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Cities, wealth, and earthquakes follow continuous power-law probability distributions such as the Pareto
distribution, which are canonically associated with scale-free behavior and self-similarity. However, many
self-similar processes manifest as discrete steps that do not produce a continuous scale-free distribution. We
construct a discrete power-law distribution that arises naturally from a simple model of hierarchical self-
similar processes such as turbulence and vasculature, and we derive the maximum-likelihood estimate
(MLE) for its exponent. Our distribution is self-similar, in contrast to previously studied discrete power
laws such as the Zipf distribution. We show that the widely used MLE derived from the Pareto distribution
leads to inaccurate estimates in systems that lack continuous scale invariance such as branching networks
and data subject to logarithmic binning. We apply our MLE to data from bronchial tubes, blood vessels,
and earthquakes to produce new estimates of scaling exponents and resolve contradictions among
previous studies.
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For power-law distributions [1], the frequency of events
or data points that exceed a value x is proportional to x−α.
The value of the scaling exponent α determines the
frequency of large events and is used to discriminate
between models of stock price fluctuations [2], the timing
and magnitude of earthquakes [3,4], internet topology [5],
turbulence [6], tree-limb branching [7], and pulmonary and
vascular morphology [8]. For instance, word frequencies
are characterized by α ¼ 1, corresponding to Zipf’s law. So
the 10th most common word in English “it” appears 5 times
more often than the 50th most common word “up.”
Likewise, the distribution of blood vessel radii approx-
imately follows a power law with α ¼ 3 in a laminar flow
regime and α ¼ 2 under pulsatile flow [9,10].
The classic power-law distribution—developed to study

the distribution of wealth—is called the Pareto distribution
[11] or continuous power-law distribution [12]. The prob-
ability density of measuring a continuous value xwith mini-
mum xm for a Pareto distribution is pcðxÞ ¼ αxαmx−ðαþ1Þ.
The probability an observation exceeds x—the tail distri-
bution

R
∞
x pcðx0Þdx0—is thus the power law [13]

PcðxÞ ¼
�

x
xm

�
−α
: ð1Þ

Power laws and scale invariance arise from diverse
phenomena [1] including self-similarity and criticality
[14,15]. Many physical systems are scale invariant—
rescaling by an arbitrary constant preserves relative pro-
portions. For the Pareto distribution [16], for example,
incomes of $80 000 occur less frequently than $50 000
in just the same proportion as incomes of $800 000 and
$500 000 or $160 000 and $100 000.
However, many self-similar systems are scale invariant

only in discrete steps. A blood vessel tends to branch into
two smaller vessels, a fluid vortex into two or three smaller
vortices, and the Sierpinski triangle is self-similar only by
powers of two [8,17,18]. These systems preserve relative
proportions upon rescaling from one step to the next, but
not upon arbitrary rescaling. This property is termed
discrete-scale invariance [15] or discrete renormalizability
[19]. It is a weaker condition than the continuous scale
invariance underlying the Pareto distribution. Whereas
strict scale invariance implies a power law and vice versa,
discrete-scale invariance allows log-periodic modulations
in the frequencies of observations [15] that deviate from a
pure power law such as Eq. (1). Such modulations are
indeed observed in bronchial tube diameter, vortex ens-
trophy, and financial asset prices [18,20,21].
Discrete self-similar phenomena are often nonetheless fit

to power laws. Power-law distributions have been studied
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extensively [11,12,22], yet there is still difficulty detecting
and interpreting them [12,23,24]. Well-motivated methods
to estimate α by maximum likelihood have long been
available [1,12,25,26], yet many empiricists still use linear
regression on log-log plots [27] or visual comparison
despite their known problems [12]. Canonically, power-
law distributions are categorized as either continuous or
discrete [11,12]. Continuous distributions with power-law
behavior include the classical [11] Pareto distribution,
several generalizations (types II–IV and the generalized
Pareto [11,22]), and related distributions such as the log-
normal [22]. Discrete power-law distributions [28] are
commonly assumed to take integer values and have been
called the Zipf, Riemann-zeta, or the discrete Pareto
distribution [11,12,28], sometimes interchangeably [28].
However, none of these distributions cover the case of

discrete self-similarity: The continuous power-law distri-
butions cannot admit log-periodic fluctuations, whereas the
discrete distributions over integers cannot admit rational
values such as sizes in the Sierpinski triangle.
We remedy this by describing a discrete distribution that

