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We compute the symbol of the two-loop five-point scattering amplitude in N ¼ 4 supersymmetric
Yang-Mills theory, including its full color dependence. This requires constructing the symbol of all two-
loop five-point nonplanar massless master integrals, for which we give explicit results.
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A great deal of progress in calculating scattering ampli-
tudes has been driven by the fruitful interplay between new
formal ideas and the need for increasingly precise theo-
retical predictions at collider experiments. For instance,
techniques such as generalized unitarity [1] and the symbol
calculus [2] were first introduced in the realm of maximally
supersymmetric Yang-Mills theory (N ¼ 4 SYM) and
went on to have a large impact on precision collider
physics. In this Letter, we use cutting-edge techniques to
take a first look at the analytic form of the two-loop five-
point amplitude in N ¼ 4 SYM theory beyond the planar,
Nc → ∞, limit of SUðNcÞ gauge theory.
Amplitudes in N ¼ 4 SYM theory possess rigid ana-

lytic properties that make them easier to compute than
their pure Yang-Mills counterparts, the state of the art being
the three-loop four-gluon N ¼ 4 SYM amplitude [3].
Historically, calculations in N ¼ 4 SYM theory have
therefore preceded analogous computations in QCD. The
planar five-point amplitude at two loops in N ¼ 4 SYM
theory was first obtained numerically [4], confirming
the prediction of [5]. In pure Yang-Mills theory, the first
planar two-loop five-point amplitude, evaluated numeri-
cally, was for the all-plus helicity configuration [6]. Since
then, a flurry of activity in planar multileg two-loop
amplitudes has seen the analytic calculation of the all-plus
amplitude [7], the numerical evaluation of all five-parton
QCD amplitudes [8–11], and, recently, the computation of
analytic expressions for all five-gluon scattering amplitudes
[12,13]. These achievements were made possible by the
development of efficient ways to reduce amplitudes to

master integrals using integration-by-parts (IBP) relations
[14,15], automated by Laporta’s algorithm [16] or modern
reformulations based on unitarity cuts and computational
algebraic geometry [10,17–20], and to compute master
integrals from their differential equations [21,22]. Indeed,
all planar five-point master integrals have been computed
[23,24], and substantial progress has been made in the
nonplanar sectors as well [25–27].
In this work, we first discuss the integrand of the two-

loop five-point amplitude in N ¼ 4 SYM theory, and how
it can be reduced to a form involving only so-called pure
integrals (i.e., integrals satisfying a differential equation in
canonical form [22]). We then use the aforementioned new
techniques for integral reduction and differential equations
(most notably the method introduced in [26]) to compute
the symbols [2] (see also [28,29]) of all nonplanar massless
two-loop five-point master integrals. From these integrals,
we finally assemble the symbol of the complete two-loop
five-point N ¼ 4 SYM amplitude and discuss consistency
checks of our result. Throughout, we work at the level of
the symbol where transcendental constants are set to zero.
While such contributions are important for the numerical
evaluation of an amplitude, the symbol itself contains a
major part of the nontrivial analytic structure of the
amplitude.
Our result constitutes the first analytic investigation of

two-loop five-point amplitudes in any gauge or gravity
theory beyond the planar limit. Just as the one-loop five-
gluon amplitude [30] did, our two-loop result should
provide valuable theoretical data for further exploring
the properties of structurally complex amplitudes, as well
as the proposed duality between scattering amplitudes and
Wilson loops at subleading color [31]. Furthermore, the
methods will impact precision collider phenomenology:
The master integrals are directly applicable to QCD
amplitudes, opening the way to computing three-jet pro-
duction at hadron colliders at next-to-next-to-leading order.
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Construction of the amplitude.—In any SUðNcÞ gauge
theory with all states in the adjoint representation, the trace-
based color decomposition [32,33] of any two-loop five-
point amplitude is [34]

