct and striking

comparison of the Taylor couplings for Nf ¼ 2þ 1 and
2þ 1þ 1. It is very apparent that, for momenta above the
charm quark mass threshold, the three-flavors coupling
decreases faster than the four-flavors one, extending down
to nonperturbative momenta a well-known perturbative
result: the beta function, the logarithmic derivative of the
coupling with opposite sign, lessens when the number of
flavors gets bigger. Around the charm threshold and below,
within the deep IR domain, four- and three-flavors couplings
appear to be the same, both reaching strikingly the same
peak. Lightened by a few recent works [26–30], bridging the
gauge sector and phenomenological applications in QCD in
connectionwith the bound-state problem, this feature can be
well understood: the Taylor coupling can be related to the
quark-gluon interaction kernel [27], both differing only by a
small correction rooting in the ghost sector and not depend-
ing very much on the number of flavors. Figure 3 thereby
implies that the IR quark-gluon interaction strength does not
depend on whether the charm quark becomes active or not.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.4

0.6

0.8

1.0

1.2

1.4

k [GeV]

T
k

2

Nf 2 1
Nf 2 1 1

FIG. 3. Taylor coupling from the lattice, in the continuum limit,
for Nf ¼ 2þ 1 DW dynamical flavors (red solid circles) and for
Nf ¼ 2þ 1þ 1 twisted-mass flavors (brown solid circles) taken
from Ref. [16]. The dotted line indicates the charm quark
threshold at its MS running mass.

PHYSICAL REVIEW LETTERS 122, 162002 (2019)

162002-4



Although expected, to our knowledge, this outcome has
never been so remarkably exposed.
Conclusions.—In this Letter we presented our results on

the first computation of the strong running coupling at the
physical point from the ghost-gluon vertex, computed from
lattice simulations with Nf ¼ 2þ 1 DWF. We therewith
update the last results [16,17] obtained from applying the
same procedure with four flavors but relatively large pion
mass. The continuum limit treatment has been also herein
improved. Thus, we have been left with an estimate for the
benchmark value of αMSðm2

ZÞ more accurate, closer to the
central value of the current lattice (FLAG) average [6], and
in remarkably good agreementwith the nonlattice average of
the PDG [2].Moreover, lattice and nonlattice averages of the
PDG would come closer after updating the ghost-gluon
determination. The convergence of lattice and nonlattice
averages is very welcome, implying first that theory meets
experiments but, not less important, that systematics effects
from the discretization are under control and one can thereby
take at face value the lattice errors, approaching thus the goal
of getting the αMSðm2

ZÞ uncertainty below the 1% level.
On the other hand, the strong coupling in the Taylor

scheme, by itself, is an interesting quantity, as it can be
directly related to the quark-gluon interaction kernel in
continuum approaches to the QCD bound-state problem. It
has been herein obtained for three dynamical quarks at the
physical point, and has been shown to compare very well
with previous results for four dynamical quarks but
nonphysical pion mass, qualitatively but also quantitatively,
beyond the small deviations due, presumably, to the larger
pion mass, which impacts on the very delicate extraction of
αMSðm2

ZÞ. Such a comparison shows that the activation of
the charm quark does not significantly affect the infrared
quark-gluon interaction strength, and it only makes the
running coupling decrease slower, above the charm thresh-
old, as suggested by the β function.
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