is explicitly constructed to be self-similar. This distribution
is qualitatively different from previously described distri-
butions because, rather than to integers, we assign prob-
ability to the set of values xmλk (for some xm, λ > 1) that
result from rescaling xm by any k factors of λ (Fig. 1). Thus
our distribution is both discrete and able to accommodate
noninteger values. Cases of our distribution appear often, as
in ideal models of vasculature [29] or as the degree
distribution of Appolonian networks [30].
The qualitative difference means that our distribution

corresponds to a different maximum-likelihood estimator
(MLE) of α than Pareto or any other power-law distribu-
tion. Moreover, when strict scale invariance is violated, the
Pareto MLE can produce inaccurate or unstable estimates
(Fig. 2). This finding may explain empiricists’ reluctance to

adopt existing maximum-likelihood methods as instability
in practice signals deeper problems. The MLE we derive
for our distribution is simple and intuitive, and it has a
closed-form solution in contrast to power-law distributions
over the integers [12,31]. Our MLE limits to the Pareto
MLE as λ → 1þ. A general MLE for binned Pareto samples
[32] can be specialized to recover our MLE for the case of
logarithmic binning because logarithmic binning is self-
similar, illustrating that discrete-scale invariance can arise
from the physics of a system or as an artifact of measure-
ment. Finally, our distribution provides a measurement and
interpretation of α in continuous systems that are not
strictly scale-free but have meaningful power laws evident
in log-log plots.
These results enable us to resolve previous paradoxes.

For instance, the Richter scale uses logarithmic discretiza-
tion. Through a re-analysis of earthquake data, we identify
and correct errors this discretization introduces in estimates
of the Gutenberg-Richter b value (Fig. 3) from the Pareto
MLE. Our MLE further reconciles data with theoretical
predictions in bronchial diameter measurements where
discrete self-similarity arises from branching and the
Pareto MLE cannot be trusted.
Deriving the distribution.—We derive the self-similar

discrete distribution in two ways: first intuitively from a
model of self-similar branching, and then more abstractly
from discrete-scale invariance plus one assumption that
shows the connection to logarithmic binning.
We first consider a branching network in which each

node (e.g., vessel) with value x (e.g., radius) has one parent
node of value λx and n identical offspring nodes of value
λ−1x (λ > 1) [Fig. 1(b)]. The network is self-similar

(a)

S

(b)

FIG. 1. (a) Tail distributions of power laws [cf. Eq. (1)]. Power
laws and self-similarity appear on log-log plots as regular slopes
and repeating patterns. The self-similar discrete distribution
shows stair steps (allowed values) at regular intervals in loga-
rithmic space, in contrast to Zipf’s law, the classical discrete
power law. (b) Our distribution draws node values x > xm
uniformly from a self-similar branching network wherein each
node with value x has one parent with value λx and n children of
value x=λ.

(a) S s I(b)

FIG. 2. Comparison of estimated α̂ and the true value (α ¼ 2)
versus assumed xm in synthetic data. The data are (a) 10 000
samples from our distribution (discrete) with xm ¼ 1, n ¼ 2,
λ ¼ ffiffiffi

2
p

, and (b) 10 000 samples with replacement from a
simulated imperfect branching network (continuous) where
each child node introduces a random 2.5% proportional
error, λ∼

ffiffiffi
2

p
Lognormal½0; logð1þϵÞ�; independent, ϵ ¼ 0.025,

starting from node value 100. The Pareto MLE α̂c [Eq. (5), dots
and lines] over or under estimates α for many assumed values
of xm. Our MLE α̂d [Eq. (6), diamonds] CIs include the true α
for all feasible assumed xm. The CIs of the Pareto α̂c often
exclude the true value, suggesting more data would not improve
the estimate. These parameter choices represent the Da Vinci
model for tree limbs.
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because an identical network is obtained by multiplying all
values x by λ. This branching relationship is a toy model of
earthquake aftershocks producing aftershocks [3], one
blood vessel branching into two smaller vessels [29], or
any case where as little fleas [33,34] and little whirls [35]
both feed on larger versions, recursively the larger so
proceed in like proportion [36]. If nodes represent tree
limbs and x represents their diameter, then n ¼ 2 and λ ¼ffiffiffi
2