Að2Þ
5 ¼

X
S5=ðS3×Z2Þ

tr½15�ðtr½234� − tr½432�Þ
Nc

ADT½15j234�

þ
X
S5=D5

ðtr½12345� − tr½54321�Þ

×

�
AST½12345� þ ASLST½12345�

N2
c

�
: ð1Þ

Here, single-trace (ST), subleading-color single-trace (SLST),
and double-trace (DT) denote different partial amplitudes.
Note that Sn (Zn) is the (cyclic) permutation group, andDn is
the dihedral group.
It is a powerful fact about MHV scattering amplitudes

in N ¼ 4 SYM theory that all leading singularities [35]
are given in terms of different permutations of Parke-
Taylor tree-(super-)amplitudes [36,37]. This highly non-
trivial result has been derived from a dual formulation of
leading singularities in terms of the Grassmannian [38].
Furthermore, N ¼ 4 SYM amplitudes are conjectured to
be of uniform transcendental weight [5,39–41]. A repre-
sentation of the four-dimensional integrand has been given
in [42], where this Parke-Taylor structure, together with
further special analytic properties of N ¼ 4 SYM theory
(logarithmic singularities and no residues at infinite loop
momentum), is manifest. In this representation, the full,
color-dressed amplitude splits into three distinct parts

Að2Þ
n ¼ C ⊗ PT ⊗ gpure; ð2Þ

where C schematically denotes the color structure of the
gauge theory. For a five-point scattering amplitude, the
space of Parke-Taylor factors is spanned by a set of 3!
Kleiss-Kuijf (KK) independent elements [43] that we
denote by PT½1σ2σ3σ45�, where

PT½σ1σ2σ3σ4σ5� ¼
δ8ðQÞ

hσ1σ2ihσ2σ3ihσ3σ4ihσ4σ5ihσ5σ1i
: ð3Þ

The super-momentum conserving delta function δ8ðQÞ
encodes the supersymmetric Ward identities relating the
ð− −þþþÞ-helicity five-gluon amplitude to all other
five-particle amplitudes. The third part, gpure, denotes a
pure function of transcendental weight 4.
The goal of this section is to compute the partial

amplitudes in (1). Our starting point is the integrand of
[44], which is valid in d ¼ 4 − 2ϵ space-time dimensions
and is given in terms of the six topologies in Fig. 1,

Að2Þ
5 ¼

X
S5

�
IðaÞ

2
þ IðbÞ

4
þ IðcÞ

4
þ IðdÞ

2
þ IðeÞ

4
þ IðfÞ

4

�
: ð4Þ

The sum is over all 5! permutations of external legs, and the
rational numbers correspond to diagram-symmetry factors.
For each of the topologies in Fig. 1, we construct a basis

of pure master integrals, on which the amplitude (4) can be
decomposed, so the separation into color, rational, and
transcendental parts (2) becomes manifest. Most required
master integrals are already known in pure form
[7,23,26,27,45]. The one missing topology, which we
discuss momentarily, is the nonplanar double pentagon
[diagram (c) of Fig. 1]. The integrals we are concerned with
are functions of five Mandelstam invariants, s12, s23, s34,
s45, s51, with sij ¼ ðki þ kjÞ2. We also encounter the
parity-odd ε-tensor contraction

tr5 ¼ 4iεμνρσk
μ
1k

ν
2k

ρ
3k

σ
4 ¼ trðγ5=k1=k2=k3=k4Þ: ð5Þ

To find a basis of pure master integrals for the top-level
(eight-propagator) topology of Fig. 1(c), it is necessary to
construct nine independent numerators. Specifically, we
choose the following set of master integrals: 1. The parity-
even part of the integral with numerator NðaÞ

1 identified in
[42], rewritten as spinor traces in Eq. (21) of [46]. By
deleting γ5 from the spinor traces, we obtain the parity-even
parts in a form that is valid in d dimensions. Two more pure
integrals are obtained from it by using the diagram’sZ2 × Z2

symmetry. 2. ð6 − 2ϵÞ-dimensional scalar integrals with any
of the eight propagators squared, normalized by a factor of
tr5 and a homogeneous linear function of the sij variables.
Six such integrals, which we have converted to integrals in
ð4 − 2ϵÞ dimensions [47–50], are included in our basis.
Explicit expressions for these new pure master integrals can
be found in the Supplemental Material masters.m [51].
Next, we construct differential equations in canonical

form [22] for the master integrals. The (iterated) branch-cut
structure of the integrals is encoded in the symbol letters,
which are algebraic functions of the kinematic invariants. It
is convenient to parametrize the five-point kinematics in
terms of variables that rationalize all letters of the alphabet.
This can be accomplished via momentum twistors [52] and
the xi parametrization proposed in [6], see also [53]. For
the nonplanar double-pentagon integral, we find that the

(a)

(d) (e) (f)

(b) (c)

FIG. 1. Diagram topologies entering the local representation of
the two-loop five-point integrand of N ¼ 4 SYM theory [44].
Each diagram has an associated color structure and numerator
which we suppress.
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complete system contains 108 masters and depends on the
31 Wα letters suggested in [25]:

∂xiIa≡∂Ia

∂xi ¼ϵ
X31
α¼1

∂ logWα

∂xi Mab
α Ib; 1≤a;b≤108: ð6Þ

Ten of the letters (α ∈ f1;…; 5g ∪ f16;…; 20g) are simple
Mandelstam invariants sij, 15 of the letters (α∈ f6;…;15g∪
f21;…;25g) are the differences of Mandelstam invariants
sij − skl, the five parity-odd letters (α ∈ f26;…; 30g)
can be expressed as ratios of spinor brackets such as
ðh12i½15�h45i½24�Þ=ð½12�h15i½45�h24iÞ, which invert under
complex conjugation h·i ↔ ½·� or tr5 → −tr5, and the final
parity-even letter (α ¼ 31) is tr5. The 31 Mα matrices
consist of simple rational numbers.
Computing the Mα matrices in (6) requires performing

IBP reduction on differentials of the original masters ∂xiIa

with respect to the kinematic variables in order to reexpress
them in terms of the original basis Ia. We use the efficient
approach introduced in [26], which builds on the modern
formulation of IBP relations in terms of unitarity cuts and
computational algebraic geometry [10,17–20]. The method
requires IBP reduction at only 30 rational, numerical phase-
space points to fix all the Mα, dramatically reducing the
computation time compared to analytic IBP reduction.
Combined with the first-entry condition [54], which restricts
integrals to only have branch-cut singularities at physical
thresholds,we obtain solutions to the differential equations at
the symbol level for all master integrals. As a check, we
verified that we reproduce (at symbol level) all known results
for descendant integrals (≤7 propagators). The full results are
included in the Supplemental Material masters.m [51].
Having established a basis and computed the master

integrals required for massless two-loop five-point ampli-
tudes, we can now write the N ¼ 4 SYM amplitude in that
basis. As already stated, we use the d-dimensional represen-
tation of the integrand given in [44].While this representation
has the advantage of being in the so-called Bern-Carrasco-
Johansson (BCJ) form [55], which allows for the immediate
construction of the gravity integrand via the “double-copy”
prescription, it obscures some of the simplicity of the final
result. For instance, each individual diagram in Fig. 1
introduces spurious rational factors. Applying Fierz color
identities [32] to decompose the integrand (4) into the partial
amplitudes in (1) and using IBP reduction to rewrite those in
our pure basis, we can obtain a representation that is
manifestly in the form of (2). In particular, we find a simple
rational kinematic dependence for all partial amplitudes via at
most six KK-independent Parke-Taylor factors:

AST½12345� ¼ PT½12345�MBDS
ð2Þ ;

ADT½15j234� ¼
X

σð234Þ∈S3
PT½1σ2σ3σ45�gDTσ2σ3σ4 ;