p
give the model—due to Leonardo Da Vinci [37]—that

cross-sectional area is preserved when one limb divides
into two.
The probability to sample x—pdðxÞ—derives from

counting nodes in the network [Fig. 1(b)]: pdðxÞ ¼
pdðxmÞn−k whenever x ¼ λkxm for some integer k ≥ 0
and minimum observable node value xm. We can write k
in terms of x as k ¼ logλðx=xmÞ so that n−k becomes
ðx=xmÞ−1= logn λ. Labeling this exponent −α gives n ¼ λα

and pdðxÞ ∝ ðx=xmÞ−α with pdðxmÞ the constant of pro-
portionality. We solve for pdðxmÞ by noting that total
probability must sum to 1. Hence,

pdðxÞ ¼ ð1 − λ−αÞ
�

x
xm

�
−α
; ð2Þ

if x ¼ xmλk for some integer k ≥ 0 and otherwise
pdðxÞ ¼ 0. The tail distribution [Fig. 1(a)] is a stair-step
function that is equal to the Pareto tail distribution [Eq. (1)]
at possible values of x.
An alternative derivation shows the simplicity of our

distribution among all possible distributions with discrete-
scale invariance. The property [15] of any discrete-scale

invariant function fðxÞ that fðλxÞ ¼ λ−αfðxÞ allows us to
extrapolate a discrete-scale invariant distribution from any
normalizable function defined on a short segment
½xm; λxmÞ. Choosing this segment to be a delta function
at xm—a point-mass that could represent some more
complicated density distribution—gives pdðλkxmÞ ¼
pdðxmÞλ−kα which, identifying x ¼ λkxm, gives pdðxÞ ∝
ðx=xmÞ−α and implies Eq. (2) as above.
The generality of this latter derivation furthermore

encompasses logarithmic binning of self-similar data.
When aggregating observations into bins of exponentially
increasing size, the bin boundaries are xmλk for some xm
and λ (e.g., for bins 0.1–1; 1–10; 10–100;…; xm ¼ 0.1 and
λ ¼ 10). Therefore, Eq. (2) results whenever the underlying
distribution is self-similar upon rescaling by λ. Indeed, a
general MLE for binned Pareto samples [32] reduces to
Eq. (2) whenever the binning scheme is logarithmic.
By extension, logarithmic binning reduces many

unknown distributions to our known distribution by flat-
tening within-scale modulations. We can thus interpret and
measure α as the slope of repeating patterns on a log-log
plot [e.g., the stair steps of Fig. 1(a)], including damped
log-periodic oscillations [Fig. 2(b)]. Logarithmic binning
also attenuates measurement errors that correspond to noise
within a bin by counting only how many data points occur
in each. For this reason our distribution provides better
estimates from noisy data than Pareto.
Estimating α.—Here we derive a general form of the

MLE for any power-law distribution to show that the form
depends only on the support of the distribution, i.e., which
values are possible. We then reduce this general form to
MLEs for Pareto, Zipf, and our self-similar discrete
distribution as special cases.
The likelihood L of a set of N independent observations

xj is the product of their probabilities, L ¼ Q
N
j¼1 pðxjÞ. For

any power law, pðxÞ can be written in the form pðxÞ ¼
Cx−ðαþdÞ where the normalizing constant C is required for
the total probability to sum to 1 and d adjusts the dimension
(d ¼ 1 for probability density and d ¼ 0 for probability
mass). The normalizing constant C may depend on α and
any other parameters such as xm that determine the support
but does not depend on x.
The log-likelihood

logL ¼ N logC − ðαþ dÞ
XN

j¼1

log xj ð3Þ

is monotonic with the likelihood so it has the same maxima.
We therefore maximize logL with respect to α by setting
∂ logL=∂α equal to zero. This gives

1

C
∂C
∂α ¼ hlog xji; ð4Þ

where hlog xji denotes the average ð1=NÞPN
j¼1 log xj.

(b)(a)
F F

D

FIG. 3. Tail distributions of (a) earthquake magnitudes and
(b) bronchial diameters with slopes derived from different
estimates of α (Table I). On earthquake magnitudes (a) the Pareto
MLE slope −α̂c (gray dashed line) is visibly incorrect due to
failure to account for discrete data. Bronchial measurements
(b) are continuous but deviate from continuous scale invariance.
Thus, discretizing by powers of 2 (dotted green line) and using
the discrete MLE α̂d produces a slope (green line) that is visually
consistent with the data and consistent with theory (black bar,
Table I) in contrast to the continuous α̂c (dashed gray line).

PHYSICAL REVIEW LETTERS 122, 158303 (2019)

158303-3



Because 1=C is a sum over all values, C depends
on the support and each power-law distribution has a
unique MLE.
In the Pareto distribution, C ¼ ½R∞

xm
x−ðαþ1Þdx�−1 ¼ αxαm.

Substituting this C into Eq. (4) yields the classical MLE for
Pareto samples [12,25]

α̂c ¼ hlog xj − log xmi−1: ð5Þ

In Zipf’s distribution, C ¼ ½P∞
k¼xm

k−α�−1 ¼ 1=ζðα; xmÞ,
where ζðα; xmÞ is the Hurwitz zeta function. Hence
we recover the condition for maximum likelihood
ζ0ðα̂zÞ=ζðα̂zÞ ¼ −hlog xji that has been used to solve
numerically for α̂z [12,31].
In our case, C ¼ ½P∞

k¼0ðxmλkÞ−α�−1 ¼ xαmð1 − λ−αÞ and
so Eq. (4) gives

α̂d ¼ logλ½1þ hlogλxi − logλxmi−1�: ð6Þ

Our MLE [Eq. (6)] resembles the Pareto MLE [Eq. (5)] but
with logarithms to the base λ. Indeed, our MLE recovers the
Pareto MLE in the limit that λ goes to 1 from above.
Notably, as Fig. 2 shows, the continuous and discrete

estimators α̂c and α̂d [Eqs. (5) and (6)] may produce
drastically different estimates given the same data.
Furthermore [Fig. 2(b)], deviations from a pure power
law cause the Pareto estimator to become unstable—
depending sensitively on the choice of xm which otherwise
should not matter [12]. Yet researchers to date have often
used the Pareto MLE on any data containing noninteger
values simply because Pareto has been the only recognized
power law to allow nonintegers at all.
Our MLE also applies to discretized continuous data. For

example, real branching networks produce error at each
step and converge to a continuous power law after many
branches. We simulate error [Fig. 2(b)] by recursively
constructing child nodes, assigning each the value xλ−1η
given its parent value x. The error factor η is drawn
independently for each node from a log-normal distribution
with geometric mean 1 and geometric standard deviation
1þ ϵ so that η lies between ð1þ ϵÞ2 and ð1þ ϵÞ−2 95% of
the time. The distribution of node values is then neither
discrete nor a continuous power law. The Pareto MLE
oscillates as a function of xm as we might expect from

Fig. 2(a). After logarithmic binning, however, our distri-
bution is an accurate enough approximation that our MLE
recovers the α ¼ 2 corresponding to the geometric mean λ.
Failures of the Pareto MLE.—The Pareto distribution is

the continuous analog of the discrete power law and indeed,
limλ→1þ α̂d ¼ α̂c. Consequently, one might expect Pareto to
be a continuum-limit approximation to our distribution.
However, α̂d ≈ α̂c only when λ is very close to 1. Common
values of λ—such as Da Vinci’s

ffiffiffi
2

p
or logarithmic binning

by powers of 10—do not approach this limit.
An earthquake example shows that even 100.1 is not

sufficiently close to λ ¼ 1 to well approximate the Pareto.
Earthquake magnitudes have long been thought to follow a
power-law distribution. Its exponent—the Gutenberg-
Richter b value—was first measured in 1944 as b ¼ 0.88�
0.03 by linear regression on scant data [38]. A modern
study [3] on an extensive dataset also used regression to
conclude that b ¼ 0.95� 0.01. In contrast, the Pareto MLE
produces α̂c ¼ 1.054� 0.007 using the same dataset [3], in
visible disagreement with the slope of the tail distribution
[Fig. 3(a)]. Clauset et al. [12] also concluded that earth-
quake magnitudes were not well fit by the continuous
power law, paradoxical to long-held belief.
Our findings resolve these contradictory results for