ASLST½12345� ¼
X

σð234Þ∈S3
PT½1σ2σ3σ45�gSLSTσ2σ3σ4 ; ð7Þ

where MBDS
ð2Þ is the two-loop BDS ansatz [5] and gXσ⃗ are pure

functions. Both MBDS
ð2Þ and gXσ⃗ can be written as Q-linear

combinations of our pure master integrals. The IBP reduction
is done following the same strategy already discussed for the
differential equations. Given the simple kinematic depend-
ence of the result, it is sufficient to perform the reduction at six
numerical kinematic points. Furthermore, we were able to
achieve a computational speedup by performing all calcu-
lations in a finite field with a 10-digit cardinality, before
reconstructing the simple rational numbers from their finite-
field images using Wang’s algorithm [56–58].
Inserting the symbol of the master integrals, we directly

obtain the symbol of the two-loop five-point N ¼ 4 SYM
amplitude. The amplitude is naturally decomposed into
parity-even and parity-odd parts under a sign flip of “tr5”
defined in (5). At symbol level, the parity grading can be
determined by counting the number of parity-odd letters,
W26;…;W30, in a given symbol tensor. The parity-odd part
of our result is highly constrained by the first- and second-
entry conditions, as well as the integrability of the symbol
[2], leading to a much simpler structure than the even part.
It is important to note that in all collinear limits the parity-
odd parts of the amplitude vanish since the external
momenta span only a three-dimensional space and hence
tr5 ¼ 0. We attach the explicit symbol-level results for
the partial amplitudes in the Supplemental Material
amplitudes.m [51].
Validation.—In the previous section we described the

assembly of the two-loop five-point amplitude in N ¼
4 SYM theory in terms of pure master integrals. In this
section we validate our final result by checking nontrivial
identities between different terms and verifying universal
behavior in kinematic limits. We focus our discussion on
verifying collinear factorization when two external
momenta become parallel [59]. Aside from this check,
we also verified the following: (i) The planar amplitude
matches the BDS ansatz [5] stating that four- and five-
particle amplitudes in planarN ¼ 4 SYM theory are given
to all orders by exponentiating the one-loop amplitude [30].
(ii) The partial amplitudes satisfy the group-theoretic
Edison-Naculich relations [60], allowing us to write all
subleading single-trace partial amplitudes ASLST in terms of
linear combinations of planar AST and double-trace ADT

amplitudes, e.g.,

ASLST½12345� ¼ 5AST½13524�
þ

X
cyclic

h
AST½12435� − 2AST½12453�

þ 1

2
ðADT½12j345� − ADT½13j245�Þ

i
; ð8Þ

where the five cyclic permutations are generated by the
relabeling i → iþ 1 (mod 5). Thus, we need not discuss
ASLST further, and the amplitude is fully specified by two
functions, MBDS

ð2Þ and gDT234. (iii) The infrared poles of the

PHYSICAL REVIEW LETTERS 122, 121603 (2019)

121603-3



amplitude match the universal pole structure predicted by
Catani [61] (see also, e.g., Refs. [59,62]), where the poles of
two-loop amplitudes canbe computed in termsof known tree-
and one-loop amplitudes. Several of these checks require the
one-loop five-point amplitudes expanded through order ϵ2.
An exact expression for the integrand of this amplitude is
known [63]. The box integrals are known to all orders in ϵ
[48]. Theonly integral that is not known to all orders is the six-
dimensional scalar pentagon whose symbol can either be
computed to anyorder in ϵ from [64] or bydirect evaluationof
the integral with HYPERINT [65]. We denote by Id¼6−2ϵ

5 the
integral normalized by (minus) the tr5 of (5), so that it is a pure
parity-odd function, and give its symbol in the Supplemental
Material purePentagon6d.m [51].
The test we discuss in more detail is the collinear limit of

the double-trace partial amplitudes ADT. As already stated,
all parity-odd contributions of any partial amplitude vanish
in this limit since tr5 ¼ 0. For concreteness, in the rest of
this section we focus on ADT½15j234�, which in our
conventions is symmetric in the (15) indices and totally
antisymmetric in (234). All other double-trace amplitudes
are given by simple relabeling. Scattering amplitudes obey
a universal collinear factorization equation [1,59]. Here, we
discuss the five-point limit 2k3where two momenta, k2 and
k3, become collinear k2 ¼ τP, k3 ¼ ð1 − τÞP with collinear
splitting fraction τ. The two-loop amplitude factorizes intoP

2
l¼0 Split

ðlÞ
23 ðϵÞ ×Að2−lÞ

4 ðϵÞ:

ð9Þ

The empty blobs on the left of each diagram denote the
collinear splitting functions, and the filled blobs on the right
are the four-point amplitudes depending only on P, k1, k4,
and k5. The color part of the splitting function is very
simple: In the example above, it is directly proportional to
f23P. Kinematic expressions for the one- and two-loop
splitting functions can be found in [1,59]. Furthermore, the
one- and two-loop four-point amplitudes [1,33], and
relevant integrals [66,67], are also known to the required
order in the ϵ expansion. To approach the collinear limit, we
map from the generic five-dimensional kinematic space
(parametrized in terms of the xi of [6]) to the collinear limit.
This can be done via the following substitution [53]:

x1 ↦ sτ; x2 ↦ csδ; x3 ↦ r2csδ;

x4 ↦ δ; x5 ↦ −
1

cδ
; ð10Þ

where s characterizes the overall scale of all Mandelstam
invariants, δ → 0 corresponds to the collinear limit, τ is the
aforementioned collinear splitting fraction, r2 ¼ ðs15=s45Þ
is the ratio of Mandelstam invariants of the underlying

four-point process, and c ∼ ð½23�=h23iÞ corresponds to an
azimuthal phase. Expanding the 31-letter alphabet to leading
order in δ, we find 14 multiplicatively independent letters in
the collinear limit: 7 physical fδ; s; τ; 1 − τ; r2; 1þ r2; cg
(in fact, this number reduces to 6 at leading power because c
and δ always appear in the same combination, cδ2) and 7
spurious letters that cannot be part of the (leading
power) limit. When comparing the collinear limit of our
result to the factorization formula (9), we note that only
Parke-Taylor factors where legs 2 and 3 are adjacent
become singular. For instance, while PT½12345�↦1=
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τð1−τÞp h23iÞ×PT½1P45�, PT½12435� has no collinear
singularity in the 2k3 limit. We find that our result exactly
matches the collinear factorization formula (9). Besides this
limit, there are two further inequivalent collinear limits we
can check for ADT½15j234�: when 1k5 and 1k2. When
looking at the color factors of the appropriate relabeling
of (9), it becomes clear that neither of them contains
tr½15�ðtr½234� − tr½432�Þ so ADT½15j234� is forced to be
nonsingular in these limits. We have checked that our result
indeed reproduces this behavior.
Discussion of the result and outlook.—After discussing

various consistency checks of our answer for the two-loop
five-point amplitude in N ¼ 4 SYM, let us briefly sum-
marize some of its analytic features. First, we highlight in
Table I that a number of terms in the ϵ expansion vanish,
which is of course predicted by the Catani formula. We note
that some of the two-loop master integrals have weight-2
odd terms, but this contribution is absent from the amplitude.
We also note that our answers for the amplitude, as well

as individual pure master integrals, are compatible with the
empirical second-entry conditions first observed for indi-
vidual integrals in [7,24,25,27]. It would be very interesting
to understand the underlying physical reason for this
property, perhaps from the point of view of a diagrammatic
coaction principle [64,68,69].
Our full result is too lengthy to print in this Letter.

However, it has very restricted analytic structure. For
instance, the parity-odd transcendental part of any deriva-
tive of any weight-4 function in the amplitude belongs to a
12-dimensional subspace of the 111-dimensional space of
weight-3 parity-odd functions that obey integrability and

TABLE I. Summary of vanishing (0) and nonvanishing (✓)
terms in the ϵ expansion of the different partial amplitudes.

1=ϵ4 w0 1=ϵ3 w1 1=ϵ2 w2 1=ϵ1 w3 ϵ0 w4

AST
even ✓ ✓ ✓ ✓ ✓

AST
odd 0 0 0 ✓ ✓

ADT
even 0 ✓ ✓ ✓ ✓

ADT
odd 0 0 0 ✓ ✓

ASLST
even 0 0 ✓ ✓ ✓

ASLST
odd 0 0 0 0 ✓
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the second-entry condition of [25]. This 12-dimensional
subspace is spanned by the 12 inequivalent permutations,
Σj, of theOðϵ0Þ part of the pure, parity-odd scalar pentagon
in d ¼ 6, Id¼6

5 ðΣjÞ. (Because of the dihedral D5 invariance
of the integral, there are only 5!=10 ¼ 12 inequivalent
permutations.) The parity-odd part of the 1=ϵ coefficient of
MBDS

ð2Þ is just −5Id¼6
5 ðf12345gÞ.

Let us recall that the amplitude is fully specified by gDT234
and the previously known MBDS

ð2Þ . We may write the odd

transcendental part of the derivative of the odd part of gDT234
using this Id¼6

5 basis, as

∂xi ½gDT;odd234 �jodd ¼
X
j;γ

Id¼6
5 ðΣjÞmjγ

∂ logWγ

∂xi ; ð11Þ

where j labels the 12 inequivalent pentagon permutations
f12543g, f12453g, f13524g, f12534g, f13254g, f12354g,
f14325g, f13425g, f14235g, f12435g, f13245g, f12345g,
and γ ∈ f1;…; 5g ∪ f16;…; 20g ∪ f31g are the nonzero
final entries. The matrix mjγ is

mjγ ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

−17
4

−5
4
−6 −17

4
−7

2
−17

4
−7

4
1
2

−1 −17
4

10

17
4

5
4

5
4

17
4

4 17
4

11
2

17
4

1
2

1
2

−10
0 0 0 0 0 0 0 0 0 0 0
1
4

−1
4
−1

4
0 0 0 0 0 1

4
0 0

0 −1
4
−1

4
1
4

0 0 0 0 0 1
4

0

−17
4

−6 −5
4
−17

4
−7

2
1
2

−7
4
−17

4
−17

4
−1 10

−1
4

1
2

1
2

−1
4

0 0 0 0 −1
4

−1
4

0

1
4

−1
2

1
4

0 −1
2

1
4

−1
4

−1
2

1 0 0

0 1
4

−1
2

1
4

−1
2

−1
2

−1
4

1
4

0 1 0

−1
4

0 1
4

0 1
2

1
4

1
4

0 −1
2

−1
2

0

0 1
4

0 −1
4

1
2

0 1
4

1
4

−1
2

−1
2

0

17
4

6 6 17
4

9 −1
2

4 −1
2

−5
4

−5
4

−10

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

which has rank 8, so only eight independent combinations
of final entries appear. For concreteness, we give the
symbol of Id¼6

5 ðf12345gÞ in the Supplemental Material
purePentagon6d.m [51].
While the first derivatives are quite constrained, the

second derivatives (actually the f2; 1; 1g coproducts) of the
ϵ0 terms of the amplitude span the entire 79-dimensional
space identified in [25].
Building on this first analytic result for a nonplanar two-

loop five-point amplitude, there are a number of avenues
for future research. The upcoming work of [70] will explore
the analytic structure of the factorization of the amplitude
when one of the external gluons becomes soft. For this
limit, there exists an eikonal semi-infinite Wilson line
picture. Starting at two loops, the possibility of coupling
three hard lines via nontrivial color connections opens up,

which leads to an interesting parity-odd component of the
soft-emission function which is compatible with the soft
limit of our symbol-level result. Furthermore, it would be
interesting to explore the subleading-in-color behavior of
this scattering amplitude in multi-Regge kinematics [71–
73]. With our result, it now also becomes possible to test the
proposed relation between scattering amplitudes andWilson
loops beyond the leading term in the largeNc limit [31], and
it would be interesting to match our result to a future near-
collinear OPE computation on the Wilson-loop side.
Since we have now computed the symbol of all relevant

Feynman integrals for massless two-loop five-point scatter-
ing, we can, in principle, discuss other theories, such as
N < 4 SYM theory as well as N ≥ 4 supergravity. In
particular, it would be interesting to investigate the uniform
transcendentality (UT) property of two-loop five-point
amplitudes in N ¼ 8 supergravity. According to [74], this
integrand only has logarithmic singularities and no poles at
infinity, so one would expect a UT result. Finding such a
result would lend further credence to the empirical relation
between logarithmic poles of the integrand and transcen-
dentality properties of amplitudes.
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