earthquake data. Magnitudes are recorded with two digits
of precision on the Richter scale. Thus, the data are
logarithmically binned from the start with λ ¼ 100.1.
Using our MLE with xm ¼ 2.0 and λ ¼ 100.1, we estimate
b ¼ α̂d ¼ 0.943� 0.006, visually consistent with the data
and in line with previous measures based on regression
[Fig. 3(a), Table I]. Although 0.1 is relatively fine-grained
over the range of data (from 2.0 to 7.3), the value 100.1 ¼
1.26 is not sufficiently close to λ ¼ 1 for the Pareto
approximation to apply. Thus the continuous estimator
yields biased estimates. Furthermore, the ≈11.7% error the
Pareto MLE introduces does not diminish with more
observations or a greater range of observations. This error
also far exceeds the statistical random error 0.7% (95% CI)
in this high-quality dataset, producing confidence intervals
that exclude the true value.
Fitting continuous data.—Even in continuous systems,

deviations from continuous scale invariance can cause
inaccuracy in the Pareto MLE. In contrast, our MLE in
conjunction with logarithmic binning applies to data with

TABLE I. Pareto (continuous α̂c) and our (discrete α̂d) MLEs of α from earthquake magnitudes [3], bronchial tube diameters [39],
and blood vessel radii [40], compared with slopes of regression to the tail distribution and theoretical predictions. Likely errors are
marked (*). The Pareto MLE α̂c fails to account for discretization in earthquake data and thus leads to a > 10% bias [Fig. 3(a)]. For
bronchial data the continuous α̂c and discrete α̂d are inconsistent due to deviations from continuous scaling. In vascular data—which is
approximately scale invariant—α̂c and α̂d are consistent while regression likely fails [12].

Data xm λ Continuous α̂c Discrete α̂d Regression slope Theoretical α

Earthquakes 2.0 100.1 �1.05� 0.01 0.94� 0.01 0.96� 0.01 NA
Bronchia 1.6 mm 2 �3.4� 0.2 2.9� 0.2 2.78� 0.07 α ¼ 3 [29,41]
Vessels 0.7 mm 2 2.3� 0.1 2.3� 0.2 �2.56� 0.02 2 ≤ α ≤ 3 [29]
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discrete or continuous scale invariance, and it performs well
in the face of within-scale measurement noise. Therefore,
we can detect deviations from continuous scale invariance
by looking for discrepancies between the estimators.
If the unknown distribution that generates the data is truly
scale invariant, both MLEs will produce mutually consis-
tent results regardless of λ. A discrepancy between the
estimators indicates a violation of scale invariance,
where there is no guarantee the Pareto MLE is correct.
In that case, our MLE procedure can offer more reliable
estimates.
We illustrate these alternatives with bronchial and

vascular data (Table I). Bronchia tend to branch symmet-
rically into two similarly sized bronchia with statistical self-
similarity around powers of λ ¼ 21=3 as a consequence of
Murray’s law [29,41]. A database of 1097 bronchial
diameter measurements from a single human lung
(Raabe et al. [39], file D6) binned with λ ¼ 2 gives
α̂d ¼ 2.9� 0.2—in agreement with theory [Fig. 3(b)].
The Pareto MLE α̂c ¼ 3.4� 0.2 differs significantly
from the data and predicted values. We conclude that
bronchial measurements deviate from strict scale invariance
due to discrete self-similarity arising from branching or
measurement error, and that our MLE therefore is more
accurate.
Although blood vessels also branch dichotomously,

random asymmetry in branching disperses vessel diameters
from any specific ratios. On a database of 1569 blood
vessel radii measured from a single mouse lung [40], α̂c and
α̂d produced statistically indistinguishable estimates
(Table I), independent of the chosen λ, and are therefore
both likely accurate. The mutual consistency between the
estimators suggests that the distribution of blood vessel
measurements is effectively scale invariant despite the
underlying branching.
Conclusion.—These theoretical and empirical arguments

show that modeling discrete self-similar processes with a
continuous power-law distribution can lead to errors, and a
discrete distribution is essential to properly describe many
biological and physical systems. We derive a novel esti-
mation procedure that is intuitive, computationally simple,
and more reliable than previous methods [12,24,27]
because it applies to data with any kind of self-similarity
—continuous or discrete. When faced with the unknown,
we recommend the empiricist take a version of Pascal’s
wager: discretize to avoid unknown errors at the cost of a
known and modest decrease in statistical power. Our
prescription is then to bin logarithmically and use the
self-similar discrete estimator.
Reproducibility: All results and figures herein can be

reproduced from public data and software [42].
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